We did try trimming whitespace surrounding the 'model name'
field in /proc/cpuinfo since reportedly some userspace uses it
in string comparisons and there were discrepancies:
[thetango@prarit ~]# grep "^model name" /proc/cpuinfo | uniq -c | sed 's/\ /_/g'
______1_model_name :_AMD_Opteron(TM)_Processor_6272
_____63_model_name :_AMD_Opteron(TM)_Processor_6272_________________
However, there were issues with overlapping buffers, string
sizes and non-byte-sized copies in the previous proposed
solutions; see Link tags below for the whole farce.
So, instead of diddling with this more, let's simply extend what
was there originally with trimming any present trailing
whitespace. Final result is really simple and obvious.
Testing with the most insane model IDs qemu can generate, looks
good:
.model_id = " My funny model ID CPU ",
______4_model_name :_My_funny_model_ID_CPU
.model_id = "My funny model ID CPU ",
______4_model_name :_My_funny_model_ID_CPU
.model_id = " My funny model ID CPU",
______4_model_name :_My_funny_model_ID_CPU
.model_id = " ",
______4_model_name :__
.model_id = "",
______4_model_name :_15/02
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1432050210-32036-1-git-send-email-prarit@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RCU changes from Paul E. McKenney:
- Initialization/Kconfig updates: hide most Kconfig options from unsuspecting users.
There's now a single high level configuration option:
*
* RCU Subsystem
*
Make expert-level adjustments to RCU configuration (RCU_EXPERT) [N/y/?] (NEW)
Which if answered in the negative, leaves us with a single interactive
configuration option:
Offload RCU callback processing from boot-selected CPUs (RCU_NOCB_CPU) [N/y/?] (NEW)
All the rest of the RCU options are configured automatically.
- Remove all uses of RCU-protected array indexes: replace the
rcu_[access|dereference]_index_check() APIs with READ_ONCE() and rcu_lockdep_assert().
- RCU CPU-hotplug cleanups.
- Updates to Tiny RCU: a race fix and further code shrinkage.
- RCU torture-testing updates: fixes, speedups, cleanups and
documentation updates.
- Miscellaneous fixes.
- Documentation updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because mce is arch-specific x86 code, there is little or no
performance benefit of using rcu_dereference_index_check() over using
smp_load_acquire(). It also turns out that mce is the only place that
array-index-based RCU is used, and it would be convenient to drop
this portion of the RCU API.
This patch therefore changes rcu_dereference_index_check() uses to
smp_load_acquire(), but keeping the lockdep diagnostics, and also
changes rcu_access_index() uses to READ_ONCE().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: linux-edac@vger.kernel.org
Cc: Tony Luck <tony.luck@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
We use pat_enabled in x86-specific code to see if PAT is enabled
or not but we're granting full access to it even though readers
do not need to set it. If, for instance, we granted access to it
to modules later they then could override the variable
setting... no bueno.
This renames pat_enabled to a new static variable __pat_enabled.
Folks are redirected to use pat_enabled() now.
Code that sets this can only be internal to pat.c. Apart from
the early kernel parameter "nopat" to disable PAT, we also have
a few cases that disable it later and make use of a helper
pat_disable(). It is wrapped under an ifdef but since that code
cannot run unless PAT was enabled its not required to wrap it
with ifdefs, unwrap that. Likewise, since "nopat" doesn't really
change non-PAT systems just remove that ifdef as well.
Although we could add and use an early_param_off(), these
helpers don't use __read_mostly but we want to keep
__read_mostly for __pat_enabled as this is a hot path -- upon
boot, for instance, a simple guest may see ~4k accesses to
pat_enabled(). Since __read_mostly early boot params are not
that common we don't add a helper for them just yet.
Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Walls <awalls@md.metrocast.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dave Airlie <airlied@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Doug Ledford <dledford@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kyle McMartin <kyle@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1430425520-22275-3-git-send-email-mcgrof@do-not-panic.com
Link: http://lkml.kernel.org/r/1432628901-18044-13-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'mtrr_state.enabled' contains the FE (fixed MTRRs enabled)
and E (MTRRs enabled) flags in MSR_MTRRdefType. Intel SDM,
section 11.11.2.1, defines these flags as follows:
- All MTRRs are disabled when the E flag is clear.
The FE flag has no affect when the E flag is clear.
- The default type is enabled when the E flag is set.
- MTRR variable ranges are enabled when the E flag is set.
- MTRR fixed ranges are enabled when both E and FE flags
are set.
MTRR state checks in __mtrr_type_lookup() do not match with SDM.
Hence, this patch makes the following changes:
- The current code detects MTRRs disabled when both E and
FE flags are clear in mtrr_state.enabled. Fix to detect
MTRRs disabled when the E flag is clear.
- The current code does not check if the FE bit is set in
mtrr_state.enabled when looking at the fixed entries.
Fix to check the FE flag.
- The current code returns the default type when the E flag
is clear in mtrr_state.enabled. However, the default type
is UC when the E flag is clear. Remove the code as this
case is handled as MTRR disabled with the 1st change.
In addition, this patch defines the E and FE flags in
mtrr_state.enabled as follows.
- FE flag: MTRR_STATE_MTRR_FIXED_ENABLED
- E flag: MTRR_STATE_MTRR_ENABLED
print_mtrr_state() and x86_get_mtrr_mem_range() are also updated
accordingly.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Elliott@hp.com
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave.hansen@intel.com
Cc: linux-mm <linux-mm@kvack.org>
Cc: pebolle@tiscali.nl
Link: http://lkml.kernel.org/r/1431714237-880-4-git-send-email-toshi.kani@hp.com
Link: http://lkml.kernel.org/r/1432628901-18044-4-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When an MTRR entry is inclusive to a requested range, i.e. the
start and end of the request are not within the MTRR entry range
but the range contains the MTRR entry entirely:
range_start ... [mtrr_start ... mtrr_end] ... range_end
__mtrr_type_lookup() ignores such a case because both
start_state and end_state are set to zero.
This bug can cause the following issues:
1) reserve_memtype() tracks an effective memory type in case
a request type is WB (ex. /dev/mem blindly uses WB). Missing
to track with its effective type causes a subsequent request
to map the same range with the effective type to fail.
2) pud_set_huge() and pmd_set_huge() check if a requested range
has any overlap with MTRRs. Missing to detect an overlap may
cause a performance penalty or undefined behavior.
This patch fixes the bug by adding a new flag, 'inclusive',
to detect the inclusive case. This case is then handled in
the same way as end_state:1 since the first region is the same.
With this fix, __mtrr_type_lookup() handles the inclusive case
properly.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Elliott@hp.com
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave.hansen@intel.com
Cc: linux-mm <linux-mm@kvack.org>
Cc: pebolle@tiscali.nl
Link: http://lkml.kernel.org/r/1431714237-880-3-git-send-email-toshi.kani@hp.com
Link: http://lkml.kernel.org/r/1432628901-18044-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When comparing the 'model name' field of each core in
/proc/cpuinfo it was noticed that there is a whitespace
difference between the cores' model names.
After some quick investigation it was noticed that the model
name fields were actually different -- processor 0's model name
field had trailing whitespace removed, while the other
processors did not.
Another way of seeing this behaviour is to convert spaces into
underscores in the output of /proc/cpuinfo,
[thetango@prarit ~]# grep "^model name" /proc/cpuinfo | uniq -c | sed 's/\ /_/g'
______1_model_name :_AMD_Opteron(TM)_Processor_6272
_____63_model_name :_AMD_Opteron(TM)_Processor_6272_________________
which shows the discrepancy.
This occurs because the kernel calls strim() on cpu 0's
x86_model_id field to output a pretty message to the console in
print_cpu_info(), and as a result strips the whitespace at the
end of the ->x86_model_id field.
But, the ->x86_model_id field should be the same for the all
identical CPUs in the box. Thus, we need to remove both leading
and trailing whitespace.
As a result, the print_cpu_info() output looks like
smpboot: CPU0: AMD Opteron(TM) Processor 6272 (fam: 15, model: 01, stepping: 02)
and the x86_model_id field is correct on all processors on AMD
platforms:
_____64_model_name :_AMD_Opteron(TM)_Processor_6272
Output is still correct on an Intel box:
____144_model_name :_Intel(R)_Xeon(R)_CPU_E7-8890_v3_@_2.50GHz
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1432050210-32036-1-git-send-email-prarit@redhat.com
Link: http://lkml.kernel.org/r/1432628901-18044-15-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For some obscure reason intel_{start,stop}_scheduling() copy the HT
state to an intermediate array. This would make sense if we ever were
to make changes to it which we'd have to discard.
Except we don't. By the time we call intel_commit_scheduling() we're;
as the name implies; committed to them. We'll never back out.
A further hint its pointless is that stop_scheduling() unconditionally
publishes the state.
So the intermediate array is pointless, modify the state in place and
kill the extra array.
And remove the pointless array initialization: INTEL_EXCL_UNUSED == 0.
Note; all is serialized by intel_excl_cntr::lock.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both intel_commit_scheduling() and intel_get_excl_contraints() test
for cntr < 0.
The only way that can happen (aside from a bug) is through
validate_event(), however that is already captured by the
cpuc->is_fake test.
So remove these test and simplify the code.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The intel_commit_scheduling() callback is pointlessly different from
the start and stop scheduling callback.
Furthermore, the constraint should never be NULL, so remove that test.
Even though we'll never get called (because we NULL the callbacks)
when !is_ht_workaround_enabled() put that test in.
Collapse the (pointless) WARN_ON_ONCE() and bail on !cpuc->excl_cntrs --
this is doubly pointless, because its the same condition as
is_ht_workaround_enabled() which was already pointless because the
whole method won't ever be called.
Furthremore, make all the !excl_cntrs test WARN_ON_ONCE(); they're all
pointless, because the above, either the function
({get,put}_excl_constraint) are already predicated on it existing or
the is_ht_workaround_enabled() thing is the same test.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have two 'struct event_constraint' local variables in
intel_get_excl_constraints(): 'cx' and 'c'.
Instead of using 'cx' after the dynamic allocation, put all 'cx' inside
the dynamic allocation block and use 'c' outside of it.
Also use direct assignment to copy the structure; let the compiler
figure it out.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For some obscure reason the current code accounts the current SMT
thread's state on the remote thread and reads the remote's state on
the local SMT thread.
While internally consistent, and 'correct' its pointless confusion we
can do without.
Flip them the right way around.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
I stumbled upon an AMD box that had the BIOS using a hardware performance
counter. Instead of printing out a warning and continuing, it failed and
blocked further perf counter usage.
Looking through the history, I found this commit:
a5ebe0ba3d ("perf/x86: Check all MSRs before passing hw check")
which tweaked the rules for a Xen guest on an almost identical box and now
changed the behaviour.
Unfortunately the rules were tweaked incorrectly and will always lead to
MSR failures even though the MSRs are completely fine.
What happens now is in arch/x86/kernel/cpu/perf_event.c::check_hw_exists():
<snip>
for (i = 0; i < x86_pmu.num_counters; i++) {
reg = x86_pmu_config_addr(i);
ret = rdmsrl_safe(reg, &val);
if (ret)
goto msr_fail;
if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
bios_fail = 1;
val_fail = val;
reg_fail = reg;
}
}
<snip>
/*
* Read the current value, change it and read it back to see if it
* matches, this is needed to detect certain hardware emulators
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
*/
reg = x86_pmu_event_addr(0);
^^^^
if the first perf counter is enabled, then this routine will always fail
because the counter is running. :-(
if (rdmsrl_safe(reg, &val))
goto msr_fail;
val ^= 0xffffUL;
ret = wrmsrl_safe(reg, val);
ret |= rdmsrl_safe(reg, &val_new);
if (ret || val != val_new)
goto msr_fail;
The above bios_fail used to be a 'goto' which is why it worked in the past.
Further, most vendors have migrated to using fixed counters to hide their
evilness hence this problem rarely shows up now days except on a few old boxes.
I fixed my problem and kept the spirit of the original Xen fix, by recording a
safe non-enable register to be used safely for the reading/writing check.
Because it is not enabled, this passes on bare metal boxes (like metal), but
should continue to throw an msr_fail on Xen guests because the register isn't
emulated yet.
Now I get a proper bios_fail error message and Xen should still see their
msr_fail message (untested).
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: george.dunlap@eu.citrix.com
Cc: konrad.wilk@oracle.com
Link: http://lkml.kernel.org/r/1431976608-56970-1-git-send-email-dzickus@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The (SNB/IVB/HSW) HT bug only affects events that can be programmed
onto GP counters, therefore we should only limit the number of GP
counters that can be used per cpu -- iow we should not constrain the
FP counters.
Furthermore, we should only enfore such a limit when there are in fact
exclusive events being scheduled on either sibling.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
[ Fixed build fail for the !CONFIG_CPU_SUP_INTEL case. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 43b4578071 ("perf/x86: Reduce stack usage of
x86_schedule_events()") violated the rule that 'fake' scheduling; as
used for event/group validation; should not change the event state.
This went mostly un-noticed because repeated calls of
x86_pmu::get_event_constraints() would give the same result. And
x86_pmu::put_event_constraints() would mostly not do anything.
Commit e979121b1b ("perf/x86/intel: Implement cross-HT corruption
bug workaround") made the situation much worse by actually setting the
event->hw.constraint value to NULL, so when validation and actual
scheduling interact we get NULL ptr derefs.
Fix it by removing the constraint pointer from the event and move it
back to an array, this time in cpuc instead of on the stack.
validate_group()
x86_schedule_events()
event->hw.constraint = c; # store
<context switch>
perf_task_event_sched_in()
...
x86_schedule_events();
event->hw.constraint = c2; # store
...
put_event_constraints(event); # assume failure to schedule
intel_put_event_constraints()
event->hw.constraint = NULL;
<context switch end>
c = event->hw.constraint; # read -> NULL
if (!test_bit(hwc->idx, c->idxmsk)) # <- *BOOM* NULL deref
This in particular is possible when the event in question is a
cpu-wide event and group-leader, where the validate_group() tries to
add an event to the group.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maria Dimakopoulou <maria.n.dimakopoulou@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 43b4578071 ("perf/x86: Reduce stack usage of x86_schedule_events()")
Fixes: e979121b1b ("perf/x86/intel: Implement cross-HT corruption bug workaround")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Conflicts:
arch/x86/kernel/i387.c
This commit is conflicting:
e88221c50c ("x86/fpu: Disable XSAVES* support for now")
These functions changed a lot, move the quirk to arch/x86/kernel/fpu/init.c's
fpu__init_system_xstate_size_legacy().
Signed-off-by: Ingo Molnar <mingo@kernel.org>