When entering idle, it's a good oportunity to verify that the TSC_ADJUST
MSR has not been tampered with (BIOS hiding SMM cycles). If tampering is
detected, emit a warning and restore it to the previous value.
This is especially important for machines, which mark the TSC reliable
because there is no watchdog clocksource available (SoCs).
This is not sufficient for HPC (NOHZ_FULL) situations where a CPU never
goes idle, but adding a timer to do the check periodically is not an option
either. On a machine, which has this issue, the check triggeres right
during boot, so there is a decent chance that the sysadmin will notice.
Rate limit the check to once per second and warn only once per cpu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.732180441@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The TSC_ADJUST MSR shows whether the TSC has been modified. This is helpful
in a two aspects:
1) It allows to detect BIOS wreckage, where SMM code tries to 'hide' the
cycles spent by storing the TSC value at SMM entry and restoring it at
SMM exit. On affected machines the TSCs run slowly out of sync up to the
point where the clocksource watchdog (if available) detects it.
The TSC_ADJUST MSR allows to detect the TSC modification before that and
eventually restore it. This is also important for SoCs which have no
watchdog clocksource and therefore TSC wreckage cannot be detected and
acted upon.
2) All threads in a package are required to have the same TSC_ADJUST
value. Broken BIOSes break that and as a result the TSC synchronization
check fails.
The TSC_ADJUST MSR allows to detect the deviation when a CPU comes
online. If detected set it to the value of an already online CPU in the
same package. This also allows to reduce the number of sync tests
because with that in place the test is only required for the first CPU
in a package.
In principle all CPUs in a system should have the same TSC_ADJUST value
even across packages, but with physical CPU hotplug this assumption is
not true because the TSC starts with power on, so physical hotplug has
to do some trickery to bring the TSC into sync with already running
packages, which requires to use an TSC_ADJUST value different from CPUs
which got powered earlier.
A final enhancement is the opportunity to compensate for unsynced TSCs
accross nodes at boot time and make the TSC usable that way. It won't
help for TSCs which run apart due to frequency skew between packages,
but this gets detected by the clocksource watchdog later.
The first step toward this is to store the TSC_ADJUST value of a starting
CPU and compare it with the value of an already online CPU in the same
package. If they differ, emit a warning and adjust it to the reference
value. The !SMP version just stores the boot value for later verification.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/20161119134017.655323776@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds xts helpers that use the skcipher interface rather
than blkcipher. This will be used by aesni_intel.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In x86's include/asm/Kbuild three entries are appended to the genhdr-y make
variable:
genhdr-y += unistd_32.h
genhdr-y += unistd_64.h
genhdr-y += unistd_x32.h
The same entries are also appended to that variable in
include/uapi/asm/Kbuild. So commit:
10b63956fc ("UAPI: Plumb the UAPI Kbuilds into the user header installation and checking")
... removed these three entries from include/asm/Kbuild. But, apparently, some
merge conflict resolution re-added them.
The net effect is, in short, that the genhdr-y make variable contains these
file names twice and, as a consequence, that the corresponding headers get
installed twice. And so the build prints:
INSTALL usr/include/asm/ (65 files)
... while in reality only 62 files are installed in that directory.
Nothing breaks because of all that, but it's a good idea to finally remove
these unneeded entries nevertheless.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1480077707-2837-1-git-send-email-pebolle@tiscali.nl
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On platforms supporting Intel Turbo Boost Max Technology 3.0, the maximum
turbo frequencies of some cores in a CPU package may be higher than for
the other cores in the same package. In that case, better performance
(and possibly lower energy consumption as well) can be achieved by
making the scheduler prefer to run tasks on the CPUs with higher max
turbo frequencies.
To that end, set up a core priority metric to abstract the core
preferences based on the maximum turbo frequency. In that metric,
the cores with higher maximum turbo frequencies are higher-priority
than the other cores in the same package and that causes the scheduler
to favor them when making load-balancing decisions using the asymmertic
packing approach. At the same time, the priority of SMT threads with a
higher CPU number is reduced so as to avoid scheduling tasks on all of
the threads that belong to a favored core before all of the other cores
have been given a task to run.
The priority metric will be initialized by the P-state driver with the
help of the sched_set_itmt_core_prio() function. The P-state driver
will also determine whether or not ITMT is supported by the platform
and will call sched_set_itmt_support() to indicate that.
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/cd401ccdff88f88c8349314febdc25d51f7c48f7.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Update the I/O interception support to add the kvm_fast_pio_in function
to speed up the in instruction similar to the out instruction.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
AMD hardware adds two additional bits to aid in nested page fault handling.
Bit 32 - NPF occurred while translating the guest's final physical address
Bit 33 - NPF occurred while translating the guest page tables
The guest page tables fault indicator can be used as an aid for nested
virtualization. Using V0 for the host, V1 for the first level guest and
V2 for the second level guest, when both V1 and V2 are using nested paging
there are currently a number of unnecessary instruction emulations. When
V2 is launched shadow paging is used in V1 for the nested tables of V2. As
a result, KVM marks these pages as RO in the host nested page tables. When
V2 exits and we resume V1, these pages are still marked RO.
Every nested walk for a guest page table is treated as a user-level write
access and this causes a lot of NPFs because the V1 page tables are marked
RO in the V0 nested tables. While executing V1, when these NPFs occur KVM
sees a write to a read-only page, emulates the V1 instruction and unprotects
the page (marking it RW). This patch looks for cases where we get a NPF due
to a guest page table walk where the page was marked RO. It immediately
unprotects the page and resumes the guest, leading to far fewer instruction
emulations when nested virtualization is used.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Commit:
90954e7b94 ("x86/coredump: Use pr_reg size, rather that TIF_IA32 flag")
changed the coredumping code to construct the elf coredump file according
to register set size - and that's good: if binary crashes with 32-bit code
selector, generate 32-bit ELF core, otherwise - 64-bit core.
That was made for restoring 32-bit applications on x86_64: we want
32-bit application after restore to generate 32-bit ELF dump on crash.
All was quite good and recently I started reworking 32-bit applications
dumping part of CRIU: now it has two parasites (32 and 64) for seizing
compat/native tasks, after rework it'll have one parasite, working in
64-bit mode, to which 32-bit prologue long-jumps during infection.
And while it has worked for my work machine, in VM with
!CONFIG_X86_X32_ABI during reworking I faced that segfault in 32-bit
binary, that has long-jumped to 64-bit mode results in dereference
of garbage:
32-victim[19266]: segfault at f775ef65 ip 00000000f775ef65 sp 00000000f776aa50 error 14
BUG: unable to handle kernel paging request at ffffffffffffffff
IP: [<ffffffff81332ce0>] strlen+0x0/0x20
[...]
Call Trace:
[] elf_core_dump+0x11a9/0x1480
[] do_coredump+0xa6b/0xe60
[] get_signal+0x1a8/0x5c0
[] do_signal+0x23/0x660
[] exit_to_usermode_loop+0x34/0x65
[] prepare_exit_to_usermode+0x2f/0x40
[] retint_user+0x8/0x10
That's because we have 64-bit registers set (with according total size)
and we're writing it to elf_thread_core_info which has smaller size
on !CONFIG_X86_X32_ABI. That lead to overwriting ELF notes part.
Tested on 32-, 64-bit ELF crashes and on 32-bit binaries that have
jumped with 64-bit code selector - all is readable with gdb.
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Fixes: 90954e7b94 ("x86/coredump: Use pr_reg size, rather that TIF_IA32 flag")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel Xeons from Ivy Bridge onwards support a processor identification
number set in the factory. To the user this is a handy unique number to
identify a particular CPU. Intel can decode this to the fab/production
run to track errors. On systems that have it, include it in the machine
check record. I'm told that this would be helpful for users that run
large data centers with multi-socket servers to keep track of which CPUs
are seeing errors.
Boris:
* Add some clarifying comments and spacing.
* Mask out [63:2] in the disabled-but-not-locked case
* Call the MSR variable "val" for more readability.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20161123114855.njguoaygp3qnbkia@pd.tnic
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
- Remove VMX_EPT_EXTENT_INDIVIDUAL_ADDR, since there is no such type of
EPT invalidation
- Add missing VPID types names
Signed-off-by: Jan Dakinevich <jan.dakinevich@gmail.com>
Tested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The Unified Memory Controllers (UMCs) on Fam17h log a normalized address
in their MCA_ADDR registers. We need to convert that normalized address
to a system physical address in order to support a few facilities:
1) To offline poisoned pages in DRAM proactively in the deferred error
handler.
2) To print sysaddr and page info for DRAM ECC errors in EDAC.
[ Boris: fixes/cleanups ontop:
* hi_addr_offset = 0 - no need for that branch. Stick it all under the
HiAddrOffsetEn case. It confines hi_addr_offset's declaration too.
* Move variables to the innermost scope they're used at so that we save
on stack and not blow it up immediately on function entry.
* Do not modify *sys_addr prematurely - we want to not exit early and
have modified *sys_addr some, which callers get to see. We either
convert to a sys_addr or we don't do anything. And we signal that with
the retval of the function.
* Rename label out -> out_err - because it is the error path.
* No need to pr_err of the conversion failed case: imagine a
sparsely-populated machine with UMCs which don't have DIMMs. Callers
should look at the retval instead and issue a printk only when really
necessary. No need for useless info in dmesg.
* s/temp_reg/tmp/ and other variable names shortening => shorter code.
* Use BIT() everywhere.
* Make error messages more informative.
* Small build fix for the !CONFIG_X86_MCE_AMD case.
* ... and more minor cleanups.
]
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20161122111133.mjzpvzhf7o7yl2oa@pd.tnic
[ Typo fixes. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The X86_FEATURE_TSC_RELIABLE flag in Linux kernel implies both reliable
(at runtime) and trustable (at calibration). But reliable running and
trustable calibration independent of each other.
Add a new flag X86_FEATURE_TSC_KNOWN_FREQ, which denotes that the frequency
is known (via MSR/CPUID). This flag is only meant to skip the long term
calibration on systems which have a known frequency.
Add X86_FEATURE_TSC_KNOWN_FREQ to the skip the delayed calibration and
leave X86_FEATURE_TSC_RELIABLE in place.
After converting the existing users of X86_FEATURE_TSC_RELIABLE to use
either both flags or just X86_FEATURE_TSC_KNOWN_FREQ we can seperate the
functionality.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Bin Gao <bin.gao@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1479241644-234277-2-git-send-email-bin.gao@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tvrtko needs
commit b3c11ac267
Author: Eric Engestrom <eric@engestrom.ch>
Date: Sat Nov 12 01:12:56 2016 +0000
drm: move allocation out of drm_get_format_name()
to be able to apply his patches without conflicts.
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Some devices on Fam17h can only be accessed through the System Management
Network (SMN). The SMN is accessed by a pair of index/data registers in PCI
config space. Add a pair of functions to read from and write to the SMN.
The Data Fabric on Fam17h allows multiple devices to use the same register
space. The registers of a specific device are accessed indirectly using the
device's DF InstanceId. Currently, we only need to read from these devices,
so only define a read function for now.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1478812257-5424-5-git-send-email-Yazen.Ghannam@amd.com
[ Boris: make __amd_smn_rw() even more compact. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Sparse populated CPUID leafs are collected in a software provided leaf to
avoid bloat of the x86_capability array, but there is no way to rebuild the
real leafs (e.g. for KVM CPUID enumeration) other than rereading the CPUID
leaf from the CPU. While this is possible it is problematic as it does not
take software disabled features into account. If a feature is disabled on
the host it should not be exposed to a guest either.
Add get_scattered_cpuid_leaf() which rebuilds the leaf from the scattered
cpuid table information and the active CPU features.
[ tglx: Rewrote changelog ]
Signed-off-by: He Chen <he.chen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Luwei Kang <luwei.kang@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Piotr Luc <Piotr.Luc@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/1478856336-9388-3-git-send-email-he.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The per-cpu preempt count of x86 contains two values, the actual preempt
count and the inverted PREEMPT_NEED_RESCHED bit. If a corrupted preempt
count is detected the preempt_count_set() function is used to reset the
preempt count.
In case the inverted PREEMPT_NEED_RESCHED bit is zero at the time of the
reset, the preemption indication is lost. Use raw_cpu_cmpxchg_4() to reset
only the count part and leave the PREEMPT_NEED_RESCHED bit as it is.
This improves the kernel's behavior when it runs into preempt count leaks
and tries to fix them up.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1478523660-733-1-git-send-email-schwidefsky@de.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make the MSR argument an unsigned int, both low and high u32, put
"notrace" last in the function signature. Reflow function signatures for
better readability and cleanup white space.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The threshold_cpu_callback callbacks looks like one of the notifier and
its arguments are almost the same. Split this out and have one ONLINE
and one DEAD callback. This will come handy later once the main code
gets changed to use the callback mechanism.
Also, handle threshold_cpu_callback_online() return value so we don't
continue if the function fails.
Boris Petkov removed the callback pointer and replaced it with proper
functions.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-5-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Apple's EFI drivers supply device properties which are needed to support
Macs optimally. They contain vital information which cannot be obtained
any other way (e.g. Thunderbolt Device ROM). They're also used to convey
the current device state so that OS drivers can pick up where EFI
drivers left (e.g. GPU mode setting).
There's an EFI driver dubbed "AAPL,PathProperties" which implements a
per-device key/value store. Other EFI drivers populate it using a custom
protocol. The macOS bootloader /System/Library/CoreServices/boot.efi
retrieves the properties with the same protocol. The kernel extension
AppleACPIPlatform.kext subsequently merges them into the I/O Kit
registry (see ioreg(8)) where they can be queried by other kernel
extensions and user space.
This commit extends the efistub to retrieve the device properties before
ExitBootServices is called. It assigns them to devices in an fs_initcall
so that they can be queried with the API in <linux/property.h>.
Note that the device properties will only be available if the kernel is
booted with the efistub. Distros should adjust their installers to
always use the efistub on Macs. grub with the "linux" directive will not
work unless the functionality of this commit is duplicated in grub.
(The "linuxefi" directive should work but is not included upstream as of
this writing.)
The custom protocol has GUID 91BD12FE-F6C3-44FB-A5B7-5122AB303AE0 and
looks like this:
typedef struct {
unsigned long version; /* 0x10000 */
efi_status_t (*get) (
IN struct apple_properties_protocol *this,
IN struct efi_dev_path *device,
IN efi_char16_t *property_name,
OUT void *buffer,
IN OUT u32 *buffer_len);
/* EFI_SUCCESS, EFI_NOT_FOUND, EFI_BUFFER_TOO_SMALL */
efi_status_t (*set) (
IN struct apple_properties_protocol *this,
IN struct efi_dev_path *device,
IN efi_char16_t *property_name,
IN void *property_value,
IN u32 property_value_len);
/* allocates copies of property name and value */
/* EFI_SUCCESS, EFI_OUT_OF_RESOURCES */
efi_status_t (*del) (
IN struct apple_properties_protocol *this,
IN struct efi_dev_path *device,
IN efi_char16_t *property_name);
/* EFI_SUCCESS, EFI_NOT_FOUND */
efi_status_t (*get_all) (
IN struct apple_properties_protocol *this,
OUT void *buffer,
IN OUT u32 *buffer_len);
/* EFI_SUCCESS, EFI_BUFFER_TOO_SMALL */
} apple_properties_protocol;
Thanks to Pedro Vilaça for this blog post which was helpful in reverse
engineering Apple's EFI drivers and bootloader:
https://reverse.put.as/2016/06/25/apple-efi-firmware-passwords-and-the-scbo-myth/
If someone at Apple is reading this, please note there's a memory leak
in your implementation of the del() function as the property struct is
freed but the name and value allocations are not.
Neither the macOS bootloader nor Apple's EFI drivers check the protocol
version, but we do to avoid breakage if it's ever changed. It's been the
same since at least OS X 10.6 (2009).
The get_all() function conveniently fills a buffer with all properties
in marshalled form which can be passed to the kernel as a setup_data
payload. The number of device properties is dynamic and can change
between a first invocation of get_all() (to determine the buffer size)
and a second invocation (to retrieve the actual buffer), hence the
peculiar loop which does not finish until the buffer size settles.
The macOS bootloader does the same.
The setup_data payload is later on unmarshalled in an fs_initcall. The
idea is that most buses instantiate devices in "subsys" initcall level
and drivers are usually bound to these devices in "device" initcall
level, so we assign the properties in-between, i.e. in "fs" initcall
level.
This assumes that devices to which properties pertain are instantiated
from a "subsys" initcall or earlier. That should always be the case
since on macOS, AppleACPIPlatformExpert::matchEFIDevicePath() only
supports ACPI and PCI nodes and we've fully scanned those buses during
"subsys" initcall level.
The second assumption is that properties are only needed from a "device"
initcall or later. Seems reasonable to me, but should this ever not work
out, an alternative approach would be to store the property sets e.g. in
a btree early during boot. Then whenever device_add() is called, an EFI
Device Path would have to be constructed for the newly added device,
and looked up in the btree. That way, the property set could be assigned
to the device immediately on instantiation. And this would also work for
devices instantiated in a deferred fashion. It seems like this approach
would be more complicated and require more code. That doesn't seem
justified without a specific use case.
For comparison, the strategy on macOS is to assign properties to objects
in the ACPI namespace (AppleACPIPlatformExpert::mergeEFIProperties()).
That approach is definitely wrong as it fails for devices not present in
the namespace: The NHI EFI driver supplies properties for attached
Thunderbolt devices, yet on Macs with Thunderbolt 1 only one device
level behind the host controller is described in the namespace.
Consequently macOS cannot assign properties for chained devices. With
Thunderbolt 2 they started to describe three device levels behind host
controllers in the namespace but this grossly inflates the SSDT and
still fails if the user daisy-chained more than three devices.
We copy the property names and values from the setup_data payload to
swappable virtual memory and afterwards make the payload available to
the page allocator. This is just for the sake of good housekeeping, it
wouldn't occupy a meaningful amount of physical memory (4444 bytes on my
machine). Only the payload is freed, not the setup_data header since
otherwise we'd break the list linkage and we cannot safely update the
predecessor's ->next link because there's no locking for the list.
The payload is currently not passed on to kexec'ed kernels, same for PCI
ROMs retrieved by setup_efi_pci(). This can be added later if there is
demand by amending setup_efi_state(). The payload can then no longer be
made available to the page allocator of course.
Tested-by: Lukas Wunner <lukas@wunner.de> [MacBookPro9,1]
Tested-by: Pierre Moreau <pierre.morrow@free.fr> [MacBookPro11,3]
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Andreas Noever <andreas.noever@gmail.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pedro Vilaça <reverser@put.as>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: grub-devel@gnu.org
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20161112213237.8804-9-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We already have a macro to invoke boot services which on x86 adapts
automatically to the bitness of the EFI firmware: efi_call_early().
The macro allows sharing of functions across arches and bitness variants
as long as those functions only call boot services. However in practice
functions in the EFI stub contain a mix of boot services calls and
protocol calls.
Add an efi_call_proto() macro for bitness-agnostic protocol calls to
allow sharing more code across arches as well as deduplicating 32 bit
and 64 bit code paths.
On x86, implement it using a new efi_table_attr() macro for bitness-
agnostic table lookups. Refactor efi_call_early() to make use of the
same macro. (The resulting object code remains identical.)
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Andreas Noever <andreas.noever@gmail.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20161112213237.8804-8-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The calculation of the hwid_mcatype value in get_smca_bank_info()
became incorrect after applying the following commit:
1ce9cd7f9f ("x86/RAS: Simplify SMCA HWID descriptor struct")
This causes the function to not match a bank to its type.
Disassembly of hwid_mcatype calculation after change:
db: 8b 45 e0 mov -0x20(%rbp),%eax
de: 41 89 c4 mov %eax,%r12d
e1: 25 00 00 ff 0f and $0xfff0000,%eax
e6: 41 c1 ec 10 shr $0x10,%r12d
ea: 41 09 c4 or %eax,%r12d
Disassembly of hwid_mcatype calculation in original code:
286: 8b 45 d0 mov -0x30(%rbp),%eax
289: 41 89 c5 mov %eax,%r13d
28c: c1 e8 10 shr $0x10,%eax
28f: 41 81 e5 ff 0f 00 00 and $0xfff,%r13d
296: 41 c1 e5 10 shl $0x10,%r13d
29a: 41 09 c5 or %eax,%r13d
Grouping the arguments to the HWID_MCATYPE() macro fixes the issue.
( Boris suggested adding parentheses in the macro. )
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following RCU lockdep warning led to adding irq_enter()/irq_exit() into
smp_reschedule_interrupt():
RCU used illegally from idle CPU!
rcu_scheduler_active = 1, debug_locks = 0
RCU used illegally from extended quiescent state!
no locks held by swapper/1/0.
do_trace_write_msr
native_write_msr
native_apic_msr_eoi_write
smp_reschedule_interrupt
reschedule_interrupt
As Peterz pointed out:
| So now we're making a very frequent interrupt slower because of debug
| code.
|
| The thing is, many many smp_reschedule_interrupt() invocations don't
| actually execute anything much at all and are only sent to tickle the
| return to user path (which does the actual preemption).
|
| Having to do the whole irq_enter/irq_exit dance just for this unlikely
| debug case totally blows.
Use the wrmsr_notrace() variant in native_apic_msr_write_eoi, annotate the
kvm variant with notrace and add a native_apic_eoi callback to the apic
structure so KVM guests are covered as well.
This allows to revert the irq_enter/irq_exit dance in
smp_reschedule_interrupt().
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: kvm@vger.kernel.org
Cc: Mike Galbraith <efault@gmx.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/1478488420-5982-3-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>