Add prctl based control for Speculative Store Bypass mitigation and make it
the default mitigation for Intel and AMD.
Andi Kleen provided the following rationale (slightly redacted):
There are multiple levels of impact of Speculative Store Bypass:
1) JITed sandbox.
It cannot invoke system calls, but can do PRIME+PROBE and may have call
interfaces to other code
2) Native code process.
No protection inside the process at this level.
3) Kernel.
4) Between processes.
The prctl tries to protect against case (1) doing attacks.
If the untrusted code can do random system calls then control is already
lost in a much worse way. So there needs to be system call protection in
some way (using a JIT not allowing them or seccomp). Or rather if the
process can subvert its environment somehow to do the prctl it can already
execute arbitrary code, which is much worse than SSB.
To put it differently, the point of the prctl is to not allow JITed code
to read data it shouldn't read from its JITed sandbox. If it already has
escaped its sandbox then it can already read everything it wants in its
address space, and do much worse.
The ability to control Speculative Store Bypass allows to enable the
protection selectively without affecting overall system performance.
Based on an initial patch from Tim Chen. Completely rewritten.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The Speculative Store Bypass vulnerability can be mitigated with the
Reduced Data Speculation (RDS) feature. To allow finer grained control of
this eventually expensive mitigation a per task mitigation control is
required.
Add a new TIF_RDS flag and put it into the group of TIF flags which are
evaluated for mismatch in switch_to(). If these bits differ in the previous
and the next task, then the slow path function __switch_to_xtra() is
invoked. Implement the TIF_RDS dependent mitigation control in the slow
path.
If the prctl for controlling Speculative Store Bypass is disabled or no
task uses the prctl then there is no overhead in the switch_to() fast
path.
Update the KVM related speculation control functions to take TID_RDS into
account as well.
Based on a patch from Tim Chen. Completely rewritten.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Having everything in nospec-branch.h creates a hell of dependencies when
adding the prctl based switching mechanism. Move everything which is not
required in nospec-branch.h to spec-ctrl.h and fix up the includes in the
relevant files.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
AMD does not need the Speculative Store Bypass mitigation to be enabled.
The parameters for this are already available and can be done via MSR
C001_1020. Each family uses a different bit in that MSR for this.
[ tglx: Expose the bit mask via a variable and move the actual MSR fiddling
into the bugs code as that's the right thing to do and also required
to prepare for dynamic enable/disable ]
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Intel CPUs expose methods to:
- Detect whether RDS capability is available via CPUID.7.0.EDX[31],
- The SPEC_CTRL MSR(0x48), bit 2 set to enable RDS.
- MSR_IA32_ARCH_CAPABILITIES, Bit(4) no need to enable RRS.
With that in mind if spec_store_bypass_disable=[auto,on] is selected set at
boot-time the SPEC_CTRL MSR to enable RDS if the platform requires it.
Note that this does not fix the KVM case where the SPEC_CTRL is exposed to
guests which can muck with it, see patch titled :
KVM/SVM/VMX/x86/spectre_v2: Support the combination of guest and host IBRS.
And for the firmware (IBRS to be set), see patch titled:
x86/spectre_v2: Read SPEC_CTRL MSR during boot and re-use reserved bits
[ tglx: Distangled it from the intel implementation and kept the call order ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Contemporary high performance processors use a common industry-wide
optimization known as "Speculative Store Bypass" in which loads from
addresses to which a recent store has occurred may (speculatively) see an
older value. Intel refers to this feature as "Memory Disambiguation" which
is part of their "Smart Memory Access" capability.
Memory Disambiguation can expose a cache side-channel attack against such
speculatively read values. An attacker can create exploit code that allows
them to read memory outside of a sandbox environment (for example,
malicious JavaScript in a web page), or to perform more complex attacks
against code running within the same privilege level, e.g. via the stack.
As a first step to mitigate against such attacks, provide two boot command
line control knobs:
nospec_store_bypass_disable
spec_store_bypass_disable=[off,auto,on]
By default affected x86 processors will power on with Speculative
Store Bypass enabled. Hence the provided kernel parameters are written
from the point of view of whether to enable a mitigation or not.
The parameters are as follows:
- auto - Kernel detects whether your CPU model contains an implementation
of Speculative Store Bypass and picks the most appropriate
mitigation.
- on - disable Speculative Store Bypass
- off - enable Speculative Store Bypass
[ tglx: Reordered the checks so that the whole evaluation is not done
when the CPU does not support RDS ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Add the CPU feature bit CPUID.7.0.EDX[31] which indicates whether the CPU
supports Reduced Data Speculation.
[ tglx: Split it out from a later patch ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Add the sysfs file for the new vulerability. It does not do much except
show the words 'Vulnerable' for recent x86 cores.
Intel cores prior to family 6 are known not to be vulnerable, and so are
some Atoms and some Xeon Phi.
It assumes that older Cyrix, Centaur, etc. cores are immune.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
A guest may modify the SPEC_CTRL MSR from the value used by the
kernel. Since the kernel doesn't use IBRS, this means a value of zero is
what is needed in the host.
But the 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to
the other bits as reserved so the kernel should respect the boot time
SPEC_CTRL value and use that.
This allows to deal with future extensions to the SPEC_CTRL interface if
any at all.
Note: This uses wrmsrl() instead of native_wrmsl(). I does not make any
difference as paravirt will over-write the callq *0xfff.. with the wrmsrl
assembler code.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
The 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to all
the other bits as reserved. The Intel SDM glossary defines reserved as
implementation specific - aka unknown.
As such at bootup this must be taken it into account and proper masking for
the bits in use applied.
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=199511
[ tglx: Made x86_spec_ctrl_base __ro_after_init ]
Suggested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
The macro is not type safe and I did look for why that "g" constraint for
the asm doesn't work: it's because the asm is more fundamentally wrong.
It does
movl %[val], %%eax
but "val" isn't a 32-bit value, so then gcc will pass it in a register,
and generate code like
movl %rsi, %eax
and gas will complain about a nonsensical 'mov' instruction (it's moving a
64-bit register to a 32-bit one).
Passing it through memory will just hide the real bug - gcc still thinks
the memory location is 64-bit, but the "movl" will only load the first 32
bits and it all happens to work because x86 is little-endian.
Convert it to a type safe inline function with a little trick which hands
the feature into the ALTERNATIVE macro.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"Another set of x86 related updates:
- Fix the long broken x32 version of the IPC user space headers which
was noticed by Arnd Bergman in course of his ongoing y2038 work.
GLIBC seems to have non broken private copies of these headers so
this went unnoticed.
- Two microcode fixlets which address some more fallout from the
recent modifications in that area:
- Unconditionally save the microcode patch, which was only saved
when CPU_HOTPLUG was enabled causing failures in the late
loading mechanism
- Make the later loader synchronization finally work under all
circumstances. It was exiting early and causing timeout failures
due to a missing synchronization point.
- Do not use mwait_play_dead() on AMD systems to prevent excessive
power consumption as the CPU cannot go into deep power states from
there.
- Address an annoying sparse warning due to lost type qualifiers of
the vmemmap and vmalloc base address constants.
- Prevent reserving crash kernel region on Xen PV as this leads to
the wrong perception that crash kernels actually work there which
is not the case. Xen PV has its own crash mechanism handled by the
hypervisor.
- Add missing TLB cpuid values to the table to make the printout on
certain machines correct.
- Enumerate the new CLDEMOTE instruction
- Fix an incorrect SPDX identifier
- Remove stale macros"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ipc: Fix x32 version of shmid64_ds and msqid64_ds
x86/setup: Do not reserve a crash kernel region if booted on Xen PV
x86/cpu/intel: Add missing TLB cpuid values
x86/smpboot: Don't use mwait_play_dead() on AMD systems
x86/mm: Make vmemmap and vmalloc base address constants unsigned long
x86/vector: Remove the unused macro FPU_IRQ
x86/vector: Remove the macro VECTOR_OFFSET_START
x86/cpufeatures: Enumerate cldemote instruction
x86/microcode: Do not exit early from __reload_late()
x86/microcode/intel: Save microcode patch unconditionally
x86/jailhouse: Fix incorrect SPDX identifier
Pull x86 pti fixes from Thomas Gleixner:
"A set of updates for the x86/pti related code:
- Preserve r8-r11 in int $0x80. r8-r11 need to be preserved, but the
int$80 entry code removed that quite some time ago. Make it correct
again.
- A set of fixes for the Global Bit work which went into 4.17 and
caused a bunch of interesting regressions:
- Triggering a BUG in the page attribute code due to a missing
check for early boot stage
- Warnings in the page attribute code about holes in the kernel
text mapping which are caused by the freeing of the init code.
Handle such holes gracefully.
- Reduce the amount of kernel memory which is set global to the
actual text and do not incidentally overlap with data.
- Disable the global bit when RANDSTRUCT is enabled as it
partially defeats the hardening.
- Make the page protection setup correct for vma->page_prot
population again. The adjustment of the protections fell through
the crack during the Global bit rework and triggers warnings on
machines which do not support certain features, e.g. NX"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/64/compat: Preserve r8-r11 in int $0x80
x86/pti: Filter at vma->vm_page_prot population
x86/pti: Disallow global kernel text with RANDSTRUCT
x86/pti: Reduce amount of kernel text allowed to be Global
x86/pti: Fix boot warning from Global-bit setting
x86/pti: Fix boot problems from Global-bit setting
A bugfix broke the x32 shmid64_ds and msqid64_ds data structure layout
(as seen from user space) a few years ago: Originally, __BITS_PER_LONG
was defined as 64 on x32, so we did not have padding after the 64-bit
__kernel_time_t fields, After __BITS_PER_LONG got changed to 32,
applications would observe extra padding.
In other parts of the uapi headers we seem to have a mix of those
expecting either 32 or 64 on x32 applications, so we can't easily revert
the path that broke these two structures.
Instead, this patch decouples x32 from the other architectures and moves
it back into arch specific headers, partially reverting the even older
commit 73a2d096fd ("x86: remove all now-duplicate header files").
It's not clear whether this ever made any difference, since at least
glibc carries its own (correct) copy of both of these header files,
so possibly no application has ever observed the definitions here.
Based on a suggestion from H.J. Lu, I tried out the tool from
https://github.com/hjl-tools/linux-header to find other such
bugs, which pointed out the same bug in statfs(), which also has
a separate (correct) copy in glibc.
Fixes: f4b4aae182 ("x86/headers/uapi: Fix __BITS_PER_LONG value for x32 builds")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . J . Lu" <hjl.tools@gmail.com>
Cc: Jeffrey Walton <noloader@gmail.com>
Cc: stable@vger.kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180424212013.3967461-1-arnd@arndb.de
From Skylake onwards, the platform controller hub (Sunrisepoint PCH) does
not support legacy DMA operations to IO ports 81h-83h, 87h, 89h-8Bh, 8Fh.
Currently this driver registers as syscore ops and its resume function is
called on every resume from S3. On Skylake and Kabylake, this causes a
resume delay of around 100ms due to port IO operations, which is a problem.
This change allows to load the driver only when the platform bios
explicitly supports such devices or has a cut-off date earlier than 2017
due to the following reasons:
- The platforms released before year 2017 have support for the 8237.
(except Sunrisepoint PCH e.g. Skylake)
- Some of the BIOS that were released for platforms (Skylake, Kabylake)
during 2016-17 are buggy. These BIOS do not set/unset the
ACPI_FADT_LEGACY_DEVICES field in FADT table properly based on the
presence or absence of the DMA device.
Very recently, open source system firmware like coreboot started unsetting
ACPI_FADT_LEGACY_DEVICES field in FADT table if the 8237 DMA device is not
present on the PCH.
Please refer to chapter 21 of 6th Generation Intel® Core™ Processor
Platform Controller Hub Family: BIOS Specification.
Signed-off-by: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
Signed-off-by: Anshuman Gupta <anshuman.gupta@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: rjw@rjwysocki.net
Cc: hpa@zytor.com
Cc: Alan Cox <alan@linux.intel.com>
Link: https://lkml.kernel.org/r/1522336015-22994-1-git-send-email-anshuman.gupta@intel.com
Pull tracing fixes from Steven Rostedt:
- Add workqueue forward declaration (for new work, but a nice clean up)
- seftest fixes for the new histogram code
- Print output fix for hwlat tracer
- Fix missing system call events - due to change in x86 syscall naming
- Fix kprobe address being used by perf being hashed
* tag 'trace-v4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Fix missing tab for hwlat_detector print format
selftests: ftrace: Add a testcase for multiple actions on trigger
selftests: ftrace: Fix trigger extended error testcase
kprobes: Fix random address output of blacklist file
tracing: Fix kernel crash while using empty filter with perf
tracing/x86: Update syscall trace events to handle new prefixed syscall func names
tracing: Add missing forward declaration
cldemote is a new instruction in future x86 processors. It hints
to hardware that a specified cache line should be moved ("demoted")
from the cache(s) closest to the processor core to a level more
distant from the processor core. This instruction is faster than
snooping to make the cache line available for other cores.
cldemote instruction is indicated by the presence of the CPUID
feature flag CLDEMOTE (CPUID.(EAX=0x7, ECX=0):ECX[bit25]).
More details on cldemote instruction can be found in the latest
Intel Architecture Instruction Set Extensions and Future Features
Programming Reference.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "H. Peter Anvin" <hpa@linux.intel.com>
Cc: "Ashok Raj" <ashok.raj@intel.com>
Link: https://lkml.kernel.org/r/1524508162-192587-1-git-send-email-fenghua.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Arnaldo noticed that the latest kernel is missing the syscall event system
directory in x86. I bisected it down to d5a00528b5 ("syscalls/core,
syscalls/x86: Rename struct pt_regs-based sys_*() to __x64_sys_*()").
The system call trace events are special, as there is only one trace event
for all system calls (the raw_syscalls). But a macro that wraps the system
calls creates meta data for them that copies the name to find the system
call that maps to the system call table (the number). At boot up, it does a
kallsyms lookup of the system call table to find the function that maps to
the meta data of the system call. If it does not find a function, then that
system call is ignored.
Because the x86 system calls had "__x64_", or "__ia32_" prefixed to the
"sys" for the names, they do not match the default compare algorithm. As
this was a problem for power pc, the algorithm can be overwritten by the
architecture. The solution is to have x86 have its own algorithm to do the
compare and this brings back the system call trace events.
Link: http://lkml.kernel.org/r/20180417174128.0f3457f0@gandalf.local.home
Reported-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Acked-by: Dominik Brodowski <linux@dominikbrodowski.net>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Fixes: d5a00528b5 ("syscalls/core, syscalls/x86: Rename struct pt_regs-based sys_*() to __x64_sys_*()")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
commit ce9962bf7e22bb3891655c349faff618922d4a73
0day reported warnings at boot on 32-bit systems without NX support:
attempted to set unsupported pgprot: 8000000000000025 bits: 8000000000000000 supported: 7fffffffffffffff
WARNING: CPU: 0 PID: 1 at
arch/x86/include/asm/pgtable.h:540 handle_mm_fault+0xfc1/0xfe0:
check_pgprot at arch/x86/include/asm/pgtable.h:535
(inlined by) pfn_pte at arch/x86/include/asm/pgtable.h:549
(inlined by) do_anonymous_page at mm/memory.c:3169
(inlined by) handle_pte_fault at mm/memory.c:3961
(inlined by) __handle_mm_fault at mm/memory.c:4087
(inlined by) handle_mm_fault at mm/memory.c:4124
The problem is that due to the recent commit which removed auto-massaging
of page protections, filtering page permissions at PTE creation time is not
longer done, so vma->vm_page_prot is passed unfiltered to PTE creation.
Filter the page protections before they are installed in vma->vm_page_prot.
Fixes: fb43d6cb91 ("x86/mm: Do not auto-massage page protections")
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Link: https://lkml.kernel.org/r/20180420222028.99D72858@viggo.jf.intel.com
Pull x86 fixes from Thomas Gleixner:
"A small set of fixes for x86:
- Prevent X2APIC ID 0xFFFFFFFF from being treated as valid, which
causes the possible CPU count to be wrong.
- Prevent 32bit truncation in calc_hpet_ref() which causes the TSC
calibration to fail
- Fix the page table setup for temporary text mappings in the resume
code which causes resume failures
- Make the page table dump code handle HIGHPTE correctly instead of
oopsing
- Support for topologies where NUMA nodes share an LLC to prevent a
invalid topology warning and further malfunction on such systems.
- Remove the now unused pci-nommu code
- Remove stale function declarations"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/power/64: Fix page-table setup for temporary text mapping
x86/mm: Prevent kernel Oops in PTDUMP code with HIGHPTE=y
x86,sched: Allow topologies where NUMA nodes share an LLC
x86/processor: Remove two unused function declarations
x86/acpi: Prevent X2APIC id 0xffffffff from being accounted
x86/tsc: Prevent 32bit truncation in calc_hpet_ref()
x86: Remove pci-nommu.c
Pull perf fixes from Thomas Gleixner:
"A larger set of updates for perf.
Kernel:
- Handle the SBOX uncore monitoring correctly on Broadwell CPUs which
do not have SBOX.
- Store context switch out type in PERF_RECORD_SWITCH[_CPU_WIDE]. The
percentage of preempting and non-preempting context switches help
understanding the nature of workloads (CPU or IO bound) that are
running on a machine. This adds the kernel facility and userspace
changes needed to show this information in 'perf script' and 'perf
report -D' (Alexey Budankov)
- Remove a WARN_ON() in the trace/kprobes code which is pointless
because the return error code is already telling the caller what's
wrong.
- Revert a fugly workaround for clang BPF targets.
- Fix sample_max_stack maximum check and do not proceed when an error
has been detect, return them to avoid misidentifying errors (Jiri
Olsa)
- Add SPDX idenitifiers and get rid of GPL boilderplate.
Tools:
- Synchronize kernel ABI headers, v4.17-rc1 (Ingo Molnar)
- Support MAP_FIXED_NOREPLACE, noticed when updating the
tools/include/ copies (Arnaldo Carvalho de Melo)
- Add '\n' at the end of parse-options error messages (Ravi Bangoria)
- Add s390 support for detailed/verbose PMU event description (Thomas
Richter)
- perf annotate fixes and improvements:
* Allow showing offsets in more than just jump targets, use the
new 'O' hotkey in the TUI, config ~/.perfconfig
annotate.offset_level for it and for --stdio2 (Arnaldo Carvalho
de Melo)
* Use the resolved variable names from objdump disassembled lines
to make them more compact, just like was already done for some
instructions, like "mov", this eventually will be done more
generally, but lets now add some more to the existing mechanism
(Arnaldo Carvalho de Melo)
- perf record fixes:
* Change warning for missing topology sysfs entry to debug, as not
all architectures have those files, s390 being one of those
(Thomas Richter)
* Remove old error messages about things that unlikely to be the
root cause in modern systems (Andi Kleen)
- perf sched fixes:
* Fix -g/--call-graph documentation (Takuya Yamamoto)
- perf stat:
* Enable 1ms interval for printing event counters values in
(Alexey Budankov)
- perf test fixes:
* Run dwarf unwind on arm32 (Kim Phillips)
* Remove unused ptrace.h include from LLVM test, sidesteping older
clang's lack of support for some asm constructs (Arnaldo
Carvalho de Melo)
* Fixup BPF test using epoll_pwait syscall function probe, to cope
with the syscall routines renames performed in this development
cycle (Arnaldo Carvalho de Melo)
- perf version fixes:
* Do not print info about HAVE_LIBAUDIT_SUPPORT in 'perf version
--build-options' when HAVE_SYSCALL_TABLE_SUPPORT is true, as
libaudit won't be used in that case, print info about
syscall_table support instead (Jin Yao)
- Build system fixes:
* Use HAVE_..._SUPPORT used consistently (Jin Yao)
* Restore READ_ONCE() C++ compatibility in tools/include (Mark
Rutland)
* Give hints about package names needed to build jvmti (Arnaldo
Carvalho de Melo)"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
perf/x86/intel/uncore: Fix SBOX support for Broadwell CPUs
perf/x86/intel/uncore: Revert "Remove SBOX support for Broadwell server"
coresight: Move to SPDX identifier
perf test BPF: Fixup BPF test using epoll_pwait syscall function probe
perf tests mmap: Show which tracepoint is failing
perf tools: Add '\n' at the end of parse-options error messages
perf record: Remove suggestion to enable APIC
perf record: Remove misleading error suggestion
perf hists browser: Clarify top/report browser help
perf mem: Allow all record/report options
perf trace: Support MAP_FIXED_NOREPLACE
perf: Remove superfluous allocation error check
perf: Fix sample_max_stack maximum check
perf: Return proper values for user stack errors
perf list: Add s390 support for detailed/verbose PMU event description
perf script: Extend misc field decoding with switch out event type
perf report: Extend raw dump (-D) out with switch out event type
perf/core: Store context switch out type in PERF_RECORD_SWITCH[_CPU_WIDE]
tools/headers: Synchronize kernel ABI headers, v4.17-rc1
trace_kprobe: Remove warning message "Could not insert probe at..."
...
This extends the x86 copy of the sysvipc data structures to deal with
32-bit user space that has 64-bit time_t and wants to see timestamps
beyond 2038.
Fortunately, x86 has padding for this purpose in all the data structures,
so we can just add extra fields. With msgid64_ds and shmid64_ds, the
data structure is identical to the asm-generic version, which we have
already extended.
For some reason however, the 64-bit version of semid64_ds ended up with
extra padding, so I'm implementing the same approach as the asm-generic
version here, by using separate fields for the upper and lower halves
of the two timestamps.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Pull y2038 timekeeping syscall changes from Arnd Bergmann:
This is the first set of system call entry point changes to enable 32-bit
architectures to have variants on both 32-bit and 64-bit time_t. Typically
these system calls take a 'struct timespec' argument, but that structure
is defined in user space by the C library and its layout will change.
The kernel already supports handling the 32-bit time_t on 64-bit
architectures through the CONFIG_COMPAT mechanism. As there are a total
of 51 system calls suffering from this problem, reusing that mechanism
on 32-bit architectures.
We already have patches for most of the remaining system calls, but this
set contains most of the complexity and is best tested. There was one
last-minute regression that prevented it from going into 4.17, but that
is fixed now.
More details from Deepa's patch series description:
Big picture is as per the lwn article:
https://lwn.net/Articles/643234/ [2]
The series is directed at converting posix clock syscalls:
clock_gettime, clock_settime, clock_getres and clock_nanosleep
to use a new data structure __kernel_timespec at syscall boundaries.
__kernel_timespec maintains 64 bit time_t across all execution modes.
vdso will be handled as part of each architecture when they enable
support for 64 bit time_t.
The compat syscalls are repurposed to provide backward compatibility
by using them as native syscalls as well for 32 bit architectures.
They will continue to use timespec at syscall boundaries.
CONFIG_64_BIT_TIME controls whether the syscalls use __kernel_timespec
or timespec at syscall boundaries.
The series does the following:
1. Enable compat syscalls on 32 bit architectures.
2. Add a new __kernel_timespec type to be used as the data structure
for all the new syscalls.
3. Add new config CONFIG_64BIT_TIME(intead of the CONFIG_COMPAT_TIME in
[1] and [2] to switch to new definition of __kernel_timespec. It is
the same as struct timespec otherwise.
4. Add new CONFIG_32BIT_TIME to conditionally compile compat syscalls.
Pull kvm fixes from Paolo Bonzini:
"Bug fixes, plus a new test case and the associated infrastructure for
writing nested virtualization tests"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: selftests: add vmx_tsc_adjust_test
kvm: x86: move MSR_IA32_TSC handling to x86.c
X86/KVM: Properly update 'tsc_offset' to represent the running guest
kvm: selftests: add -std=gnu99 cflags
x86: Add check for APIC access address for vmentry of L2 guests
KVM: X86: fix incorrect reference of trace_kvm_pi_irte_update
X86/KVM: Do not allow DISABLE_EXITS_MWAIT when LAPIC ARAT is not available
kvm: selftests: fix spelling mistake: "divisable" and "divisible"
X86/VMX: Disable VMX preemption timer if MWAIT is not intercepted
Pull tooling improvements and fixes from Arnaldo Carvalho de Melo:
perf annotate fixes and improvements:
- Allow showing offsets in more than just jump targets, use the new
'O' hotkey in the TUI, config ~/.perfconfig annotate.offset_level
for it and for --stdio2 (Arnaldo Carvalho de Melo)
- Use the resolved variable names from objdump disassembled lines to
make them more compact, just like was already done for some instructions,
like "mov", this eventually will be done more generally, but lets now add
some more to the existing mechanism (Arnaldo Carvalho de Melo)
perf record fixes:
- Change warning for missing topology sysfs entry to debug, as not all
architectures have those files, s390 being one of those (Thomas Richter)
perf sched fixes:
- Fix -g/--call-graph documentation (Takuya Yamamoto)
perf stat:
- Enable 1ms interval for printing event counters values in (Alexey Budankov)
perf test fixes:
- Run dwarf unwind on arm32 (Kim Phillips)
- Remove unused ptrace.h include from LLVM test, sidesteping older
clang's lack of support for some asm constructs (Arnaldo Carvalho de Melo)
perf version fixes:
- Do not print info about HAVE_LIBAUDIT_SUPPORT in 'perf version --build-options'
when HAVE_SYSCALL_TABLE_SUPPORT is true, as libaudit won't be used in that
case, print info about syscall_table support instead (Jin Yao)
Build system fixes:
- Use HAVE_..._SUPPORT used consistently (Jin Yao)
- Restore READ_ONCE() C++ compatibility in tools/include (Mark Rutland)
- Give hints about package names needed to build jvmti (Arnaldo Carvalho de Melo)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Pull x86 fixes from Thomas Gleixner:
"A set of fixes and updates for x86:
- Address a swiotlb regression which was caused by the recent DMA
rework and made driver fail because dma_direct_supported() returned
false
- Fix a signedness bug in the APIC ID validation which caused invalid
APIC IDs to be detected as valid thereby bloating the CPU possible
space.
- Fix inconsisten config dependcy/select magic for the MFD_CS5535
driver.
- Fix a corruption of the physical address space bits when encryption
has reduced the address space and late cpuinfo updates overwrite
the reduced bit information with the original value.
- Dominiks syscall rework which consolidates the architecture
specific syscall functions so all syscalls can be wrapped with the
same macros. This allows to switch x86/64 to struct pt_regs based
syscalls. Extend the clearing of user space controlled registers in
the entry patch to the lower registers"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Fix signedness bug in APIC ID validity checks
x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption
x86/olpc: Fix inconsistent MFD_CS5535 configuration
swiotlb: Use dma_direct_supported() for swiotlb_ops
syscalls/x86: Adapt syscall_wrapper.h to the new syscall stub naming convention
syscalls/core, syscalls/x86: Rename struct pt_regs-based sys_*() to __x64_sys_*()
syscalls/core, syscalls/x86: Clean up compat syscall stub naming convention
syscalls/core, syscalls/x86: Clean up syscall stub naming convention
syscalls/x86: Extend register clearing on syscall entry to lower registers
syscalls/x86: Unconditionally enable 'struct pt_regs' based syscalls on x86_64
syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32
syscalls/core: Prepare CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y for compat syscalls
syscalls/x86: Use 'struct pt_regs' based syscall calling convention for 64-bit syscalls
syscalls/core: Introduce CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y
x86/syscalls: Don't pointlessly reload the system call number
x86/mm: Fix documentation of module mapping range with 4-level paging
x86/cpuid: Switch to 'static const' specifier
Pull x86 pti updates from Thomas Gleixner:
"Another series of PTI related changes:
- Remove the manual stack switch for user entries from the idtentry
code. This debloats entry by 5k+ bytes of text.
- Use the proper types for the asm/bootparam.h defines to prevent
user space compile errors.
- Use PAGE_GLOBAL for !PCID systems to gain back performance
- Prevent setting of huge PUD/PMD entries when the entries are not
leaf entries otherwise the entries to which the PUD/PMD points to
and are populated get lost"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pgtable: Don't set huge PUD/PMD on non-leaf entries
x86/pti: Leave kernel text global for !PCID
x86/pti: Never implicitly clear _PAGE_GLOBAL for kernel image
x86/pti: Enable global pages for shared areas
x86/mm: Do not forbid _PAGE_RW before init for __ro_after_init
x86/mm: Comment _PAGE_GLOBAL mystery
x86/mm: Remove extra filtering in pageattr code
x86/mm: Do not auto-massage page protections
x86/espfix: Document use of _PAGE_GLOBAL
x86/mm: Introduce "default" kernel PTE mask
x86/mm: Undo double _PAGE_PSE clearing
x86/mm: Factor out pageattr _PAGE_GLOBAL setting
x86/entry/64: Drop idtentry's manual stack switch for user entries
x86/uapi: Fix asm/bootparam.h userspace compilation errors
Pull x86 EFI bootup fixlet from Thomas Gleixner:
"A single fix for an early boot warning caused by invoking
this_cpu_has() before SMP initialization"
* 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Fix bogus warning during EFI bootup, use boot_cpu_has() instead of this_cpu_has() in build_cr3_noflush()
Global pages are bad for hardening because they potentially let an
exploit read the kernel image via a Meltdown-style attack which
makes it easier to find gadgets.
But, global pages are good for performance because they reduce TLB
misses when making user/kernel transitions, especially when PCIDs
are not available, such as on older hardware, or where a hypervisor
has disabled them for some reason.
This patch implements a basic, sane policy: If you have PCIDs, you
only map a minimal amount of kernel text global. If you do not have
PCIDs, you map all kernel text global.
This policy effectively makes PCIDs something that not only adds
performance but a little bit of hardening as well.
I ran a simple "lseek" microbenchmark[1] to test the benefit on
a modern Atom microserver. Most of the benefit comes from applying
the series before this patch ("entry only"), but there is still a
signifiant benefit from this patch.
No Global Lines (baseline ): 6077741 lseeks/sec
88 Global Lines (entry only): 7528609 lseeks/sec (+23.9%)
94 Global Lines (this patch): 8433111 lseeks/sec (+38.8%)
[1.] https://github.com/antonblanchard/will-it-scale/blob/master/tests/lseek1.c
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180406205518.E3D989EB@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The APIC ID as parsed from ACPI MADT is validity checked with the
apic->apic_id_valid() callback, which depends on the selected APIC type.
For non X2APIC types APIC IDs >= 0xFF are invalid, but values > 0x7FFFFFFF
are detected as valid. This happens because the 'apicid' argument of the
apic_id_valid() callback is type 'int'. So the resulting comparison
apicid < 0xFF
evaluates to true for all unsigned int values > 0x7FFFFFFF which are handed
to default_apic_id_valid(). As a consequence, invalid APIC IDs in !X2APIC
mode are considered valid and accounted as possible CPUs.
Change the apicid argument type of the apic_id_valid() callback to u32 so
the evaluation is unsigned and returns the correct result.
[ tglx: Massaged changelog ]
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: jgross@suse.com
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1523322966-10296-1-git-send-email-lirongqing@baidu.com
Pull kvm updates from Paolo Bonzini:
"ARM:
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past
invalid privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as
of now)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
kvm: x86: fix a prototype warning
kvm: selftests: add sync_regs_test
kvm: selftests: add API testing infrastructure
kvm: x86: fix a compile warning
KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
KVM: X86: Introduce handle_ud()
KVM: vmx: unify adjacent #ifdefs
x86: kvm: hide the unused 'cpu' variable
KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
kvm: Add emulation for movups/movupd
KVM: VMX: raise internal error for exception during invalid protected mode state
KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
KVM: x86: Fix misleading comments on handling pending exceptions
KVM: x86: Rename interrupt.pending to interrupt.injected
KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
x86/kvm: use Enlightened VMCS when running on Hyper-V
x86/hyper-v: detect nested features
x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
...
The __PAGE_KERNEL_* page permissions are "raw". They contain bits
that may or may not be supported on the current processor. They need
to be filtered by a mask (currently __supported_pte_mask) to turn them
into a value that we can actually set in a PTE.
These __PAGE_KERNEL_* values all contain _PAGE_GLOBAL. But, with PTI,
we want to be able to support _PAGE_GLOBAL (have the bit set in
__supported_pte_mask) but not have it appear in any of these masks by
default.
This patch creates a new mask, __default_kernel_pte_mask, and applies
it when creating all of the PAGE_KERNEL_* masks. This makes
PAGE_KERNEL_* safe to use anywhere (they only contain supported bits).
It also ensures that PAGE_KERNEL_* contains _PAGE_GLOBAL on PTI=n
kernels but clears _PAGE_GLOBAL when PTI=y.
We also make __default_kernel_pte_mask a non-GPL exported symbol
because there are plenty of driver-available interfaces that take
PAGE_KERNEL_* permissions.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180406205506.030DB6B6@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>