cleanup_trampoline() relocates the top-level page table out of
trampoline memory. We use 'top_pgtable' as our new top-level page table.
But if the 'top_pgtable' would be referenced from C in a usual way,
the address of the table will be calculated relative to RIP.
After kernel gets relocated, the address will be in the middle of
decompression buffer and the page table may get overwritten.
This leads to a crash.
We calculate the address of other page tables relative to the relocation
address. It makes them safe. We should do the same for 'top_pgtable'.
Calculate the address of 'top_pgtable' in assembly and pass down to
cleanup_trampoline().
Move the page table to .pgtable section where the rest of page tables
are. The section is @nobits so we save 4k in kernel image.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: e9d0e6330e ("x86/boot/compressed/64: Prepare new top-level page table for trampoline")
Link: http://lkml.kernel.org/r/20180516080131.27913-3-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If trampoline code would need to switch between 4- and 5-level paging
modes, we have to use a page table in trampoline memory.
Having it in trampoline memory guarantees that it's below 4G and we can
point CR3 to it from 32-bit trampoline code.
We only use the page table if the desired paging mode doesn't match the
mode we are in. Otherwise the page table is unused and trampoline code
wouldn't touch CR3.
For 4- to 5-level paging transition, we set up current (4-level paging)
CR3 as the first and the only entry in a new top-level page table.
For 5- to 4-level paging transition, copy page table pointed by first
entry in the current top-level page table as our new top-level page
table.
If the page table is used by trampoline we would need to copy it to new
page table outside trampoline and update CR3 before restoring trampoline
memory.
Tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180226180451.86788-6-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If a bootloader enables 64-bit mode with 4-level paging, we might need to
switch over to 5-level paging. The switching requires the disabling of
paging, which works fine if kernel itself is loaded below 4G.
But if the bootloader puts the kernel above 4G (not sure if anybody does
this), we would lose control as soon as paging is disabled, because the
code becomes unreachable to the CPU.
To handle the situation, we need a trampoline in lower memory that would
take care of switching on 5-level paging.
This patch finds a spot in low memory for a trampoline.
The heuristic is based on code in reserve_bios_regions().
We find the end of low memory based on BIOS and EBDA start addresses.
The trampoline is put just before end of low memory. It's mimic approach
taken to allocate memory for realtime trampoline.
Tested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180226180451.86788-3-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>