b9f4c01f3e ("selftest/bpf: Make bpf_iter selftest compilable against old vmlinux.h")
missed the fact that bpf_iter_test_kern{3,4}.c are not just including
bpf_iter_test_kern_common.h and need similar bpf_iter_meta re-definition
explicitly.
Fixes: b9f4c01f3e ("selftest/bpf: Make bpf_iter selftest compilable against old vmlinux.h")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200519192341.134360-1-andriin@fb.com
It's good to be able to compile bpf_iter selftest even on systems that don't
have the very latest vmlinux.h, e.g., for libbpf tests against older kernels in
Travis CI. To that extent, re-define bpf_iter_meta and corresponding bpf_iter
context structs in each selftest. To avoid type clashes with vmlinux.h, rename
vmlinux.h's definitions to get them out of the way.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Link: https://lore.kernel.org/bpf/20200518234516.3915052-1-andriin@fb.com
Extend the existing connect_force_port test to assert get{peer,sock}name programs
as well. The workflow for e.g. IPv4 is as follows: i) server binds to concrete
port, ii) client calls getsockname() on server fd which exposes 1.2.3.4:60000 to
client, iii) client connects to service address 1.2.3.4:60000 binds to concrete
local address (127.0.0.1:22222) and remaps service address to a concrete backend
address (127.0.0.1:60123), iv) client then calls getsockname() on its own fd to
verify local address (127.0.0.1:22222) and getpeername() on its own fd which then
publishes service address (1.2.3.4:60000) instead of actual backend. Same workflow
is done for IPv6 just with different address/port tuples.
# ./test_progs -t connect_force_port
#14 connect_force_port:OK
Summary: 1/0 PASSED, 0 SKIPPED, 0 FAILED
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Andrey Ignatov <rdna@fb.com>
Link: https://lore.kernel.org/bpf/3343da6ad08df81af715a95d61a84fb4a960f2bf.1589841594.git.daniel@iogearbox.net
At the moment test_sockmap runs all 800+ tests ungrouped which is not
ideal because it makes it hard to see what is failing but also more
importantly its hard to confirm all cases are tested. Additionally,
after inspecting we noticed the runtime is bloated because we run
many duplicate tests. Worse some of these tests are known error cases
that wait for the recvmsg handler to timeout which creats long delays.
Also we noted some tests were not clearing their options and as a
result the following tests would run with extra and incorrect options.
Fix this by reorganizing test code so its clear what tests are running
and when. Then it becomes easy to remove duplication and run tests with
only the set of send/recv patterns that are relavent.
To accomplish this break test_sockmap into subtests and remove
unnecessary duplication. The output is more readable now and
the runtime reduced.
Now default output prints subtests like this,
$ ./test_sockmap
# 1/ 6 sockmap:txmsg test passthrough:OK
...
#22/ 1 sockhash:txmsg test push/pop data:OK
Pass: 22 Fail: 0
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/bpf/158939728384.15176.13601520183665880762.stgit@john-Precision-5820-Tower
Commit 294f2fc6da ("bpf: Verifer, adjust_scalar_min_max_vals to always
call update_reg_bounds()") changed the way verifier logs some of its state,
adjust the test_align accordingly. Where possible, I tried to not copy-paste
the entire log line and resorted to dropping the last closing brace instead.
Fixes: 294f2fc6da ("bpf: Verifer, adjust_scalar_min_max_vals to always call update_reg_bounds()")
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200515194904.229296-1-sdf@google.com
Move the bpf verifier trace check into the new switch statement in
HEAD.
Resolve the overlapping changes in hinic, where bug fixes overlap
the addition of VF support.
Signed-off-by: David S. Miller <davem@davemloft.net>
Extend BPF selftest xdp_adjust_tail with grow tail tests, which is added
as subtest's. The first grow test stays in same form as original shrink
test. The second grow test use the newer bpf_prog_test_run_xattr() calls,
and does extra checking of data contents.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158945350567.97035.9632611946765811876.stgit@firesoul
Test bpf_sk_lookup_tcp, bpf_sk_release, bpf_sk_cgroup_id and
bpf_sk_ancestor_cgroup_id helpers from cgroup skb program.
The test creates a testing cgroup, starts a TCPv6 server inside the
cgroup and creates two client sockets: one inside testing cgroup and one
outside.
Then it attaches cgroup skb program to the cgroup that checks all TCP
segments coming to the server and allows only those coming from the
cgroup of the server. If a segment comes from a peer outside of the
cgroup, it'll be dropped.
Finally the test checks that client from inside testing cgroup can
successfully connect to the server, but client outside the cgroup fails
to connect by timeout.
The main goal of the test is to check newly introduced
bpf_sk_{,ancestor_}cgroup_id helpers.
It also checks a couple of socket lookup helpers (tcp & release), but
lookup helpers were introduced much earlier and covered by other tests.
Here it's mostly checked that they can be called from cgroup skb.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/171f4c5d75e8ff4fe1c4e8c1c12288b5240a4549.1589486450.git.rdna@fb.com
Add two new network helpers.
connect_fd_to_fd connects an already created client socket fd to address
of server fd. Sometimes it's useful to separate client socket creation
and connecting this socket to a server, e.g. if client socket has to be
created in a cgroup different from that of server cgroup.
Additionally connect_to_fd is now implemented using connect_fd_to_fd,
both helpers don't treat EINPROGRESS as an error and let caller decide
how to proceed with it.
connect_wait is a helper to work with non-blocking client sockets so
that if connect_to_fd or connect_fd_to_fd returned -1 with errno ==
EINPROGRESS, caller can wait for connect to finish or for connection
timeout. The helper returns -1 on error, 0 on timeout (1sec,
hard-coded), and positive number on success.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/1403fab72300f379ca97ead4820ae43eac4414ef.1589486450.git.rdna@fb.com
There are a few fentry/fexit programs returning non-0.
The tests with these programs will break with the previous
patch which enfoced return-0 rules. Fix them properly.
Fixes: ac065870d9 ("selftests/bpf: Add BPF_PROG, BPF_KPROBE, and BPF_KRETPROBE macros")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200514053207.1298479-1-yhs@fb.com
mmap() subsystem allows user-space application to memory-map region with
initial page offset. This wasn't taken into account in initial implementation
of BPF array memory-mapping. This would result in wrong pages, not taking into
account requested page shift, being memory-mmaped into user-space. This patch
fixes this gap and adds a test for such scenario.
Fixes: fc9702273e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY")
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512235925.3817805-1-andriin@fb.com
Commit 6879c042e1 ("tools/bpf: selftests: Add bpf_iter selftests")
added self tests for bpf_iter feature. But two subtests
ipv6_route and netlink needs llvm latest 10.x release branch
or trunk due to a bug in llvm BPF backend. This patch added
the file README.rst to document these two failures
so people using llvm 10.0.0 can be aware of them.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200513180215.2949237-1-yhs@fb.com
It is sometimes desirable to be able to trigger BPF program from user-space
with minimal overhead. sys_enter would seem to be a good candidate, yet in
a lot of cases there will be a lot of noise from syscalls triggered by other
processes on the system. So while searching for low-overhead alternative, I've
stumbled upon getpgid() syscall, which seems to be specific enough to not
suffer from accidental syscall by other apps.
This set of benchmarks compares tp, raw_tp w/ filtering by syscall ID, kprobe,
fentry and fmod_ret with returning error (so that syscall would not be
executed), to determine the lowest-overhead way. Here are results on my
machine (using benchs/run_bench_trigger.sh script):
base : 9.200 ± 0.319M/s
tp : 6.690 ± 0.125M/s
rawtp : 8.571 ± 0.214M/s
kprobe : 6.431 ± 0.048M/s
fentry : 8.955 ± 0.241M/s
fmodret : 8.903 ± 0.135M/s
So it seems like fmodret doesn't give much benefit for such lightweight
syscall. Raw tracepoint is pretty decent despite additional filtering logic,
but it will be called for any other syscall in the system, which rules it out.
Fentry, though, seems to be adding the least amoung of overhead and achieves
97.3% of performance of baseline no-BPF-attached syscall.
Using getpgid() seems to be preferable to set_task_comm() approach from
test_overhead, as it's about 2.35x faster in a baseline performance.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-5-andriin@fb.com
Add fmod_ret BPF program to existing test_overhead selftest. Also re-implement
user-space benchmarking part into benchmark runner to compare results. Results
with ./bench are consistently somewhat lower than test_overhead's, but relative
performance of various types of BPF programs stay consisten (e.g., kretprobe is
noticeably slower). This slowdown seems to be coming from the fact that
test_overhead is single-threaded, while benchmark always spins off at least
one thread for producer. This has been confirmed by hacking multi-threaded
test_overhead variant and also single-threaded bench variant. Resutls are
below. run_bench_rename.sh script from benchs/ subdirectory was used to
produce results for ./bench.
Single-threaded implementations
===============================
/* bench: single-threaded, atomics */
base : 4.622 ± 0.049M/s
kprobe : 3.673 ± 0.052M/s
kretprobe : 2.625 ± 0.052M/s
rawtp : 4.369 ± 0.089M/s
fentry : 4.201 ± 0.558M/s
fexit : 4.309 ± 0.148M/s
fmodret : 4.314 ± 0.203M/s
/* selftest: single-threaded, no atomics */
task_rename base 4555K events per sec
task_rename kprobe 3643K events per sec
task_rename kretprobe 2506K events per sec
task_rename raw_tp 4303K events per sec
task_rename fentry 4307K events per sec
task_rename fexit 4010K events per sec
task_rename fmod_ret 3984K events per sec
Multi-threaded implementations
==============================
/* bench: multi-threaded w/ atomics */
base : 3.910 ± 0.023M/s
kprobe : 3.048 ± 0.037M/s
kretprobe : 2.300 ± 0.015M/s
rawtp : 3.687 ± 0.034M/s
fentry : 3.740 ± 0.087M/s
fexit : 3.510 ± 0.009M/s
fmodret : 3.485 ± 0.050M/s
/* selftest: multi-threaded w/ atomics */
task_rename base 3872K events per sec
task_rename kprobe 3068K events per sec
task_rename kretprobe 2350K events per sec
task_rename raw_tp 3731K events per sec
task_rename fentry 3639K events per sec
task_rename fexit 3558K events per sec
task_rename fmod_ret 3511K events per sec
/* selftest: multi-threaded, no atomics */
task_rename base 3945K events per sec
task_rename kprobe 3298K events per sec
task_rename kretprobe 2451K events per sec
task_rename raw_tp 3718K events per sec
task_rename fentry 3782K events per sec
task_rename fexit 3543K events per sec
task_rename fmod_ret 3526K events per sec
Note that the fact that ./bench benchmark always uses atomic increments for
counting, while test_overhead doesn't, doesn't influence test results all that
much.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-4-andriin@fb.com
While working on BPF ringbuf implementation, testing, and benchmarking, I've
developed a pretty generic and modular benchmark runner, which seems to be
generically useful, as I've already used it for one more purpose (testing
fastest way to trigger BPF program, to minimize overhead of in-kernel code).
This patch adds generic part of benchmark runner and sets up Makefile for
extending it with more sets of benchmarks.
Benchmarker itself operates by spinning up specified number of producer and
consumer threads, setting up interval timer sending SIGALARM signal to
application once a second. Every second, current snapshot with hits/drops
counters are collected and stored in an array. Drops are useful for
producer/consumer benchmarks in which producer might overwhelm consumers.
Once test finishes after given amount of warm-up and testing seconds, mean and
stddev are calculated (ignoring warm-up results) and is printed out to stdout.
This setup seems to give consistent and accurate results.
To validate behavior, I added two atomic counting tests: global and local.
For global one, all the producer threads are atomically incrementing same
counter as fast as possible. This, of course, leads to huge drop of
performance once there is more than one producer thread due to CPUs fighting
for the same memory location.
Local counting, on the other hand, maintains one counter per each producer
thread, incremented independently. Once per second, all counters are read and
added together to form final "counting throughput" measurement. As expected,
such setup demonstrates linear scalability with number of producers (as long
as there are enough physical CPU cores, of course). See example output below.
Also, this setup can nicely demonstrate disastrous effects of false sharing,
if care is not taken to take those per-producer counters apart into
independent cache lines.
Demo output shows global counter first with 1 producer, then with 4. Both
total and per-producer performance significantly drop. The last run is local
counter with 4 producers, demonstrating near-perfect scalability.
$ ./bench -a -w1 -d2 -p1 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 24.822us): hits 148.179M/s (148.179M/prod), drops 0.000M/s
Iter 1 ( 37.939us): hits 149.308M/s (149.308M/prod), drops 0.000M/s
Iter 2 (-10.774us): hits 150.717M/s (150.717M/prod), drops 0.000M/s
Iter 3 ( 3.807us): hits 151.435M/s (151.435M/prod), drops 0.000M/s
Summary: hits 150.488 ± 1.079M/s (150.488M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-global
Setting up benchmark 'count-global'...
Benchmark 'count-global' started.
Iter 0 ( 60.659us): hits 53.910M/s ( 13.477M/prod), drops 0.000M/s
Iter 1 (-17.658us): hits 53.722M/s ( 13.431M/prod), drops 0.000M/s
Iter 2 ( 5.865us): hits 53.495M/s ( 13.374M/prod), drops 0.000M/s
Iter 3 ( 0.104us): hits 53.606M/s ( 13.402M/prod), drops 0.000M/s
Summary: hits 53.608 ± 0.113M/s ( 13.402M/prod), drops 0.000 ± 0.000M/s
$ ./bench -a -w1 -d2 -p4 count-local
Setting up benchmark 'count-local'...
Benchmark 'count-local' started.
Iter 0 ( 23.388us): hits 640.450M/s (160.113M/prod), drops 0.000M/s
Iter 1 ( 2.291us): hits 605.661M/s (151.415M/prod), drops 0.000M/s
Iter 2 ( -6.415us): hits 607.092M/s (151.773M/prod), drops 0.000M/s
Iter 3 ( -1.361us): hits 601.796M/s (150.449M/prod), drops 0.000M/s
Summary: hits 604.849 ± 2.739M/s (151.212M/prod), drops 0.000 ± 0.000M/s
Benchmark runner supports setting thread affinity for producer and consumer
threads. You can use -a flag for default CPU selection scheme, where first
consumer gets CPU #0, next one gets CPU #1, and so on. Then producer threads
pick up next CPU and increment one-by-one as well. But user can also specify
a set of CPUs independently for producers and consumers with --prod-affinity
1,2-10,15 and --cons-affinity <set-of-cpus>. The latter allows to force
producers and consumers to share same set of CPUs, if necessary.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200512192445.2351848-3-andriin@fb.com
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200507185057.GA13981@embeddedor
The added test includes the following subtests:
- test verifier change for btf_id_or_null
- test load/create_iter/read for
ipv6_route/netlink/bpf_map/task/task_file
- test anon bpf iterator
- test anon bpf iterator reading one char at a time
- test file bpf iterator
- test overflow (single bpf program output not overflow)
- test overflow (single bpf program output overflows)
- test bpf prog returning 1
The ipv6_route tests the following verifier change
- access fields in the variable length array of the structure.
The netlink load tests the following verifier change
- put a btf_id ptr value in a stack and accessible to
tracing/iter programs.
The anon bpf iterator also tests link auto attach through skeleton.
$ test_progs -n 2
#2/1 btf_id_or_null:OK
#2/2 ipv6_route:OK
#2/3 netlink:OK
#2/4 bpf_map:OK
#2/5 task:OK
#2/6 task_file:OK
#2/7 anon:OK
#2/8 anon-read-one-char:OK
#2/9 file:OK
#2/10 overflow:OK
#2/11 overflow-e2big:OK
#2/12 prog-ret-1:OK
#2 bpf_iter:OK
Summary: 1/12 PASSED, 0 SKIPPED, 0 FAILED
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175923.2477637-1-yhs@fb.com
The implementation is arbitrary, just to show how the bpf programs
can be written for bpf_map/task/task_file. They can be costomized
for specific needs.
For example, for bpf_map, the iterator prints out:
$ cat /sys/fs/bpf/my_bpf_map
id refcnt usercnt locked_vm
3 2 0 20
6 2 0 20
9 2 0 20
12 2 0 20
13 2 0 20
16 2 0 20
19 2 0 20
%%% END %%%
For task, the iterator prints out:
$ cat /sys/fs/bpf/my_task
tgid gid
1 1
2 2
....
1944 1944
1948 1948
1949 1949
1953 1953
=== END ===
For task/file, the iterator prints out:
$ cat /sys/fs/bpf/my_task_file
tgid gid fd file
1 1 0 ffffffff95c97600
1 1 1 ffffffff95c97600
1 1 2 ffffffff95c97600
....
1895 1895 255 ffffffff95c8fe00
1932 1932 0 ffffffff95c8fe00
1932 1932 1 ffffffff95c8fe00
1932 1932 2 ffffffff95c8fe00
1932 1932 3 ffffffff95c185c0
This is able to print out all open files (fd and file->f_op), so user can compare
f_op against a particular kernel file operations to find what it is.
For example, from /proc/kallsyms, we can find
ffffffff95c185c0 r eventfd_fops
so we will know tgid 1932 fd 3 is an eventfd file descriptor.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175922.2477576-1-yhs@fb.com
We want to have a tighter control on what ports we bind to in
the BPF_CGROUP_INET{4,6}_CONNECT hooks even if it means
connect() becomes slightly more expensive. The expensive part
comes from the fact that we now need to call inet_csk_get_port()
that verifies that the port is not used and allocates an entry
in the hash table for it.
Since we can't rely on "snum || !bind_address_no_port" to prevent
us from calling POST_BIND hook anymore, let's add another bind flag
to indicate that the call site is BPF program.
v5:
* fix wrong AF_INET (should be AF_INET6) in the bpf program for v6
v3:
* More bpf_bind documentation refinements (Martin KaFai Lau)
* Add UDP tests as well (Martin KaFai Lau)
* Don't start the thread, just do socket+bind+listen (Martin KaFai Lau)
v2:
* Update documentation (Andrey Ignatov)
* Pass BIND_FORCE_ADDRESS_NO_PORT conditionally (Andrey Ignatov)
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200508174611.228805-5-sdf@google.com
Move the following routines that let us start a background listener
thread and connect to a server by fd to the test_prog:
* start_server - socket+bind+listen
* connect_to_fd - connect to the server identified by fd
These will be used in the next commit.
Also, extend these helpers to support AF_INET6 and accept the family
as an argument.
v5:
* drop pthread.h (Martin KaFai Lau)
* add SO_SNDTIMEO (Martin KaFai Lau)
v4:
* export extra helper to start server without a thread (Martin KaFai Lau)
* tcp_rtt is no longer starting background thread (Martin KaFai Lau)
v2:
* put helpers into network_helpers.c (Andrii Nakryiko)
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200508174611.228805-2-sdf@google.com
Currently, bpf_getsockopt and bpf_setsockopt helpers operate on the
'struct bpf_sock_ops' context in BPF_PROG_TYPE_SOCK_OPS program.
Let's generalize them and make them available for 'struct bpf_sock_addr'.
That way, in the future, we can allow those helpers in more places.
As an example, let's expose those 'struct bpf_sock_addr' based helpers to
BPF_CGROUP_INET{4,6}_CONNECT hooks. That way we can override CC before the
connection is made.
v3:
* Expose custom helpers for bpf_sock_addr context instead of doing
generic bpf_sock argument (as suggested by Daniel). Even with
try_socket_lock that doesn't sleep we have a problem where context sk
is already locked and socket lock is non-nestable.
v2:
* s/BPF_PROG_TYPE_CGROUP_SOCKOPT/BPF_PROG_TYPE_SOCK_OPS/
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200430233152.199403-1-sdf@google.com