We use one blktrace per request_queue, that means one per the entire
disk. So we cannot run one blktrace on say /dev/vda and then /dev/vda1,
or just two calls on /dev/vda.
We check for concurrent setup only at the very end of the blktrace setup though.
If we try to run two concurrent blktraces on the same block device the
second one will fail, and the first one seems to go on. However when
one tries to kill the first one one will see things like this:
The kernel will show these:
```
debugfs: File 'dropped' in directory 'nvme1n1' already present!
debugfs: File 'msg' in directory 'nvme1n1' already present!
debugfs: File 'trace0' in directory 'nvme1n1' already present!
``
And userspace just sees this error message for the second call:
```
blktrace /dev/nvme1n1
BLKTRACESETUP(2) /dev/nvme1n1 failed: 5/Input/output error
```
The first userspace process #1 will also claim that the files
were taken underneath their nose as well. The files are taken
away form the first process given that when the second blktrace
fails, it will follow up with a BLKTRACESTOP and BLKTRACETEARDOWN.
This means that even if go-happy process #1 is waiting for blktrace
data, we *have* been asked to take teardown the blktrace.
This can easily be reproduced with break-blktrace [0] run_0005.sh test.
Just break out early if we know we're already going to fail, this will
prevent trying to create the files all over again, which we know still
exist.
[0] https://github.com/mcgrof/break-blktrace
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
__change_page_attr() can fail which will cause set_memory_encrypted() and
set_memory_decrypted() to return non-zero.
If the device requires unencrypted DMA memory and decryption fails, simply
free the memory and fail.
If attempting to re-encrypt in the failure path and that encryption fails,
there is no alternative other than to leak the memory.
Fixes: c10f07aa27 ("dma/direct: Handle force decryption for DMA coherent buffers in common code")
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
If arch_dma_set_uncached() fails after memory has been decrypted, it needs
to be re-encrypted before freeing.
Fixes: fa7e2247c5 ("dma-direct: make uncached_kernel_address more general")
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
dma_alloc_contiguous() does size >> PAGE_SHIFT and set_memory_decrypted()
works at page granularity. It's necessary to page align the allocation
size in dma_direct_alloc_pages() for consistent behavior.
This also fixes an issue when arch_dma_prep_coherent() is called on an
unaligned allocation size for dma_alloc_need_uncached() when
CONFIG_DMA_DIRECT_REMAP is disabled but CONFIG_ARCH_HAS_DMA_SET_UNCACHED
is enabled.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
nommu configfs can trivially map the coherent allocations to user space,
as no actual page table setup is required and the kernel and the user
space programs share the same address space.
Fixes: 62fcee9a3b ("dma-mapping: remove CONFIG_ARCH_NO_COHERENT_DMA_MMAP")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: dillon min <dillon.minfei@gmail.com>
Reviewed-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: dillon min <dillon.minfei@gmail.com>
kmemleak report:
[<57dcc2ca>] __kmalloc_track_caller+0x139/0x2b0
[<f1c45d0f>] kstrndup+0x37/0x80
[<f9761eb0>] parse_probe_arg.isra.7+0x3cc/0x630
[<055bf2ba>] traceprobe_parse_probe_arg+0x2f5/0x810
[<655a7766>] trace_kprobe_create+0x2ca/0x950
[<4fc6a02a>] create_or_delete_trace_kprobe+0xf/0x30
[<6d1c8a52>] trace_run_command+0x67/0x80
[<be812cc0>] trace_parse_run_command+0xa7/0x140
[<aecfe401>] probes_write+0x10/0x20
[<2027641c>] __vfs_write+0x30/0x1e0
[<6a4aeee1>] vfs_write+0x96/0x1b0
[<3517fb7d>] ksys_write+0x53/0xc0
[<dad91db7>] __ia32_sys_write+0x15/0x20
[<da347f64>] do_syscall_32_irqs_on+0x3d/0x260
[<fd0b7e7d>] do_fast_syscall_32+0x39/0xb0
[<ea5ae810>] entry_SYSENTER_32+0xaf/0x102
Post parse_probe_arg(), the FETCH_OP_DATA operation type is overwritten
to FETCH_OP_ST_STRING, as a result memory is never freed since
traceprobe_free_probe_arg() iterates only over SYMBOL and DATA op types
Setup fetch string operation correctly after fetch_op_data operation.
Link: https://lkml.kernel.org/r/20200615143034.GA1734@cosmos
Cc: stable@vger.kernel.org
Fixes: a42e3c4de9 ("tracing/probe: Add immediate string parameter support")
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Vamshi K Sthambamkadi <vamshi.k.sthambamkadi@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
When using trace-cmd on 5.6-rt for the function graph tracer, the output was
corrupted. It gave output like this:
funcgraph_entry: func=0xffffffff depth=38982
funcgraph_entry: func=0x1ffffffff depth=16044
funcgraph_exit: func=0xffffffff overrun=0x92539aaf00000000 calltime=0x92539c9900000072 rettime=0x100000072 depth=11084
funcgraph_exit: func=0xffffffff overrun=0x9253946e00000000 calltime=0x92539e2100000072 rettime=0x72 depth=26033702
funcgraph_entry: func=0xffffffff depth=85798
funcgraph_entry: func=0x1ffffffff depth=12044
The reason was because the tracefs/events/ftrace/funcgraph_entry/exit format
file was incorrect. The -rt kernel adds more common fields to the trace
events. Namely, common_migrate_disable and common_preempt_lazy_count. Each
is one byte in size. This changes the alignment of the normal payload. Most
events are aligned normally, but the function and function graph events are
defined with a "PACKED" macro, that packs their payload. As the offsets
displayed in the format files are now calculated by an aligned field, the
aligned field for function and function graph events should be 1, not their
normal alignment.
With aligning of the funcgraph_entry event, the format file has:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:unsigned char common_migrate_disable; offset:8; size:1; signed:0;
field:unsigned char common_preempt_lazy_count; offset:9; size:1; signed:0;
field:unsigned long func; offset:16; size:8; signed:0;
field:int depth; offset:24; size:4; signed:1;
But the actual alignment is:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:unsigned char common_migrate_disable; offset:8; size:1; signed:0;
field:unsigned char common_preempt_lazy_count; offset:9; size:1; signed:0;
field:unsigned long func; offset:12; size:8; signed:0;
field:int depth; offset:20; size:4; signed:1;
Link: https://lkml.kernel.org/r/20200609220041.2a3b527f@oasis.local.home
Cc: stable@vger.kernel.org
Fixes: 04ae87a520 ("ftrace: Rework event_create_dir()")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Ziqian reported lockup when adding retprobe on _raw_spin_lock_irqsave.
My test was also able to trigger lockdep output:
============================================
WARNING: possible recursive locking detected
5.6.0-rc6+ #6 Not tainted
--------------------------------------------
sched-messaging/2767 is trying to acquire lock:
ffffffff9a492798 (&(kretprobe_table_locks[i].lock)){-.-.}, at: kretprobe_hash_lock+0x52/0xa0
but task is already holding lock:
ffffffff9a491a18 (&(kretprobe_table_locks[i].lock)){-.-.}, at: kretprobe_trampoline+0x0/0x50
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(kretprobe_table_locks[i].lock));
lock(&(kretprobe_table_locks[i].lock));
*** DEADLOCK ***
May be due to missing lock nesting notation
1 lock held by sched-messaging/2767:
#0: ffffffff9a491a18 (&(kretprobe_table_locks[i].lock)){-.-.}, at: kretprobe_trampoline+0x0/0x50
stack backtrace:
CPU: 3 PID: 2767 Comm: sched-messaging Not tainted 5.6.0-rc6+ #6
Call Trace:
dump_stack+0x96/0xe0
__lock_acquire.cold.57+0x173/0x2b7
? native_queued_spin_lock_slowpath+0x42b/0x9e0
? lockdep_hardirqs_on+0x590/0x590
? __lock_acquire+0xf63/0x4030
lock_acquire+0x15a/0x3d0
? kretprobe_hash_lock+0x52/0xa0
_raw_spin_lock_irqsave+0x36/0x70
? kretprobe_hash_lock+0x52/0xa0
kretprobe_hash_lock+0x52/0xa0
trampoline_handler+0xf8/0x940
? kprobe_fault_handler+0x380/0x380
? find_held_lock+0x3a/0x1c0
kretprobe_trampoline+0x25/0x50
? lock_acquired+0x392/0xbc0
? _raw_spin_lock_irqsave+0x50/0x70
? __get_valid_kprobe+0x1f0/0x1f0
? _raw_spin_unlock_irqrestore+0x3b/0x40
? finish_task_switch+0x4b9/0x6d0
? __switch_to_asm+0x34/0x70
? __switch_to_asm+0x40/0x70
The code within the kretprobe handler checks for probe reentrancy,
so we won't trigger any _raw_spin_lock_irqsave probe in there.
The problem is in outside kprobe_flush_task, where we call:
kprobe_flush_task
kretprobe_table_lock
raw_spin_lock_irqsave
_raw_spin_lock_irqsave
where _raw_spin_lock_irqsave triggers the kretprobe and installs
kretprobe_trampoline handler on _raw_spin_lock_irqsave return.
The kretprobe_trampoline handler is then executed with already
locked kretprobe_table_locks, and first thing it does is to
lock kretprobe_table_locks ;-) the whole lockup path like:
kprobe_flush_task
kretprobe_table_lock
raw_spin_lock_irqsave
_raw_spin_lock_irqsave ---> probe triggered, kretprobe_trampoline installed
---> kretprobe_table_locks locked
kretprobe_trampoline
trampoline_handler
kretprobe_hash_lock(current, &head, &flags); <--- deadlock
Adding kprobe_busy_begin/end helpers that mark code with fake
probe installed to prevent triggering of another kprobe within
this code.
Using these helpers in kprobe_flush_task, so the probe recursion
protection check is hit and the probe is never set to prevent
above lockup.
Link: http://lkml.kernel.org/r/158927059835.27680.7011202830041561604.stgit@devnote2
Fixes: ef53d9c5e4 ("kprobes: improve kretprobe scalability with hashed locking")
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "Gustavo A . R . Silva" <gustavoars@kernel.org>
Cc: Anders Roxell <anders.roxell@linaro.org>
Cc: "Naveen N . Rao" <naveen.n.rao@linux.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Reported-by: "Ziqian SUN (Zamir)" <zsun@redhat.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Fix to remove redundant arch_disarm_kprobe() call in
force_unoptimize_kprobe(). This arch_disarm_kprobe()
will be invoked if the kprobe is optimized but disabled,
but that means the kprobe (optprobe) is unused (and
unoptimized) state.
In that case, unoptimize_kprobe() puts it in freeing_list
and kprobe_optimizer (do_unoptimize_kprobes()) automatically
disarm it. Thus this arch_disarm_kprobe() is redundant.
Link: http://lkml.kernel.org/r/158927058719.27680.17183632908465341189.stgit@devnote2
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Anders reported that the lockdep warns that suspicious
RCU list usage in register_kprobe() (detected by
CONFIG_PROVE_RCU_LIST.) This is because get_kprobe()
access kprobe_table[] by hlist_for_each_entry_rcu()
without rcu_read_lock.
If we call get_kprobe() from the breakpoint handler context,
it is run with preempt disabled, so this is not a problem.
But in other cases, instead of rcu_read_lock(), we locks
kprobe_mutex so that the kprobe_table[] is not updated.
So, current code is safe, but still not good from the view
point of RCU.
Joel suggested that we can silent that warning by passing
lockdep_is_held() to the last argument of
hlist_for_each_entry_rcu().
Add lockdep_is_held(&kprobe_mutex) at the end of the
hlist_for_each_entry_rcu() to suppress the warning.
Link: http://lkml.kernel.org/r/158927055350.27680.10261450713467997503.stgit@devnote2
Reported-by: Anders Roxell <anders.roxell@linaro.org>
Suggested-by: Joel Fernandes <joel@joelfernandes.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
One of the use-cases of close_range() is to drop file descriptors just before
execve(). This would usually be expressed in the sequence:
unshare(CLONE_FILES);
close_range(3, ~0U);
as pointed out by Linus it might be desirable to have this be a part of
close_range() itself under a new flag CLOSE_RANGE_UNSHARE.
This expands {dup,unshare)_fd() to take a max_fds argument that indicates the
maximum number of file descriptors to copy from the old struct files. When the
user requests that all file descriptors are supposed to be closed via
close_range(min, max) then we can cap via unshare_fd(min) and hence don't need
to do any of the heavy fput() work for everything above min.
The patch makes it so that if CLOSE_RANGE_UNSHARE is requested and we do in
fact currently share our file descriptor table we create a new private copy.
We then close all fds in the requested range and finally after we're done we
install the new fd table.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
There is a regular need in the kernel to provide a way to declare having a
dynamically sized set of trailing elements in a structure. Kernel code should
always use “flexible array members”[1] for these cases. The older style of
one-element or zero-length arrays should no longer be used[2].
[1] https://en.wikipedia.org/wiki/Flexible_array_member
[2] https://github.com/KSPP/linux/issues/21
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Now that nothing (modular) still uses sched_setscheduler(), remove the
exports.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Because SCHED_FIFO is a broken scheduler model (see previous patches)
take away the priority field, the kernel can't possibly make an
informed decision.
Effectively no change.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Because SCHED_FIFO is a broken scheduler model (see previous patches)
take away the priority field, the kernel can't possibly make an
informed decision.
Effectively no change.
Cc: paulmck@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Because SCHED_FIFO is a broken scheduler model (see previous patches)
take away the priority field, the kernel can't possibly make an
informed decision.
Effectively no change.
Cc: paulmck@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Because SCHED_FIFO is a broken scheduler model (see previous patches)
take away the priority field, the kernel can't possibly make an
informed decision.
Effectively changes prio from 99 to 50.
Cc: paulmck@kernel.org
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Because SCHED_FIFO is a broken scheduler model (see previous patches)
take away the priority field, the kernel can't possibly make an
informed decision.
Effectively no change.
Cc: tglx@linutronix.de
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
When a task has a runtime that cannot be served within the scheduling
deadline by any of the idle CPU (later_mask) the task is doomed to miss
its deadline.
This can happen since the SCHED_DEADLINE admission control guarantees
only bounded tardiness and not the hard respect of all deadlines.
In this case try to select the idle CPU with the largest CPU capacity
to minimize tardiness.
Favor task_cpu(p) if it has max capacity of !fitting CPUs so that
find_later_rq() can potentially still return it (most likely cache-hot)
early.
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-6-dietmar.eggemann@arm.com
The current SCHED_DEADLINE (DL) scheduler uses a global EDF scheduling
algorithm w/o considering CPU capacity or task utilization.
This works well on homogeneous systems where DL tasks are guaranteed
to have a bounded tardiness but presents issues on heterogeneous
systems.
A DL task can migrate to a CPU which does not have enough CPU capacity
to correctly serve the task (e.g. a task w/ 70ms runtime and 100ms
period on a CPU w/ 512 capacity).
Add the DL fitness function dl_task_fits_capacity() for DL admission
control on heterogeneous systems. A task fits onto a CPU if:
CPU original capacity / 1024 >= task runtime / task deadline
Use this function on heterogeneous systems to try to find a CPU which
meets this criterion during task wakeup, push and offline migration.
On homogeneous systems the original behavior of the DL admission
control should be retained.
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-5-dietmar.eggemann@arm.com
The current SCHED_DEADLINE (DL) admission control ensures that
sum of reserved CPU bandwidth < x * M
where
x = /proc/sys/kernel/sched_rt_{runtime,period}_us
M = # CPUs in root domain.
DL admission control works well for homogeneous systems where the
capacity of all CPUs are equal (1024). I.e. bounded tardiness for DL
and non-starvation of non-DL tasks is guaranteed.
But on heterogeneous systems where capacity of CPUs are different it
could fail by over-allocating CPU time on smaller capacity CPUs.
On an Arm big.LITTLE/DynamIQ system DL tasks can easily starve other
tasks making it unusable.
Fix this by explicitly considering the CPU capacity in the DL admission
test by replacing M with the root domain CPU capacity sum.
Signed-off-by: Luca Abeni <luca.abeni@santannapisa.it>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-4-dietmar.eggemann@arm.com
Capacity-aware SCHED_DEADLINE Admission Control (AC) needs root domain
(rd) CPU capacity sum.
Introduce dl_bw_capacity() which for a symmetric rd w/ a CPU capacity
of SCHED_CAPACITY_SCALE simply relies on dl_bw_cpus() to return #CPUs
multiplied by SCHED_CAPACITY_SCALE.
For an asymmetric rd or a CPU capacity < SCHED_CAPACITY_SCALE it
computes the CPU capacity sum over rd span and cpu_active_mask.
A 'XXX Fix:' comment was added to highlight that if 'rq->rd ==
def_root_domain' AC should be performed against the capacity of the
CPU the task is running on rather the rd CPU capacity sum. This
issue already exists w/o capacity awareness.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/20200520134243.19352-3-dietmar.eggemann@arm.com
With commit:
'b7031a02ec75 ("sched/fair: Add NOHZ_STATS_KICK")'
rebalance_domains of the local cfs_rq happens before others idle cpus have
updated nohz.next_balance and its value is overwritten.
Move the update of nohz.next_balance for other idles cpus before balancing
and updating the next_balance of local cfs_rq.
Also, the nohz.next_balance is now updated only if all idle cpus got a
chance to rebalance their domains and the idle balance has not been aborted
because of new activities on the CPU. In case of need_resched, the idle
load balance will be kick the next jiffie in order to address remaining
ilb.
Fixes: b7031a02ec ("sched/fair: Add NOHZ_STATS_KICK")
Reported-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20200609123748.18636-1-vincent.guittot@linaro.org
This is a kernel enhancement that configures the cpu affinity of kernel
threads via kernel boot option nohz_full=.
When this option is specified, the cpumask is immediately applied upon
kthread launch. This does not affect kernel threads that specify cpu
and node.
This allows CPU isolation (that is not allowing certain threads
to execute on certain CPUs) without using the isolcpus=domain parameter,
making it possible to enable load balancing on such CPUs
during runtime (see kernel-parameters.txt).
Note-1: this is based off on Wind River's patch at
https://github.com/starlingx-staging/stx-integ/blob/master/kernel/kernel-std/centos/patches/affine-compute-kernel-threads.patch
Difference being that this patch is limited to modifying kernel thread
cpumask. Behaviour of other threads can be controlled via cgroups or
sched_setaffinity.
Note-2: Wind River's patch was based off Christoph Lameter's patch at
https://lwn.net/Articles/565932/ with the only difference being
the kernel parameter changed from kthread to kthread_cpus.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200527142909.23372-3-frederic@kernel.org
Next patch will switch unbound kernel threads mask to
housekeeping_cpumask(), a subset of cpu_possible_mask. So in order to
ease bisection, lets first switch kthreads default affinity from
cpu_all_mask to cpu_possible_mask.
It looks safe to do so as cpu_possible_mask seem to be initialized
at setup_arch() time, way before kthreadd is created.
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200527142909.23372-2-frederic@kernel.org
Each psi group requires a dedicated kthread_delayed_work and
kthread_worker. Since no other work can be performed using psi_group's
kthread_worker, the same result can be obtained using a task_struct and
a timer directly. This makes psi triggering simpler by removing lists
and locks involved with kthread_worker usage and eliminates the need for
poll_scheduled atomic use in the hot path.
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200528195442.190116-1-surenb@google.com
The idle task and stop task sched_classes return 0 in this function.
The single call site in sched_rr_get_interval() calls
p->sched_class->get_rr_interval() only conditional in case it is
defined. Otherwise time_slice=0 will be used.
The deadline sched class does not define it. Commit a57beec5d4
("sched: Make sched_class::get_rr_interval() optional") introduced
the default time-slice=0 for sched classes which do not provide this
function.
So .get_rr_interval for idle and stop sched_class can be removed to
shrink the code a little.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200603080304.16548-4-dietmar.eggemann@arm.com
People report that utime and stime from /proc/<pid>/stat become very
wrong when the numbers are big enough, especially if you watch these
counters incrementally.
Specifically, the current implementation of: stime*rtime/total,
results in a saw-tooth function on top of the desired line, where the
teeth grow in size the larger the values become. IOW, it has a
relative error.
The result is that, when watching incrementally as time progresses
(for large values), we'll see periods of pure stime or utime increase,
irrespective of the actual ratio we're striving for.
Replace scale_stime() with a math64.h helper: mul_u64_u64_div_u64()
that is far more accurate. This also allows architectures to override
the implementation -- for instance they can opt for the old algorithm
if this new one turns out to be too expensive for them.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200519172506.GA317395@hirez.programming.kicks-ass.net
Add perf text poke events for ftrace trampolines when created and when
freed.
There can be 3 text_poke events for ftrace trampolines:
1. NULL -> trampoline
By ftrace_update_trampoline() when !ops->trampoline
Trampoline created
2. [e.g. on x86] CALL rel32 -> CALL rel32
By arch_ftrace_update_trampoline() when ops->trampoline and
ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP
[e.g. on x86] via text_poke_bp() which generates text poke events
Trampoline-called function target updated
3. trampoline -> NULL
By ftrace_trampoline_free() when ops->trampoline and
ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP
Trampoline freed
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200512121922.8997-9-adrian.hunter@intel.com
Symbols are needed for tools to describe instruction addresses. Pages
allocated for ftrace's purposes need symbols to be created for them.
Add such symbols to be visible via /proc/kallsyms.
Example on x86 with CONFIG_DYNAMIC_FTRACE=y
# echo function > /sys/kernel/debug/tracing/current_tracer
# cat /proc/kallsyms | grep '\[__builtin__ftrace\]'
ffffffffc0238000 t ftrace_trampoline [__builtin__ftrace]
Note: This patch adds "__builtin__ftrace" as a module name in /proc/kallsyms for
symbols for pages allocated for ftrace's purposes, even though "__builtin__ftrace"
is not a module.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200512121922.8997-7-adrian.hunter@intel.com
Symbols are needed for tools to describe instruction addresses. Pages
allocated for kprobe's purposes need symbols to be created for them.
Add such symbols to be visible via /proc/kallsyms.
Note: kprobe insn pages are not used if ftrace is configured. To see the
effect of this patch, the kernel must be configured with:
# CONFIG_FUNCTION_TRACER is not set
CONFIG_KPROBES=y
and for optimised kprobes:
CONFIG_OPTPROBES=y
Example on x86:
# perf probe __schedule
Added new event:
probe:__schedule (on __schedule)
# cat /proc/kallsyms | grep '\[__builtin__kprobes\]'
ffffffffc00d4000 t kprobe_insn_page [__builtin__kprobes]
ffffffffc00d6000 t kprobe_optinsn_page [__builtin__kprobes]
Note: This patch adds "__builtin__kprobes" as a module name in
/proc/kallsyms for symbols for pages allocated for kprobes' purposes, even
though "__builtin__kprobes" is not a module.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lkml.kernel.org/r/20200528080058.20230-1-adrian.hunter@intel.com