Upon waiting a request (when asked), we gave that request a small
priority boost, not enough for it to cause preemption, but enough for it
to be scheduled next before all equals. We also used that bit to give
new clients a small priority boost, similar to FQ_CODEL, such that we
favoured short interactive tasks ahead of long running streams.
However, this is causing lots of complications with timeslicing where we
both want to honour the boost and yet ignore it. Those complications
cause unexpected user behaviour (tasks not being timesliced and run
concurrently as epxected), and the easiest way to resolve that is to
remove the boost. Hopefully, we can find a compromise again if we need
to, but in theory timeslicing itself and future more advanced schedulers
should give us the interactivity boost we seek.
Testcase: igt/gem_exec_schedule/lateslice
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200507152338.7452-3-chris@chris-wilson.co.uk
We recorded the dependencies for WAIT_FOR_SUBMIT in order that we could
correctly perform priority inheritance from the parallel branches to the
common trunk. However, for the purpose of timeslicing and reset
handling, the dependency is weak -- as we the pair of requests are
allowed to run in parallel and not in strict succession.
The real significance though is that this allows us to rearrange
groups of WAIT_FOR_SUBMIT linked requests along the single engine, and
so can resolve user level inter-batch scheduling dependencies from user
semaphores.
Fixes: c81471f5e9 ("drm/i915: Copy across scheduler behaviour flags across submit fences")
Testcase: igt/gem_exec_fence/submit
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: <stable@vger.kernel.org> # v5.6+
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200507155109.8892-1-chris@chris-wilson.co.uk
The bspec is confusing on the nature of the upper 32bits of the LRC
descriptor. Once upon a time, it said that it uses the upper 32b to
decide if it should perform a lite-restore, and so we must ensure that
each unique context submitted to HW is given a unique CCID [for the
duration of it being on the HW]. Currently, this is achieved by using
a small circular tag, and assigning every context submitted to HW a
new id. However, this tag is being cleared on repinning an inflight
context such that we end up re-using the 0 tag for multiple contexts.
To avoid accidentally clearing the CCID in the upper 32bits of the LRC
descriptor, split the descriptor into two dwords so we can update the
GGTT address separately from the CCID.
Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/1796
Fixes: 2935ed5339 ("drm/i915: Remove logical HW ID")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: <stable@vger.kernel.org> # v5.5+
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200428184751.11257-1-chris@chris-wilson.co.uk
(cherry picked from commit 2632f174a2)
(cherry picked from commit a4b70fcc587860f4b972f68217d8ebebe295ec15)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
If we find ourselves waiting on a MI_SEMAPHORE_WAIT, either within the
user batch or in our own preamble, the engine raises a
GT_WAIT_ON_SEMAPHORE interrupt. We can unmask that interrupt and so
respond to a semaphore wait by yielding the timeslice, if we have
another context to yield to!
The only real complication is that the interrupt is only generated for
the start of the semaphore wait, and is asynchronous to our
process_csb() -- that is, we may not have registered the timeslice before
we see the interrupt. To ensure we don't miss a potential semaphore
blocking forward progress (e.g. selftests/live_timeslice_preempt) we mark
the interrupt and apply it to the next timeslice regardless of whether it
was active at the time.
v2: We use semaphores in preempt-to-busy, within the timeslicing
implementation itself! Ergo, when we do insert a preemption due to an
expired timeslice, the new context may start with the missed semaphore
flagged by the retired context and be yielded, ad infinitum. To avoid
this, read the context id at the time of the semaphore interrupt and
only yield if that context is still active.
Fixes: 8ee36e048c ("drm/i915/execlists: Minimalistic timeslicing")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200407130811.17321-1-chris@chris-wilson.co.uk
(cherry picked from commit c4e8ba7390)
(cherry picked from commit cd60e4ac4738a6921592c4f7baf87f9a3499f0e2)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
We need a new PCode request commands and reply codes
to be added as a prepartion patch for QGV points
restricting for new SAGV support.
v2: - Extracted those changes into separate patch
(Ville Syrjälä)
v3: - Moved new PCode masks to another place from
PCode commands(Ville)
v4: - Moved new PCode masks to correspondent PCode
command, with identation(Ville)
- Changed naming to ICL_ instead of GEN11_
to fit more nicely into existing definition
style.
Signed-off-by: Stanislav Lisovskiy <stanislav.lisovskiy@intel.com>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200505102247.32452-5-stanislav.lisovskiy@intel.com
All these ROUNDING_FACTORs and whatnot are making this thing hard to
read. Get rid of them. And let's massage some of the fractions to
give us less questionable intermediate results and perhaps less
divisions.
Also looks like a good helping of 64bit math stuff is needed to
avoid some of overflows present in the current code. There
might still be a few overflows, namely when calculating
link_clks_available/samples_room (would require a huge hblank
though), and potentially when calculating hblank_rise (not sure
how large link_clks_active can get).
It looks like we're still not calculating exactly what the spec says
since we truncate tu_data and tu_line early. But I'm too lazy to
figure out if we could avoid that.
v2: Fix typo in commit msg (Uma)
Remove ROUNDING_FACTOR define (Uma)
s/5*link_clk+5*cdclk/5*(link_clk+cdclk)/ (Chris)
Cc: Anshuman Gupta <anshuman.gupta@intel.com>
Cc: Uma Shankar <uma.shankar@intel.com>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200429185457.26235-3-ville.syrjala@linux.intel.com
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Uma Shankar <uma.shankar@intel.com>
Display WA #1105 says that FBC requires PLANE_STRIDE to be a multiple
of 512 bytes on gen9 and glk.
This is definitely true for glk as certain tests (such as
igt/kms_big_fb/linear-16bpp-rotate-0) are now failing when the
display resolution results in a plane stride which is not a
multiple of 512 bytes.
Curiously I was not able to reproduce this on a KBL. First I
suspected that our use of the FBC override stride explain this,
but after trying to use the override stride on glk the test
still failed. I did try both the old CHICKEN_MISC_4 way and
the new FBC_STRIDE way, neither had any effect on the result.
Anyways, we need this at least on glk. But let's trust the spec
and apply the w/a for all gen9 as well, despite being unable to
reproduce the problem.
v2: s/FBC_CHICKEN/FBC_STRIDE/ in commit msg
Cc: José Roberto de Souza <jose.souza@intel.com>
Fixes: 691f7ba58d ("drm/i915/display/fbc: Make fences a nice-to-have for GEN9+")
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200429101034.8208-2-ville.syrjala@linux.intel.com
Reviewed-by: Matt Roper <matthew.d.roper@intel.com>
We need to calculate SAGV mask also in a non-modeset
commit, however currently active_pipes are only calculated
for modesets in global atomic state, thus now we will be
tracking those also in bw_state in order to be able to
properly access global data.
v2: - Removed pre/post plane SAGV updates from modeset(Ville)
- Now tracking active pipes in intel_can_enable_sagv(Ville)
v3: - lock global state if active_pipes change as well(Ville)
Signed-off-by: Stanislav Lisovskiy <stanislav.lisovskiy@intel.com>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200430195634.7666-1-stanislav.lisovskiy@intel.com
Future platforms require per-crtc SAGV evaluation
and serializing global state when those are changed
from different commits.
v2: - Add has_sagv check to intel_crtc_can_enable_sagv
so that it sets bit in reject mask.
- Use bw_state in intel_pre/post_plane_enable_sagv
instead of atomic state
v3: - Fixed rebase conflict, now using
intel_atomic_crtc_state_for_each_plane_state in
order to call it from atomic check
v4: - Use fb modifier from plane state
v5: - Make intel_has_sagv static again(Ville)
- Removed unnecessary NULL assignments(Ville)
- Removed unnecessary SAGV debug(Ville)
- Call intel_compute_sagv_mask only for modesets(Ville)
- Serialize global state only if sagv results change, but
not mask itself(Ville)
v6: - use lock global state instead of serialize(Ville)
v7: - use both global state lock and serialize depending on
if we need to change only global state or access hw
(Ville)
Signed-off-by: Stanislav Lisovskiy <stanislav.lisovskiy@intel.com>
Cc: Ville Syrjälä <ville.syrjala@intel.com>
Cc: James Ausmus <james.ausmus@intel.com>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200430191757.18206-1-stanislav.lisovskiy@intel.com
The older arches did not convert MI_STORE_DATA_IMM to using the GTT, but
left them writing to a physical address. The notes suggest that the
primary reason would be so that the writes were cache coherent, as the
CPU cache uses physical tagging. As such we did not implement the
legacy variant of MI_STORE_DATA_IMM and so left all the relocations
synchronous -- but with a small function to convert from the vma address
into the physical address, we can implement asynchronous relocs on these
older arches, fixing up a few tests that require them.
In order to be able to test the legacy paths, refactor the gpu
relocations so that we can hook them up to a selftest.
v2: Use an array of offsets not enum labels for the selftest
v3: Refactor the common igt_hexdump()
Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/757
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200504140629.28240-1-chris@chris-wilson.co.uk
If at first we don't succeed, try try again.
Not all engines may support the MI ops we need to perform asynchronous
relocation patching, and so we end up falling back to a synchronous
operation that has a liability of blocking. However, Tvrtko pointed out
we don't need to use the same engine to perform the relocations as we
are planning to execute the execbuf on, and so if we switch over to a
working engine, we can perform the relocation asynchronously. The user
execbuf will be queued after the relocations by virtue of fencing.
This patch creates a new context per execbuf requiring asynchronous
relocations on an unusable engines. This is perhaps a bit excessive and
can be ameliorated by a small context cache, but for the moment we only
need it for working around a little used engine on Sandybridge, and only
if relocations are actually required to an active batch buffer.
Now we just need to teach the relocation code to handle physical
addressing for gen2/3, and we should then have universal support!
Suggested-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Testcase: igt/gem_exec_reloc/basic-spin # snb
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200501192945.22215-3-chris@chris-wilson.co.uk
The ring is a precious resource: we anticipate to only use a few hundred
bytes for a request, and only try to reserve that before we start. If we
go beyond our guess in building the request, then instead of waiting at
the start of execbuf before we hold any locks or other resources, we
may trigger a wait inside a critical region. One example is in using gpu
relocations, where currently we emit a new MI_BB_START from the ring
every time we overflow a page of relocation entries. However, instead of
insert the command into the precious ring, we can chain the next page of
relocation entries as MI_BB_START from the end of the previous.
v2: Delay the emit_bb_start until after all the chained vma
synchronisation is complete. Since the buffer pool batches are idle, this
_should_ be a no-op, but one day we may some fancy async GPU bindings
for new vma!
v3: Use pool/batch consitently, once we start thinking in terms of the
batch vma, use batch->obj.
v4: Explain the magic number 4.
Tvrtko spotted that we lose propagation of the error for failing to
submit the relocation request; that's easier to fix up in the next
patch.
Testcase: igt/gem_exec_reloc/basic-many-active
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200501192945.22215-1-chris@chris-wilson.co.uk