Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...
Add userspace support for the Memory Tagging Extension introduced by
Armv8.5.
(Catalin Marinas and others)
* for-next/mte: (30 commits)
arm64: mte: Fix typo in memory tagging ABI documentation
arm64: mte: Add Memory Tagging Extension documentation
arm64: mte: Kconfig entry
arm64: mte: Save tags when hibernating
arm64: mte: Enable swap of tagged pages
mm: Add arch hooks for saving/restoring tags
fs: Handle intra-page faults in copy_mount_options()
arm64: mte: ptrace: Add NT_ARM_TAGGED_ADDR_CTRL regset
arm64: mte: ptrace: Add PTRACE_{PEEK,POKE}MTETAGS support
arm64: mte: Allow {set,get}_tagged_addr_ctrl() on non-current tasks
arm64: mte: Restore the GCR_EL1 register after a suspend
arm64: mte: Allow user control of the generated random tags via prctl()
arm64: mte: Allow user control of the tag check mode via prctl()
mm: Allow arm64 mmap(PROT_MTE) on RAM-based files
arm64: mte: Validate the PROT_MTE request via arch_validate_flags()
mm: Introduce arch_validate_flags()
arm64: mte: Add PROT_MTE support to mmap() and mprotect()
mm: Introduce arch_calc_vm_flag_bits()
arm64: mte: Tags-aware aware memcmp_pages() implementation
arm64: Avoid unnecessary clear_user_page() indirection
...
If the system is not affected by Spectre-v2, then advertise to the KVM
guest that it is not affected, without the need for a safelist in the
guest.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
As we can now hide events from the guest, let's also adjust its view of
PCMEID{0,1}_EL1 so that it can figure out why some common events are not
counting as they should.
The astute user can still look into the TRM for their CPU and find out
they've been cheated, though. Nobody's perfect.
Signed-off-by: Marc Zyngier <maz@kernel.org>
KVM does not support MTE in guests yet, so clear the corresponding field
in the ID_AA64PFR1_EL1 register. In addition, inject an undefined
exception in the guest if it accesses one of the GCR_EL1, RGSR_EL1,
TFSR_EL1 or TFSRE0_EL1 registers. While the emulate_sys_reg() function
already injects an undefined exception, this patch prevents the
unnecessary printk.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Steven Price <steven.price@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
KVM/arm64 updates for Linux 5.9:
- Split the VHE and nVHE hypervisor code bases, build the EL2 code
separately, allowing for the VHE code to now be built with instrumentation
- Level-based TLB invalidation support
- Restructure of the vcpu register storage to accomodate the NV code
- Pointer Authentication available for guests on nVHE hosts
- Simplification of the system register table parsing
- MMU cleanups and fixes
- A number of post-32bit cleanups and other fixes
Pull KVM updates from Paolo Bonzini:
"s390:
- implement diag318
x86:
- Report last CPU for debugging
- Emulate smaller MAXPHYADDR in the guest than in the host
- .noinstr and tracing fixes from Thomas
- nested SVM page table switching optimization and fixes
Generic:
- Unify shadow MMU cache data structures across architectures"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
KVM: SVM: Fix sev_pin_memory() error handling
KVM: LAPIC: Set the TDCR settable bits
KVM: x86: Specify max TDP level via kvm_configure_mmu()
KVM: x86/mmu: Rename max_page_level to max_huge_page_level
KVM: x86: Dynamically calculate TDP level from max level and MAXPHYADDR
KVM: VXM: Remove temporary WARN on expected vs. actual EPTP level mismatch
KVM: x86: Pull the PGD's level from the MMU instead of recalculating it
KVM: VMX: Make vmx_load_mmu_pgd() static
KVM: x86/mmu: Add separate helper for shadow NPT root page role calc
KVM: VMX: Drop a duplicate declaration of construct_eptp()
KVM: nSVM: Correctly set the shadow NPT root level in its MMU role
KVM: Using macros instead of magic values
MIPS: KVM: Fix build error caused by 'kvm_run' cleanup
KVM: nSVM: remove nonsensical EXITINFO1 adjustment on nested NPF
KVM: x86: Add a capability for GUEST_MAXPHYADDR < HOST_MAXPHYADDR support
KVM: VMX: optimize #PF injection when MAXPHYADDR does not match
KVM: VMX: Add guest physical address check in EPT violation and misconfig
KVM: VMX: introduce vmx_need_pf_intercept
KVM: x86: update exception bitmap on CPUID changes
KVM: x86: rename update_bp_intercept to update_exception_bitmap
...
In the current kvm version, 'kvm_run' has been included in the 'kvm_vcpu'
structure. For historical reasons, many kvm-related function parameters
retain the 'kvm_run' and 'kvm_vcpu' parameters at the same time. This
patch does a unified cleanup of these remaining redundant parameters.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200623131418.31473-3-tianjia.zhang@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As ELR-EL1 is a VNCR-capable register with ARMv8.4-NV, let's move it to
the sys_regs array and repaint the accessors. While we're at it, let's
kill the now useless accessors used only on the fault injection path.
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
kvm/arm32 isn't supported since commit 541ad0150c ("arm: Remove
32bit KVM host support"). So HSR isn't meaningful since then. This
renames HSR to ESR accordingly. This shouldn't cause any functional
changes:
* Rename kvm_vcpu_get_hsr() to kvm_vcpu_get_esr() to make the
function names self-explanatory.
* Rename variables from @hsr to @esr to make them self-explanatory.
Note that the renaming on uapi and tracepoint will cause ABI changes,
which we should avoid. Specificly, there are 4 related source files
in this regard:
* arch/arm64/include/uapi/asm/kvm.h (struct kvm_debug_exit_arch::hsr)
* arch/arm64/kvm/handle_exit.c (struct kvm_debug_exit_arch::hsr)
* arch/arm64/kvm/trace_arm.h (tracepoints)
* arch/arm64/kvm/trace_handle_exit.h (tracepoints)
Signed-off-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Andrew Scull <ascull@google.com>
Link: https://lore.kernel.org/r/20200630015705.103366-1-gshan@redhat.com
Whenever KVM searches for a register (e.g. due to a guest exit), it
works with two tables, as the target table overrides the sys_regs array.
Now that everything is in the sys_regs array, and the target table is
empty, stop doing that.
Remove the second table and its size from all the functions that take
it.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200622113317.20477-5-james.morse@arm.com
KVM for 32bit arm had a get/set target mechanism to allow for
micro-architecture differences that are visible in system registers
to be described.
KVM's user-space can query the supported targets for a CPU, and
create vCPUs for that target. The target can override the handling
of system registers to provide different reset or RES0 behaviour.
On 32bit arm this was used to provide different ACTLR reset values
for A7 and A15.
On 64bit arm, the first few CPUs out of the gate used this mechanism,
before it was deemed redundant in commit bca556ac46 ("arm64/kvm:
Add generic v8 KVM target"). All future CPUs use the
KVM_ARM_TARGET_GENERIC_V8 target.
The 64bit target_table[] stuff exists to preserve the ABI to
user-space. As all targets registers genericv8_target_table, there
is no reason to look the target up.
Until we can merge genericv8_target_table with the main sys_regs
array, kvm_register_target_sys_reg_table() becomes
kvm_check_target_sys_reg_table(), which uses BUG_ON() in keeping
with the other callers in this file.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200622113317.20477-2-james.morse@arm.com
KVM/arm64 fixes for Linux 5.8, take #1
* 32bit VM fixes:
- Fix embarassing mapping issue between AArch32 CSSELR and AArch64
ACTLR
- Add ACTLR2 support for AArch32
- Get rid of the useless ACTLR_EL1 save/restore
- Fix CP14/15 accesses for AArch32 guests on BE hosts
- Ensure that we don't loose any state when injecting a 32bit
exception when running on a VHE host
* 64bit VM fixes:
- Fix PtrAuth host saving happening in preemptible contexts
- Optimize PtrAuth lazy enable
- Drop vcpu to cpu context pointer
- Fix sparse warnings for HYP per-CPU accesses
The current way we deal with PtrAuth is a bit heavy handed:
- We forcefully save the host's keys on each vcpu_load()
- Handling the PtrAuth trap forces us to go all the way back
to the exit handling code to just set the HCR bits
Overall, this is pretty cumbersome. A better approach would be
to handle it the same way we deal with the FPSIMD registers:
- On vcpu_load() disable PtrAuth for the guest
- On first use, save the host's keys, enable PtrAuth in the
guest
Crucially, this can happen as a fixup, which is done very early
on exit. We can then reenter the guest immediately without
leaving the hypervisor role.
Another thing is that it simplify the rest of the host handling:
exiting all the way to the host means that the only possible
outcome for this trap is to inject an UNDEF.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
KVM sets HCR_EL2.TACR via HCR_GUEST_FLAGS. This means ACTLR* accesses
from the guest are always trapped, and always return the value in the
sys_regs array.
The guest can't change the value of these registers, so we are
save restoring the reset value, which came from the host.
Stop save/restoring this register. Keep the storage for this register
in sys_regs[] as this is how the value is exposed to user-space,
removing it would break migration.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200529150656.7339-4-james.morse@arm.com
aarch32 has pairs of registers to access the high and low parts of 64bit
registers. KVM has a union of 64bit sys_regs[] and 32bit copro[]. The
32bit accessors read the high or low part of the 64bit sys_reg[] value
through the union.
Both sys_reg_descs[] and cp15_regs[] list access_csselr() as the accessor
for CSSELR{,_EL1}. access_csselr() is only aware of the 64bit sys_regs[],
and expects r->reg to be 'CSSELR_EL1' in the enum, index 2 of the 64bit
array.
cp15_regs[] uses the 32bit copro[] alias of sys_regs[]. Here CSSELR is
c0_CSSELR which is the same location in sys_reg[]. r->reg is 'c0_CSSELR',
index 4 in the 32bit array.
access_csselr() uses the 32bit r->reg value to access the 64bit array,
so reads and write the wrong value. sys_regs[4], is ACTLR_EL1, which
is subsequently save/restored when we enter the guest.
ACTLR_EL1 is supposed to be read-only for the guest. This register
only affects execution at EL1, and the host's value is restored before
we return to host EL1.
Convert the 32bit register index back to the 64bit version.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200529150656.7339-2-james.morse@arm.com
Pull kvm updates from Paolo Bonzini:
"ARM:
- Move the arch-specific code into arch/arm64/kvm
- Start the post-32bit cleanup
- Cherry-pick a few non-invasive pre-NV patches
x86:
- Rework of TLB flushing
- Rework of event injection, especially with respect to nested
virtualization
- Nested AMD event injection facelift, building on the rework of
generic code and fixing a lot of corner cases
- Nested AMD live migration support
- Optimization for TSC deadline MSR writes and IPIs
- Various cleanups
- Asynchronous page fault cleanups (from tglx, common topic branch
with tip tree)
- Interrupt-based delivery of asynchronous "page ready" events (host
side)
- Hyper-V MSRs and hypercalls for guest debugging
- VMX preemption timer fixes
s390:
- Cleanups
Generic:
- switch vCPU thread wakeup from swait to rcuwait
The other architectures, and the guest side of the asynchronous page
fault work, will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (256 commits)
KVM: selftests: fix rdtsc() for vmx_tsc_adjust_test
KVM: check userspace_addr for all memslots
KVM: selftests: update hyperv_cpuid with SynDBG tests
x86/kvm/hyper-v: Add support for synthetic debugger via hypercalls
x86/kvm/hyper-v: enable hypercalls regardless of hypercall page
x86/kvm/hyper-v: Add support for synthetic debugger interface
x86/hyper-v: Add synthetic debugger definitions
KVM: selftests: VMX preemption timer migration test
KVM: nVMX: Fix VMX preemption timer migration
x86/kvm/hyper-v: Explicitly align hcall param for kvm_hyperv_exit
KVM: x86/pmu: Support full width counting
KVM: x86/pmu: Tweak kvm_pmu_get_msr to pass 'struct msr_data' in
KVM: x86: announce KVM_FEATURE_ASYNC_PF_INT
KVM: x86: acknowledgment mechanism for async pf page ready notifications
KVM: x86: interrupt based APF 'page ready' event delivery
KVM: introduce kvm_read_guest_offset_cached()
KVM: rename kvm_arch_can_inject_async_page_present() to kvm_arch_can_dequeue_async_page_present()
KVM: x86: extend struct kvm_vcpu_pv_apf_data with token info
Revert "KVM: async_pf: Fix #DF due to inject "Page not Present" and "Page Ready" exceptions simultaneously"
KVM: VMX: Replace zero-length array with flexible-array
...
Our sysreg reset check has become a bit silly, as it only checks whether
a reset callback actually exists for a given sysreg entry, and apply the
method if available. Doing the check at each vcpu reset is pretty dumb,
as the tables never change. It is thus perfectly possible to do the same
checks at boot time.
This also allows us to introduce a sparse sys_regs[] array, something
that will be required with ARMv8.4-NV.
Signed-off-by: Marc Zyngier <maz@kernel.org>
As we're about to become a bit more harsh when it comes to the lack of
reset callbacks, let's add the missing PMU reset handlers. Note that
these only cover *CLR registers that were always covered by their *SET
counterpart, so there is no semantic change here.
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Pull kvm updates from Paolo Bonzini:
"ARM:
- GICv4.1 support
- 32bit host removal
PPC:
- secure (encrypted) using under the Protected Execution Framework
ultravisor
s390:
- allow disabling GISA (hardware interrupt injection) and protected
VMs/ultravisor support.
x86:
- New dirty bitmap flag that sets all bits in the bitmap when dirty
page logging is enabled; this is faster because it doesn't require
bulk modification of the page tables.
- Initial work on making nested SVM event injection more similar to
VMX, and less buggy.
- Various cleanups to MMU code (though the big ones and related
optimizations were delayed to 5.8). Instead of using cr3 in
function names which occasionally means eptp, KVM too has
standardized on "pgd".
- A large refactoring of CPUID features, which now use an array that
parallels the core x86_features.
- Some removal of pointer chasing from kvm_x86_ops, which will also
be switched to static calls as soon as they are available.
- New Tigerlake CPUID features.
- More bugfixes, optimizations and cleanups.
Generic:
- selftests: cleanups, new MMU notifier stress test, steal-time test
- CSV output for kvm_stat"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (277 commits)
x86/kvm: fix a missing-prototypes "vmread_error"
KVM: x86: Fix BUILD_BUG() in __cpuid_entry_get_reg() w/ CONFIG_UBSAN=y
KVM: VMX: Add a trampoline to fix VMREAD error handling
KVM: SVM: Annotate svm_x86_ops as __initdata
KVM: VMX: Annotate vmx_x86_ops as __initdata
KVM: x86: Drop __exit from kvm_x86_ops' hardware_unsetup()
KVM: x86: Copy kvm_x86_ops by value to eliminate layer of indirection
KVM: x86: Set kvm_x86_ops only after ->hardware_setup() completes
KVM: VMX: Configure runtime hooks using vmx_x86_ops
KVM: VMX: Move hardware_setup() definition below vmx_x86_ops
KVM: x86: Move init-only kvm_x86_ops to separate struct
KVM: Pass kvm_init()'s opaque param to additional arch funcs
s390/gmap: return proper error code on ksm unsharing
KVM: selftests: Fix cosmetic copy-paste error in vm_mem_region_move()
KVM: Fix out of range accesses to memslots
KVM: X86: Micro-optimize IPI fastpath delay
KVM: X86: Delay read msr data iff writes ICR MSR
KVM: PPC: Book3S HV: Add a capability for enabling secure guests
KVM: arm64: GICv4.1: Expose HW-based SGIs in debugfs
KVM: arm64: GICv4.1: Allow non-trapping WFI when using HW SGIs
...
* for-next/memory-hotremove:
: Memory hot-remove support for arm64
arm64/mm: Enable memory hot remove
arm64/mm: Hold memory hotplug lock while walking for kernel page table dump
* for-next/arm_sdei:
: SDEI: fix double locking on return from hibernate and clean-up
firmware: arm_sdei: clean up sdei_event_create()
firmware: arm_sdei: Use cpus_read_lock() to avoid races with cpuhp
firmware: arm_sdei: fix possible double-lock on hibernate error path
firmware: arm_sdei: fix double-lock on hibernate with shared events
* for-next/amu:
: ARMv8.4 Activity Monitors support
clocksource/drivers/arm_arch_timer: validate arch_timer_rate
arm64: use activity monitors for frequency invariance
cpufreq: add function to get the hardware max frequency
Documentation: arm64: document support for the AMU extension
arm64/kvm: disable access to AMU registers from kvm guests
arm64: trap to EL1 accesses to AMU counters from EL0
arm64: add support for the AMU extension v1
* for-next/final-cap-helper:
: Introduce cpus_have_final_cap_helper(), migrate arm64 KVM to it
arm64: kvm: hyp: use cpus_have_final_cap()
arm64: cpufeature: add cpus_have_final_cap()
* for-next/cpu_ops-cleanup:
: cpu_ops[] access code clean-up
arm64: Introduce get_cpu_ops() helper function
arm64: Rename cpu_read_ops() to init_cpu_ops()
arm64: Declare ACPI parking protocol CPU operation if needed
* for-next/misc:
: Various fixes and clean-ups
arm64: define __alloc_zeroed_user_highpage
arm64/kernel: Simplify __cpu_up() by bailing out early
arm64: remove redundant blank for '=' operator
arm64: kexec_file: Fixed code style.
arm64: add blank after 'if'
arm64: fix spelling mistake "ca not" -> "cannot"
arm64: entry: unmask IRQ in el0_sp()
arm64: efi: add efi-entry.o to targets instead of extra-$(CONFIG_EFI)
arm64: csum: Optimise IPv6 header checksum
arch/arm64: fix typo in a comment
arm64: remove gratuitious/stray .ltorg stanzas
arm64: Update comment for ASID() macro
arm64: mm: convert cpu_do_switch_mm() to C
arm64: fix NUMA Kconfig typos
* for-next/perf:
: arm64 perf updates
arm64: perf: Add support for ARMv8.5-PMU 64-bit counters
KVM: arm64: limit PMU version to PMUv3 for ARMv8.1
arm64: cpufeature: Extract capped perfmon fields
arm64: perf: Clean up enable/disable calls
perf: arm-ccn: Use scnprintf() for robustness
arm64: perf: Support new DT compatibles
arm64: perf: Refactor PMU init callbacks
perf: arm_spe: Remove unnecessary zero check on 'nr_pages'
We currently expose the PMU version of the host to the guest via
emulation of the DFR0_EL1 and AA64DFR0_EL1 debug feature registers.
However many of the features offered beyond PMUv3 for 8.1 are not
supported in KVM. Examples of this include support for the PMMIR
registers (added in PMUv3 for ARMv8.4) and 64-bit event counters
added in (PMUv3 for ARMv8.5).
Let's trap the Debug Feature Registers in order to limit
PMUVer/PerfMon in the Debug Feature Registers to PMUv3 for ARMv8.1
to avoid unexpected behaviour.
Both ID_AA64DFR0.PMUVer and ID_DFR0.PerfMon follow the "Alternative ID
scheme used for the Performance Monitors Extension version" where 0xF
means an IMPLEMENTATION DEFINED PMU is implemented, and values 0x0-0xE
are treated as with an unsigned field (with 0x0 meaning no PMU is
present). As we don't expect to expose an IMPLEMENTATION DEFINED PMU,
and our cap is below 0xF, we can treat these fields as unsigned when
applying the cap.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[Mark: make field names consistent, use perfmon cap]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Remove includes of asm/kvm_host.h from files that already include
linux/kvm_host.h to make it more obvious that there is no ordering issue
between the two headers. linux/kvm_host.h includes asm/kvm_host.h to
pick up architecture specific settings, and this will never change, i.e.
including asm/kvm_host.h after linux/kvm_host.h may seem problematic,
but in practice is simply redundant.
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Access to the AMU counters should be disabled by default in kvm guests,
as information from the counters might reveal activity in other guests
or activity on the host.
Therefore, disable access to AMU registers from EL0 and EL1 in kvm
guests by:
- Hiding the presence of the extension in the feature register
(SYS_ID_AA64PFR0_EL1) on the VCPU.
- Disabling access to the AMU registers before switching to the guest.
- Trapping accesses and injecting an undefined instruction into the
guest.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 4b927b94d5 ("KVM: arm/arm64: vgic: Introduce find_reg_by_id()")
introduced 'find_reg_by_id()', which looks up a system register only if
the 'id' index parameter identifies a valid system register. As part of
the patch, existing callers of 'find_reg()' were ported over to the new
interface, but this breaks 'index_to_sys_reg_desc()' in the case that the
initial lookup in the vCPU target table fails because we will then call
into 'find_reg()' for the system register table with an uninitialised
'param' as the key to the lookup.
GCC 10 is bright enough to spot this (amongst a tonne of false positives,
but hey!):
| arch/arm64/kvm/sys_regs.c: In function ‘index_to_sys_reg_desc.part.0.isra’:
| arch/arm64/kvm/sys_regs.c:983:33: warning: ‘params.Op2’ may be used uninitialized in this function [-Wmaybe-uninitialized]
| 983 | (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
| [...]
Revert the hunk of 4b927b94d5 which breaks 'index_to_sys_reg_desc()' so
that the old behaviour of checking the index upfront is restored.
Fixes: 4b927b94d5 ("KVM: arm/arm64: vgic: Introduce find_reg_by_id()")
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20191212094049.12437-1-will@kernel.org
We don't intend to support IMPLEMENATION DEFINED system registers, but
have to trap them (and emulate them as UNDEFINED). These traps aren't
interesting to the system administrator or to the KVM developers, so
let's not bother logging when we do so.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20191205180652.18671-3-mark.rutland@arm.com
Currently kvm_pr_unimpl() is ratelimited, so print_sys_reg_instr() won't
spam the console. However, someof its callers try to print some
contextual information with kvm_err(), which is not ratelimited. This
means that in some cases the context may be printed without the sysreg
encoding, which isn't all that useful.
Let's ensure that both are consistently printed together and
ratelimited, by refactoring print_sys_reg_instr() so that some callers
can provide it with an arbitrary format string.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20191205180652.18671-2-mark.rutland@arm.com
Of PMCR_EL0.LC, the ARMv8 ARM says:
"In an AArch64 only implementation, this field is RES 1."
So be it.
Fixes: ab9468340d ("arm64: KVM: Add access handler for PMCR register")
Reviewed-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
At the moment, the way we reset system registers is mildly insane:
We write junk to them, call the reset functions, and then check that
we have something else in them.
The "fun" thing is that this can happen while the guest is running
(PSCI, for example). If anything in KVM has to evaluate the state
of a system register while junk is in there, bad thing may happen.
Let's stop doing that. Instead, we track that we have called a
reset function for that register, and assume that the reset
function has done something. This requires fixing a couple of
sysreg refinition in the trap table.
In the end, the very need of this reset check is pretty dubious,
as it doesn't check everything (a lot of the sysregs leave outside of
the sys_regs[] array). It may well be axed in the near future.
Tested-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Currently, the {read,write}_sysreg_el*() accessors for accessing
particular ELs' sysregs in the presence of VHE rely on some local
hacks and define their system register encodings in a way that is
inconsistent with the core definitions in <asm/sysreg.h>.
As a result, it is necessary to add duplicate definitions for any
system register that already needs a definition in sysreg.h for
other reasons.
This is a bit of a maintenance headache, and the reasons for the
_el*() accessors working the way they do is a bit historical.
This patch gets rid of the shadow sysreg definitions in
<asm/kvm_hyp.h>, converts the _el*() accessors to use the core
__msr_s/__mrs_s interface, and converts all call sites to use the
standard sysreg #define names (i.e., upper case, with SYS_ prefix).
This patch will conflict heavily anyway, so the opportunity
to clean up some bad whitespace in the context of the changes is
taken.
The change exposes a few system registers that have no sysreg.h
definition, due to msr_s/mrs_s being used in place of msr/mrs:
additions are made in order to fill in the gaps.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg31717.html
[Rebased to v4.21-rc1]
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
[Rebased to v5.2-rc5, changelog updates]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The kvm_pmu_{enable/disable}_counter functions can enable/disable
multiple counters at once as they operate on a bitmask. Let's
make this clearer by renaming the function.
Suggested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not see http www gnu org
licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 503 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
With VHE different exception levels are used between the host (EL2) and
guest (EL1) with a shared exception level for userpace (EL0). We can take
advantage of this and use the PMU's exception level filtering to avoid
enabling/disabling counters in the world-switch code. Instead we just
modify the counter type to include or exclude EL0 at vcpu_{load,put} time.
We also ensure that trapped PMU system register writes do not re-enable
EL0 when reconfiguring the backing perf events.
This approach completely avoids blackout windows seen with !VHE.
Suggested-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>