commit f43b9876e857c739d407bc56df288b0ebe1a9164 upstream.
Do fine-grained Kconfig for all the various retbleed parts.
NOTE: if your compiler doesn't support return thunks this will
silently 'upgrade' your mitigation to IBPB, you might not like this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
[cascardo: there is no CONFIG_OBJTOOL]
[cascardo: objtool calling and option parsing has changed]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10:
- In scripts/Makefile.build, add the objtool option with an ifdef
block, same as for other options
- Adjust filename, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8faea26e611189e933ea2281975ff4dc7c1106b6 upstream.
Commit
c536ed2fff ("objtool: Remove SAVE/RESTORE hints")
removed the save/restore unwind hints because they were no longer
needed. Now they're going to be needed again so re-add them.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a09a6e2399ba0595c3042b3164f3ca68a3cff33e upstream.
Since entry asm is tricky, add a validation pass that ensures the
retbleed mitigation has been done before the first actual RET
instruction.
Entry points are those that either have UNWIND_HINT_ENTRY, which acts
as UNWIND_HINT_EMPTY but marks the instruction as an entry point, or
those that have UWIND_HINT_IRET_REGS at +0.
This is basically a variant of validate_branch() that is
intra-function and it will simply follow all branches from marked
entry points and ensures that all paths lead to ANNOTATE_UNRET_END.
If a path hits RET or an indirection the path is a fail and will be
reported.
There are 3 ANNOTATE_UNRET_END instances:
- UNTRAIN_RET itself
- exception from-kernel; this path doesn't need UNTRAIN_RET
- all early exceptions; these also don't need UNTRAIN_RET
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
[cascardo: arch/x86/entry/entry_64.S no pt_regs return at .Lerror_entry_done_lfence]
[cascardo: tools/objtool/builtin-check.c no link option validation]
[cascardo: tools/objtool/check.c opts.ibt is ibt]
[cascardo: tools/objtool/include/objtool/builtin.h leave unret option as bool, no struct opts]
[cascardo: objtool is still called from scripts/link-vmlinux.sh]
[cascardo: no IBT support]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10:
- In scripts/link-vmlinux.sh, use "test -n" instead of is_enabled
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9bb2ec608a209018080ca262f771e6a9ff203b6f upstream.
Update retpoline validation with the new CONFIG_RETPOLINE requirement of
not having bare naked RET instructions.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
[cascardo: conflict fixup at arch/x86/xen/xen-head.S]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a149180fbcf336e97ce4eb2cdc13672727feb94d upstream.
Note: needs to be in a section distinct from Retpolines such that the
Retpoline RET substitution cannot possibly use immediate jumps.
ORC unwinding for zen_untrain_ret() and __x86_return_thunk() is a
little tricky but works due to the fact that zen_untrain_ret() doesn't
have any stack ops and as such will emit a single ORC entry at the
start (+0x3f).
Meanwhile, unwinding an IP, including the __x86_return_thunk() one
(+0x40) will search for the largest ORC entry smaller or equal to the
IP, these will find the one ORC entry (+0x3f) and all works.
[ Alexandre: SVM part. ]
[ bp: Build fix, massages. ]
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
[cascardo: conflicts at arch/x86/entry/entry_64_compat.S]
[cascardo: there is no ANNOTATE_NOENDBR]
[cascardo: objtool commit 34c861e806478ac2ea4032721defbf1d6967df08 missing]
[cascardo: conflict fixup]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10: SEV-ES is not supported, so drop the change
in arch/x86/kvm/svm/vmenter.S]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 951ddecf435659553ed15a9214e153a3af43a9a1 upstream.
Needed because zen_untrain_ret() will be called from noinstr code.
Also makes sense since the thunks MUST NOT contain instrumentation nor
be poked with dynamic instrumentation.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The .discard.text section is added in order to reserve BRK, with a
temporary function just so it can give it a size. This adds a relocation to
the return thunk, which objtool will add to the .return_sites section.
Linking will then fail as there are references to the .discard.text
section.
Do not add instructions from non-text sections to the list of return thunk
calls, avoiding the reference to .discard.text.
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d9e9d2300681d68a775c28de6aa6e5290ae17796 upstream.
Find all the return-thunk sites and record them in a .return_sites
section such that the kernel can undo this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
[cascardo: conflict fixup because of functions added to support IBT]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7a53f408902d913cd541b4f8ad7dbcd4961f5b82 upstream.
Since not all compilers have a function attribute to disable KCOV
instrumentation, objtool can rewrite KCOV instrumentation in noinstr
functions as per commit:
f56dae88a81f ("objtool: Handle __sanitize_cov*() tail calls")
However, this has subtle interaction with the SLS validation from
commit:
1cc1e4c8aab4 ("objtool: Add straight-line-speculation validation")
In that when a tail-call instrucion is replaced with a RET an
additional INT3 instruction is also written, but is not represented in
the decoded instruction stream.
This then leads to false positive missing INT3 objtool warnings in
noinstr code.
Instead of adding additional struct instruction objects, mark the RET
instruction with retpoline_safe to suppress the warning (since we know
there really is an INT3).
Fixes: 1cc1e4c8aab4 ("objtool: Add straight-line-speculation validation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220323230712.GA8939@worktop.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1cc1e4c8aab4213bd4e6353dec2620476a233d6d upstream.
Teach objtool to validate the straight-line-speculation constraints:
- speculation trap after indirect calls
- speculation trap after RET
Notable: when an instruction is annotated RETPOLINE_SAFE, indicating
speculation isn't a problem, also don't care about sls for that
instruction.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134908.023037659@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[bwh: Backported to 5.10: adjust filenames, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 134ab5bd1883312d7a4b3033b05c6b5a1bb8889b upstream.
Instead of writing complete alternatives, simply provide a list of all
the retpoline thunk calls. Then the kernel is free to do with them as
it pleases. Simpler code all-round.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120309.850007165@infradead.org
[cascardo: fixed conflict because of missing
8b946cc38e063f0f7bb67789478c38f6d7d457c9]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10: deleted functions had slightly different code]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1739c66eb7bd5f27f1b69a5a26e10e8327d1e136 upstream.
In order to avoid calling str*cmp() on symbol names, over and over, do
them all once upfront and store the result.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120309.658539311@infradead.org
[cascardo: no pv_target on struct symbol, because of missing
db2b0c5d7b6f19b3c2cab08c531b65342eb5252b]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10: objtool doesn't have any mcount handling]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f56dae88a81fded66adf2bea9922d1d98d1da14f upstream.
Turns out the compilers also generate tail calls to __sanitize_cov*(),
make sure to also patch those out in noinstr code.
Fixes: 0f1441b44e ("objtool: Fix noinstr vs KCOV")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/20210624095147.818783799@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[bwh: Backported to 5.10:
- objtool doesn't have any mcount handling
- Write the NOPs as hex literals since we can't use <asm/nops.h>]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8b946cc38e063f0f7bb67789478c38f6d7d457c9 upstream.
Andi reported that objtool on vmlinux.o consumes more memory than his
system has, leading to horrific performance.
This is in part because we keep a struct instruction for every
instruction in the file in-memory. Shrink struct instruction by
removing the CFI state (which includes full register state) from it
and demand allocating it.
Given most instructions don't actually change CFI state, there's lots
of repetition there, so add a hash table to find previous CFI
instances.
Reduces memory consumption (and runtime) for processing an
x86_64-allyesconfig:
pre: 4:40.84 real, 143.99 user, 44.18 sys, 30624988 mem
post: 2:14.61 real, 108.58 user, 25.04 sys, 16396184 mem
Suggested-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210624095147.756759107@infradead.org
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10:
- Don't use bswap_if_needed() since we don't have any of the other fixes
for mixed-endian cross-compilation
- Since we don't have "objtool: Rewrite hashtable sizing", make
cfi_hash_alloc() set the number of bits similarly to elf_hash_bits()
- objtool doesn't have any mcount handling
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 43d5430ad74ef5156353af7aec352426ec7a8e57 upstream.
Provide infrastructure for architectures to rewrite/augment compiler
generated retpoline calls. Similar to what we do for static_call()s,
keep track of the instructions that are retpoline calls.
Use the same list_head, since a retpoline call cannot also be a
static_call.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lkml.kernel.org/r/20210326151300.130805730@infradead.org
[bwh: Backported to 5.10: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3a647607b57ad8346e659ddd3b951ac292c83690 upstream.
Instead of manually calling elf_rebuild_reloc_section() on sections
we've called elf_add_reloc() on, have elf_write() DTRT.
This makes it easier to add random relocations in places without
carefully tracking when we're done and need to flush what section.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lkml.kernel.org/r/20210326151259.754213408@infradead.org
[bwh: Backported to 5.10: drop changes in create_mcount_loc_sections()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 119251855f9adf9421cb5eb409933092141ab2c7 upstream.
Due to:
c9c324dc22aa ("objtool: Support stack layout changes in alternatives")
it is now possible to simplify the retpolines.
Currently our retpolines consist of 2 symbols:
- __x86_indirect_thunk_\reg: the compiler target
- __x86_retpoline_\reg: the actual retpoline.
Both are consecutive in code and aligned such that for any one register
they both live in the same cacheline:
0000000000000000 <__x86_indirect_thunk_rax>:
0: ff e0 jmpq *%rax
2: 90 nop
3: 90 nop
4: 90 nop
0000000000000005 <__x86_retpoline_rax>:
5: e8 07 00 00 00 callq 11 <__x86_retpoline_rax+0xc>
a: f3 90 pause
c: 0f ae e8 lfence
f: eb f9 jmp a <__x86_retpoline_rax+0x5>
11: 48 89 04 24 mov %rax,(%rsp)
15: c3 retq
16: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1)
The thunk is an alternative_2, where one option is a JMP to the
retpoline. This was done so that objtool didn't need to deal with
alternatives with stack ops. But that problem has been solved, so now
it is possible to fold the entire retpoline into the alternative to
simplify and consolidate unused bytes:
0000000000000000 <__x86_indirect_thunk_rax>:
0: ff e0 jmpq *%rax
2: 90 nop
3: 90 nop
4: 90 nop
5: 90 nop
6: 90 nop
7: 90 nop
8: 90 nop
9: 90 nop
a: 90 nop
b: 90 nop
c: 90 nop
d: 90 nop
e: 90 nop
f: 90 nop
10: 90 nop
11: 66 66 2e 0f 1f 84 00 00 00 00 00 data16 nopw %cs:0x0(%rax,%rax,1)
1c: 0f 1f 40 00 nopl 0x0(%rax)
Notice that since the longest alternative sequence is now:
0: e8 07 00 00 00 callq c <.altinstr_replacement+0xc>
5: f3 90 pause
7: 0f ae e8 lfence
a: eb f9 jmp 5 <.altinstr_replacement+0x5>
c: 48 89 04 24 mov %rax,(%rsp)
10: c3 retq
17 bytes, we have 15 bytes NOP at the end of our 32 byte slot. (IOW, if
we can shrink the retpoline by 1 byte we can pack it more densely).
[ bp: Massage commit message. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210326151259.506071949@infradead.org
[bwh: Backported to 5.10:
- Use X86_FEATRURE_RETPOLINE_LFENCE flag instead of
X86_FEATURE_RETPOLINE_AMD, since the later renaming of this flag
has already been applied
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b735bd3e68824316655252a931a3353a6ebc036f upstream.
The ORC metadata generated for UNWIND_HINT_FUNC isn't actually very
func-like. With certain usages it can cause stack state mismatches
because it doesn't set the return address (CFI_RA).
Also, users of UNWIND_HINT_RET_OFFSET no longer need to set a custom
return stack offset. Instead they just need to specify a func-like
situation, so the current ret_offset code is hacky for no good reason.
Solve both problems by simplifying the RET_OFFSET handling and
converting it into a more useful UNWIND_HINT_FUNC.
If we end up needing the old 'ret_offset' functionality again in the
future, we should be able to support it pretty easily with the addition
of a custom 'sp_offset' in UNWIND_HINT_FUNC.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/db9d1f5d79dddfbb3725ef6d8ec3477ad199948d.1611263462.git.jpoimboe@redhat.com
[bwh: Backported to 5.10:
- Don't use bswap_if_needed() since we don't have any of the other fixes
for mixed-endian cross-compilation
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ecf11ba4d066fe527586c6edd6ca68457ca55cf4 upstream.
There's an inconsistency in how sibling calls are detected in
non-function asm code, depending on the scope of the object. If the
target code is external to the object, objtool considers it a sibling
call. If the target code is internal but not a function, objtool
*doesn't* consider it a sibling call.
This can cause some inconsistencies between per-object and vmlinux.o
validation.
Instead, assume only ELF functions can do sibling calls. This generally
matches existing reality, and makes sibling call validation consistent
between vmlinux.o and per-object.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/0e9ab6f3628cc7bf3bde7aa6762d54d7df19ad78.1611263461.git.jpoimboe@redhat.com
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 31a7424bc58063a8e0466c3c10f31a52ec2be4f6 upstream.
Objtool converts direct retpoline jumps to type INSN_JUMP_DYNAMIC, since
that's what they are semantically.
That conversion doesn't work in vmlinux.o validation because the
indirect thunk function is present in the object, so the intra-object
jump check succeeds before the retpoline jump check gets a chance.
Rearrange the checks: check for a retpoline jump before checking for an
intra-object jump.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/4302893513770dde68ddc22a9d6a2a04aca491dd.1611263461.git.jpoimboe@redhat.com
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c9c324dc22aab1687da37001b321b6dfa93a0699 upstream.
The ORC unwinder showed a warning [1] which revealed the stack layout
didn't match what was expected. The problem was that paravirt patching
had replaced "CALL *pv_ops.irq.save_fl" with "PUSHF;POP". That changed
the stack layout between the PUSHF and the POP, so unwinding from an
interrupt which occurred between those two instructions would fail.
Part of the agreed upon solution was to rework the custom paravirt
patching code to use alternatives instead, since objtool already knows
how to read alternatives (and converging runtime patching infrastructure
is always a good thing anyway). But the main problem still remains,
which is that runtime patching can change the stack layout.
Making stack layout changes in alternatives was disallowed with commit
7117f16bf4 ("objtool: Fix ORC vs alternatives"), but now that paravirt
is going to be doing it, it needs to be supported.
One way to do so would be to modify the ORC table when the code gets
patched. But ORC is simple -- a good thing! -- and it's best to leave
it alone.
Instead, support stack layout changes by "flattening" all possible stack
states (CFI) from parallel alternative code streams into a single set of
linear states. The only necessary limitation is that CFI conflicts are
disallowed at all possible instruction boundaries.
For example, this scenario is allowed:
Alt1 Alt2 Alt3
0x00 CALL *pv_ops.save_fl CALL xen_save_fl PUSHF
0x01 POP %RAX
0x02 NOP
...
0x05 NOP
...
0x07 <insn>
The unwind information for offset-0x00 is identical for all 3
alternatives. Similarly offset-0x05 and higher also are identical (and
the same as 0x00). However offset-0x01 has deviating CFI, but that is
only relevant for Alt3, neither of the other alternative instruction
streams will ever hit that offset.
This scenario is NOT allowed:
Alt1 Alt2
0x00 CALL *pv_ops.save_fl PUSHF
0x01 NOP6
...
0x07 NOP POP %RAX
The problem here is that offset-0x7, which is an instruction boundary in
both possible instruction patch streams, has two conflicting stack
layouts.
[ The above examples were stolen from Peter Zijlstra. ]
The new flattened CFI array is used both for the detection of conflicts
(like the second example above) and the generation of linear ORC
entries.
BTW, another benefit of these changes is that, thanks to some related
cleanups (new fake nops and alt_group struct) objtool can finally be rid
of fake jumps, which were a constant source of headaches.
[1] https://lkml.kernel.org/r/20201111170536.arx2zbn4ngvjoov7@treble
Cc: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b23cc71c62747f2e4c3e56138872cf47e1294f8a upstream.
Create a new struct associated with each group of alternatives
instructions. This will help with the removal of fake jumps, and more
importantly with adding support for stack layout changes in
alternatives.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 9af9dcf11bda3e2c0e24c1acaacb8685ad974e93 ]
The asm_cpu_bringup_and_idle() function is required to push the return
value on the stack in order to make ORC happy, but the only reason
objtool doesn't complain is because of a happy accident.
The thing is that asm_cpu_bringup_and_idle() doesn't return, so
validate_branch() never terminates and falls through to the next
function, which in the normal case is the hypercall_page. And that, as
it happens, is 4095 NOPs and a RET.
Make asm_cpu_bringup_and_idle() terminate on it's own, by making the
function it calls as a dead-end. This way we no longer rely on what
code happens to come after.
Fixes: c3881eb58d ("x86/xen: Make the secondary CPU idle tasks reliable")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lore.kernel.org/r/20210624095147.693801717@infradead.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 73f44fe19d359635a607e8e8daa0da4001c1cfc2 ]
When exporting static_call_key; with EXPORT_STATIC_CALL*(), the module
can use static_call_update() to change the function called. This is
not desirable in general.
Not exporting static_call_key however also disallows usage of
static_call(), since objtool needs the key to construct the
static_call_site.
Solve this by allowing objtool to create the static_call_site using
the trampoline address when it builds a module and cannot find the
static_call_key symbol. The module loader will then try and map the
trampole back to a key before it constructs the normal sites list.
Doing this requires a trampoline -> key associsation, so add another
magic section that keeps those.
Originally-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210127231837.ifddpn7rhwdaepiu@treble
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 34ca59e109bdf69704c33b8eeffaa4c9f71076e5 ]
With my version of GCC 9.3.1 the ".cold" subfunctions no longer have a
numbered suffix, so the trailing period is no longer there.
Presumably this doesn't yet trigger a user-visible bug since most of the
subfunction detection logic is duplicated. I only found it when
testing vmlinux.o validation.
Fixes: 54262aa283 ("objtool: Fix sibling call detection")
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/ca0b5a57f08a2fbb48538dd915cc253b5edabb40.1611263461.git.jpoimboe@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1f9a1b74942485a0a29e7c4a9a9f2fe8aea17766 ]
The JMP_NOSPEC macro branches to __x86_retpoline_*() rather than the
__x86_indirect_thunk_*() wrappers used by C code. Detect jumps to
__x86_retpoline_*() as retpoline dynamic jumps.
Presumably this doesn't trigger a user-visible bug. I only found it
when testing vmlinux.o validation.
Fixes: 39b735332c ("objtool: Detect jumps to retpoline thunks")
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/31f5833e2e4f01e3d755889ac77e3661e906c09f.1611263461.git.jpoimboe@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 655cf86548a3938538642a6df27dd359e13c86bd ]
This is basically a revert of commit 644592d328 ("objtool: Fail the
kernel build on fatal errors").
That change turned out to be more trouble than it's worth. Failing the
build is an extreme measure which sometimes gets too much attention and
blocks CI build testing.
These fatal-type warnings aren't yet as rare as we'd hope, due to the
ever-increasing matrix of supported toolchains/plugins and their
fast-changing nature as of late.
Also, there are more people (and bots) looking for objtool warnings than
ever before, so even non-fatal warnings aren't likely to be ignored for
long.
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Pull objtool updates from Ingo Molnar:
"Most of the changes are cleanups and reorganization to make the
objtool code more arch-agnostic. This is in preparation for non-x86
support.
Other changes:
- KASAN fixes
- Handle unreachable trap after call to noreturn functions better
- Ignore unreachable fake jumps
- Misc smaller fixes & cleanups"
* tag 'objtool-core-2020-10-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
perf build: Allow nested externs to enable BUILD_BUG() usage
objtool: Allow nested externs to enable BUILD_BUG()
objtool: Permit __kasan_check_{read,write} under UACCESS
objtool: Ignore unreachable trap after call to noreturn functions
objtool: Handle calling non-function symbols in other sections
objtool: Ignore unreachable fake jumps
objtool: Remove useless tests before save_reg()
objtool: Decode unwind hint register depending on architecture
objtool: Make unwind hint definitions available to other architectures
objtool: Only include valid definitions depending on source file type
objtool: Rename frame.h -> objtool.h
objtool: Refactor jump table code to support other architectures
objtool: Make relocation in alternative handling arch dependent
objtool: Abstract alternative special case handling
objtool: Move macros describing structures to arch-dependent code
objtool: Make sync-check consider the target architecture
objtool: Group headers to check in a single list
objtool: Define 'struct orc_entry' only when needed
objtool: Skip ORC entry creation for non-text sections
objtool: Move ORC logic out of check()
...
Pull static call support from Ingo Molnar:
"This introduces static_call(), which is the idea of static_branch()
applied to indirect function calls. Remove a data load (indirection)
by modifying the text.
They give the flexibility of function pointers, but with better
performance. (This is especially important for cases where retpolines
would otherwise be used, as retpolines can be pretty slow.)
API overview:
DECLARE_STATIC_CALL(name, func);
DEFINE_STATIC_CALL(name, func);
DEFINE_STATIC_CALL_NULL(name, typename);
static_call(name)(args...);
static_call_cond(name)(args...);
static_call_update(name, func);
x86 is supported via text patching, otherwise basic indirect calls are
used, with function pointers.
There's a second variant using inline code patching, inspired by
jump-labels, implemented on x86 as well.
The new APIs are utilized in the x86 perf code, a heavy user of
function pointers, where static calls speed up the PMU handler by
4.2% (!).
The generic implementation is not really excercised on other
architectures, outside of the trivial test_static_call_init()
self-test"
* tag 'core-static_call-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
static_call: Fix return type of static_call_init
tracepoint: Fix out of sync data passing by static caller
tracepoint: Fix overly long tracepoint names
x86/perf, static_call: Optimize x86_pmu methods
tracepoint: Optimize using static_call()
static_call: Allow early init
static_call: Add some validation
static_call: Handle tail-calls
static_call: Add static_call_cond()
x86/alternatives: Teach text_poke_bp() to emulate RET
static_call: Add simple self-test for static calls
x86/static_call: Add inline static call implementation for x86-64
x86/static_call: Add out-of-line static call implementation
static_call: Avoid kprobes on inline static_call()s
static_call: Add inline static call infrastructure
static_call: Add basic static call infrastructure
compiler.h: Make __ADDRESSABLE() symbol truly unique
jump_label,module: Fix module lifetime for __jump_label_mod_text_reserved()
module: Properly propagate MODULE_STATE_COMING failure
module: Fix up module_notifier return values
...
Pull locking updates from Ingo Molnar:
"These are the locking updates for v5.10:
- Add deadlock detection for recursive read-locks.
The rationale is outlined in commit 224ec489d3 ("lockdep/
Documention: Recursive read lock detection reasoning")
The main deadlock pattern we want to detect is:
TASK A: TASK B:
read_lock(X);
write_lock(X);
read_lock_2(X);
- Add "latch sequence counters" (seqcount_latch_t):
A sequence counter variant where the counter even/odd value is used
to switch between two copies of protected data. This allows the
read path, typically NMIs, to safely interrupt the write side
critical section.
We utilize this new variant for sched-clock, and to make x86 TSC
handling safer.
- Other seqlock cleanups, fixes and enhancements
- KCSAN updates
- LKMM updates
- Misc updates, cleanups and fixes"
* tag 'locking-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
lockdep: Revert "lockdep: Use raw_cpu_*() for per-cpu variables"
lockdep: Fix lockdep recursion
lockdep: Fix usage_traceoverflow
locking/atomics: Check atomic-arch-fallback.h too
locking/seqlock: Tweak DEFINE_SEQLOCK() kernel doc
lockdep: Optimize the memory usage of circular queue
seqlock: Unbreak lockdep
seqlock: PREEMPT_RT: Do not starve seqlock_t writers
seqlock: seqcount_LOCKNAME_t: Introduce PREEMPT_RT support
seqlock: seqcount_t: Implement all read APIs as statement expressions
seqlock: Use unique prefix for seqcount_t property accessors
seqlock: seqcount_LOCKNAME_t: Standardize naming convention
seqlock: seqcount latch APIs: Only allow seqcount_latch_t
rbtree_latch: Use seqcount_latch_t
x86/tsc: Use seqcount_latch_t
timekeeping: Use seqcount_latch_t
time/sched_clock: Use seqcount_latch_t
seqlock: Introduce seqcount_latch_t
mm/swap: Do not abuse the seqcount_t latching API
time/sched_clock: Use raw_read_seqcount_latch() during suspend
...
Pull RAS updates from Borislav Petkov:
- Extend the recovery from MCE in kernel space also to processes which
encounter an MCE in kernel space but while copying from user memory
by sending them a SIGBUS on return to user space and umapping the
faulty memory, by Tony Luck and Youquan Song.
- memcpy_mcsafe() rework by splitting the functionality into
copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables
support for new hardware which can recover from a machine check
encountered during a fast string copy and makes that the default and
lets the older hardware which does not support that advance recovery,
opt in to use the old, fragile, slow variant, by Dan Williams.
- New AMD hw enablement, by Yazen Ghannam and Akshay Gupta.
- Do not use MSR-tracing accessors in #MC context and flag any fault
while accessing MCA architectural MSRs as an architectural violation
with the hope that such hw/fw misdesigns are caught early during the
hw eval phase and they don't make it into production.
- Misc fixes, improvements and cleanups, as always.
* tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Allow for copy_mc_fragile symbol checksum to be generated
x86/mce: Decode a kernel instruction to determine if it is copying from user
x86/mce: Recover from poison found while copying from user space
x86/mce: Avoid tail copy when machine check terminated a copy from user
x86/mce: Add _ASM_EXTABLE_CPY for copy user access
x86/mce: Provide method to find out the type of an exception handler
x86/mce: Pass pointer to saved pt_regs to severity calculation routines
x86/copy_mc: Introduce copy_mc_enhanced_fast_string()
x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()
x86/mce: Drop AMD-specific "DEFERRED" case from Intel severity rule list
x86/mce: Add Skylake quirk for patrol scrub reported errors
RAS/CEC: Convert to DEFINE_SHOW_ATTRIBUTE()
x86/mce: Annotate mce_rd/wrmsrl() with noinstr
x86/mce/dev-mcelog: Do not update kflags on AMD systems
x86/mce: Stop mce_reign() from re-computing severity for every CPU
x86/mce: Make mce_rdmsrl() panic on an inaccessible MSR
x86/mce: Increase maximum number of banks to 64
x86/mce: Delay clearing IA32_MCG_STATUS to the end of do_machine_check()
x86/MCE/AMD, EDAC/mce_amd: Remove struct smca_hwid.xec_bitmap
RAS/CEC: Fix cec_init() prototype
Pull KCSAN updates for v5.10 from Paul E. McKenney:
- Improve kernel messages.
- Be more permissive with bitops races under KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=y.
- Optimize debugfs stat counters.
- Introduce the instrument_*read_write() annotations, to provide a
finer description of certain ops - using KCSAN's compound instrumentation.
Use them for atomic RNW and bitops, where appropriate.
Doing this might find new races.
(Depends on the compiler having tsan-compound-read-before-write=1 support.)
- Support atomic built-ins, which will help certain architectures, such as s390.
- Misc enhancements and smaller fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The motivations to go rework memcpy_mcsafe() are that the benefit of
doing slow and careful copies is obviated on newer CPUs, and that the
current opt-in list of CPUs to instrument recovery is broken relative to
those CPUs. There is no need to keep an opt-in list up to date on an
ongoing basis if pmem/dax operations are instrumented for recovery by
default. With recovery enabled by default the old "mcsafe_key" opt-in to
careful copying can be made a "fragile" opt-out. Where the "fragile"
list takes steps to not consume poison across cachelines.
The discussion with Linus made clear that the current "_mcsafe" suffix
was imprecise to a fault. The operations that are needed by pmem/dax are
to copy from a source address that might throw #MC to a destination that
may write-fault, if it is a user page.
So copy_to_user_mcsafe() becomes copy_mc_to_user() to indicate
the separate precautions taken on source and destination.
copy_mc_to_kernel() is introduced as a non-SMAP version that does not
expect write-faults on the destination, but is still prepared to abort
with an error code upon taking #MC.
The original copy_mc_fragile() implementation had negative performance
implications since it did not use the fast-string instruction sequence
to perform copies. For this reason copy_mc_to_kernel() fell back to
plain memcpy() to preserve performance on platforms that did not indicate
the capability to recover from machine check exceptions. However, that
capability detection was not architectural and now that some platforms
can recover from fast-string consumption of memory errors the memcpy()
fallback now causes these more capable platforms to fail.
Introduce copy_mc_enhanced_fast_string() as the fast default
implementation of copy_mc_to_kernel() and finalize the transition of
copy_mc_fragile() to be a platform quirk to indicate 'copy-carefully'.
With this in place, copy_mc_to_kernel() is fast and recovery-ready by
default regardless of hardware capability.
Thanks to Vivek for identifying that copy_user_generic() is not suitable
as the copy_mc_to_user() backend since the #MC handler explicitly checks
ex_has_fault_handler(). Thanks to the 0day robot for catching a
performance bug in the x86/copy_mc_to_user implementation.
[ bp: Add the "why" for this change from the 0/2th message, massage. ]
Fixes: 92b0729c34 ("x86/mm, x86/mce: Add memcpy_mcsafe()")
Reported-by: Erwin Tsaur <erwin.tsaur@intel.com>
Reported-by: 0day robot <lkp@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Erwin Tsaur <erwin.tsaur@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/160195562556.2163339.18063423034951948973.stgit@dwillia2-desk3.amr.corp.intel.com
In reaction to a proposal to introduce a memcpy_mcsafe_fast()
implementation Linus points out that memcpy_mcsafe() is poorly named
relative to communicating the scope of the interface. Specifically what
addresses are valid to pass as source, destination, and what faults /
exceptions are handled.
Of particular concern is that even though x86 might be able to handle
the semantics of copy_mc_to_user() with its common copy_user_generic()
implementation other archs likely need / want an explicit path for this
case:
On Fri, May 1, 2020 at 11:28 AM Linus Torvalds <torvalds@linux-foundation.org> wrote:
>
> On Thu, Apr 30, 2020 at 6:21 PM Dan Williams <dan.j.williams@intel.com> wrote:
> >
> > However now I see that copy_user_generic() works for the wrong reason.
> > It works because the exception on the source address due to poison
> > looks no different than a write fault on the user address to the
> > caller, it's still just a short copy. So it makes copy_to_user() work
> > for the wrong reason relative to the name.
>
> Right.
>
> And it won't work that way on other architectures. On x86, we have a
> generic function that can take faults on either side, and we use it
> for both cases (and for the "in_user" case too), but that's an
> artifact of the architecture oddity.
>
> In fact, it's probably wrong even on x86 - because it can hide bugs -
> but writing those things is painful enough that everybody prefers
> having just one function.
Replace a single top-level memcpy_mcsafe() with either
copy_mc_to_user(), or copy_mc_to_kernel().
Introduce an x86 copy_mc_fragile() name as the rename for the
low-level x86 implementation formerly named memcpy_mcsafe(). It is used
as the slow / careful backend that is supplanted by a fast
copy_mc_generic() in a follow-on patch.
One side-effect of this reorganization is that separating copy_mc_64.S
to its own file means that perf no longer needs to track dependencies
for its memcpy_64.S benchmarks.
[ bp: Massage a bit. ]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org>
Link: http://lore.kernel.org/r/CAHk-=wjSqtXAqfUJxFtWNwmguFASTgB0dz1dT3V-78Quiezqbg@mail.gmail.com
Link: https://lkml.kernel.org/r/160195561680.2163339.11574962055305783722.stgit@dwillia2-desk3.amr.corp.intel.com