commit 415d832497098030241605c52ea83d4e2cfa7879 upstream.
These operations are documented as always ordered in
include/asm-generic/bitops/instrumented-atomic.h, and producer-consumer
type use cases where one side needs to ensure a flag is left pending
after some shared data was updated rely on this ordering, even in the
failure case.
This is the case with the workqueue code, which currently suffers from a
reproducible ordering violation on Apple M1 platforms (which are
notoriously out-of-order) that ends up causing the TTY layer to fail to
deliver data to userspace properly under the right conditions. This
change fixes that bug.
Change the documentation to restrict the "no order on failure" story to
the _lock() variant (for which it makes sense), and remove the
early-exit from the generic implementation, which is what causes the
missing barrier semantics in that case. Without this, the remaining
atomic op is fully ordered (including on ARM64 LSE, as of recent
versions of the architecture spec).
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes: e986a0d6cb ("locking/atomics, asm-generic/bitops/atomic.h: Rewrite using atomic_*() APIs")
Fixes: 61e02392d3 ("locking/atomic/bitops: Document and clarify ordering semantics for failed test_and_{}_bit()")
Signed-off-by: Hector Martin <marcan@marcan.st>
Acked-by: Will Deacon <will@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9066e151c37950af92c3be6a7270daa8e8063db9 upstream.
Since commit 488dac0c92 ("libfs: fix error cast of negative value in
simple_attr_write()"), the EINJ debugfs interface no longer accepts
negative values as input. Attempt to do so will result in EINVAL.
Fixes: 488dac0c92 ("libfs: fix error cast of negative value in simple_attr_write()")
Signed-off-by: Qifu Zhang <zhangqifu@bytedance.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 402c43ea6b34a1b371ffeed9adf907402569eaf5 upstream.
In some use cases[1], the backend is created while the frontend doesn't
support the persistent grants feature, but later the frontend can be
changed to support the feature and reconnect. In the past, 'blkback'
enabled the persistent grants feature since it unconditionally checked
if frontend supports the persistent grants feature for every connect
('connect_ring()') and decided whether it should use persistent grans or
not.
However, commit aac8a70db2 ("xen-blkback: add a parameter for
disabling of persistent grants") has mistakenly changed the behavior.
It made the frontend feature support check to not be repeated once it
shown the 'feature_persistent' as 'false', or the frontend doesn't
support persistent grants.
Similar behavioral change has made on 'blkfront' by commit 74a852479c
("xen-blkfront: add a parameter for disabling of persistent grants").
This commit changes the behavior of the parameter to make effect for
every connect, so that the previous behavior of 'blkfront' can be
restored.
[1] https://lore.kernel.org/xen-devel/CAJwUmVB6H3iTs-C+U=v-pwJB7-_ZRHPxHzKRJZ22xEPW7z8a=g@mail.gmail.com/
Fixes: 74a852479c ("xen-blkfront: add a parameter for disabling of persistent grants")
Cc: <stable@vger.kernel.org> # 5.10.x
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Maximilian Heyne <mheyne@amazon.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20220715225108.193398-4-sj@kernel.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e94c6101e151b019b8babc518ac2a6ada644a5a1 upstream.
In some use cases[1], the backend is created while the frontend doesn't
support the persistent grants feature, but later the frontend can be
changed to support the feature and reconnect. In the past, 'blkback'
enabled the persistent grants feature since it unconditionally checked
if frontend supports the persistent grants feature for every connect
('connect_ring()') and decided whether it should use persistent grans or
not.
However, commit aac8a70db2 ("xen-blkback: add a parameter for
disabling of persistent grants") has mistakenly changed the behavior.
It made the frontend feature support check to not be repeated once it
shown the 'feature_persistent' as 'false', or the frontend doesn't
support persistent grants.
This commit changes the behavior of the parameter to make effect for
every connect, so that the previous workflow can work again as expected.
[1] https://lore.kernel.org/xen-devel/CAJwUmVB6H3iTs-C+U=v-pwJB7-_ZRHPxHzKRJZ22xEPW7z8a=g@mail.gmail.com/
Reported-by: Andrii Chepurnyi <andrii.chepurnyi82@gmail.com>
Fixes: aac8a70db2 ("xen-blkback: add a parameter for disabling of persistent grants")
Cc: <stable@vger.kernel.org> # 5.10.x
Signed-off-by: Maximilian Heyne <mheyne@amazon.de>
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Maximilian Heyne <mheyne@amazon.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20220715225108.193398-3-sj@kernel.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e6cfcdda8cbe81eaf821c897369a65fec987b404 upstream.
AMD's "Technical Guidance for Mitigating Branch Type Confusion,
Rev. 1.0 2022-07-12" whitepaper, under section 6.1.2 "IBPB On
Privileged Mode Entry / SMT Safety" says:
Similar to the Jmp2Ret mitigation, if the code on the sibling thread
cannot be trusted, software should set STIBP to 1 or disable SMT to
ensure SMT safety when using this mitigation.
So, like already being done for retbleed=unret, and now also for
retbleed=ibpb, force STIBP on machines that have it, and report its SMT
vulnerability status accordingly.
[ bp: Remove the "we" and remove "[AMD]" applicability parameter which
doesn't work here. ]
Fixes: 3ebc17006888 ("x86/bugs: Add retbleed=ibpb")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org # 5.10, 5.15, 5.19
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/20220804192201.439596-1-kim.phillips@amd.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 0bfc6a4ea63c2adac71a824397ef48f28dbc5e47 ]
This makes the struct vfio_device part of the public interface so it
can be used with container_of and so forth, as is typical for a Linux
subystem.
This is the first step to bring some type-safety to the vfio interface by
allowing the replacement of 'void *' and 'struct device *' inputs with a
simple and clear 'struct vfio_device *'
For now the self-allocating vfio_add_group_dev() interface is kept so each
user can be updated as a separate patch.
The expected usage pattern is
driver core probe() function:
my_device = kzalloc(sizeof(*mydevice));
vfio_init_group_dev(&my_device->vdev, dev, ops, mydevice);
/* other driver specific prep */
vfio_register_group_dev(&my_device->vdev);
dev_set_drvdata(dev, my_device);
driver core remove() function:
my_device = dev_get_drvdata(dev);
vfio_unregister_group_dev(&my_device->vdev);
/* other driver specific tear down */
kfree(my_device);
Allowing the driver to be able to use the drvdata and vfio_device to go
to/from its own data.
The pattern also makes it clear that vfio_register_group_dev() must be
last in the sequence, as once it is called the core code can immediately
start calling ops. The init/register gap is provided to allow for the
driver to do setup before ops can be called and thus avoid races.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Liu Yi L <yi.l.liu@intel.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Reviewed-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Message-Id: <3-v3-225de1400dfc+4e074-vfio1_jgg@nvidia.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8bcedb4ce04750e1ccc9a6b6433387f6a9166a56 ]
When kernel is booted with idle=nomwait do not use MWAIT as the
default idle state.
If the user boots the kernel with idle=nomwait, it is a clear
direction to not use mwait as the default idle state.
However, the current code does not take this into consideration
while selecting the default idle state on x86.
Fix it by checking for the idle=nomwait boot option in
prefer_mwait_c1_over_halt().
Also update the documentation around idle=nomwait appropriately.
[ dhansen: tweak commit message ]
Signed-off-by: Wyes Karny <wyes.karny@amd.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lkml.kernel.org/r/fdc2dc2d0a1bc21c2f53d989ea2d2ee3ccbc0dbe.1654538381.git-series.wyes.karny@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream.
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.
== Background ==
Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.
To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.
== Problem ==
Here's a simplification of how guests are run on Linux' KVM:
void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}
The execution flow for that would look something like this to the
processor:
1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()
Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:
* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.
* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".
IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.
However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.
Balanced CALL/RET instruction pairs such as in step #5 are not affected.
== Solution ==
The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.
However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.
Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.
The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.
In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.
There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.
[ bp: Massage, incorporate review comments from Andy Cooper. ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit aa709da0e032cee7c202047ecd75f437bb0126ed ]
Since commit 1033990ac5 ("sctp: implement memory accounting on tx path"),
SCTP has supported memory accounting on tx path where 'sctp_wmem' is used
by sk_wmem_schedule(). So we should fix the description for this option in
ip-sysctl.rst accordingly.
v1->v2:
- Improve the description as Marcelo suggested.
Fixes: 1033990ac5 ("sctp: implement memory accounting on tx path")
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3ebc170068885b6fc7bedda6c667bb2c4d533159 upstream.
jmp2ret mitigates the easy-to-attack case at relatively low overhead.
It mitigates the long speculation windows after a mispredicted RET, but
it does not mitigate the short speculation window from arbitrary
instruction boundaries.
On Zen2, there is a chicken bit which needs setting, which mitigates
"arbitrary instruction boundaries" down to just "basic block boundaries".
But there is no fix for the short speculation window on basic block
boundaries, other than to flush the entire BTB to evict all attacker
predictions.
On the spectrum of "fast & blurry" -> "safe", there is (on top of STIBP
or no-SMT):
1) Nothing System wide open
2) jmp2ret May stop a script kiddy
3) jmp2ret+chickenbit Raises the bar rather further
4) IBPB Only thing which can count as "safe".
Tentative numbers put IBPB-on-entry at a 2.5x hit on Zen2, and a 10x hit
on Zen1 according to lmbench.
[ bp: Fixup feature bit comments, document option, 32-bit build fix. ]
Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[bwh: Backported to 5.10: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7fbf47c7ce50b38a64576b150e7011ae73d54669 upstream.
Add the "retbleed=<value>" boot parameter to select a mitigation for
RETBleed. Possible values are "off", "auto" and "unret"
(JMP2RET mitigation). The default value is "auto".
Currently, "retbleed=auto" will select the unret mitigation on
AMD and Hygon and no mitigation on Intel (JMP2RET is not effective on
Intel).
[peterz: rebase; add hygon]
[jpoimboe: cleanups]
Signed-off-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e49e4aff7ec19b2d0d0957ee30e93dade57dab9e ]
While reading sysctl_ip_dynaddr, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dd44f04b9214adb68ef5684ae87a81ba03632250 ]
While reading cipso sysctl variables, they can be changed concurrently.
So, we need to add READ_ONCE() to avoid data-races.
Fixes: 446fda4f26 ("[NetLabel]: CIPSOv4 engine")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 607a48c78e6b427b0b684d24e61c19e846ad65d6 upstream.
The conditional block for variants with a second clock should have set
minItems, not maxItems, which was already 2. Since clock-names requires
two items, this typo should not have caused any problems.
Fixes: edd14218bd ("dt-bindings: dmaengine: Convert Allwinner A31 and A64 DMA to a schema")
Signed-off-by: Samuel Holland <samuel@sholland.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Link: https://lore.kernel.org/r/20220702031903.21703-1-samuel@sholland.org
Signed-off-by: Vinod Koul <vkoul@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8d50cdf8b8341770bc6367bce40c0c1bb0e1d5b3 upstream
Add the sysfs reporting file for Processor MMIO Stale Data
vulnerability. It exposes the vulnerability and mitigation state similar
to the existing files for the other hardware vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca upstream
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst.
These vulnerabilities are broadly categorized as:
Device Register Partial Write (DRPW):
Some endpoint MMIO registers incorrectly handle writes that are
smaller than the register size. Instead of aborting the write or only
copying the correct subset of bytes (for example, 2 bytes for a 2-byte
write), more bytes than specified by the write transaction may be
written to the register. On some processors, this may expose stale
data from the fill buffers of the core that created the write
transaction.
Shared Buffers Data Sampling (SBDS):
After propagators may have moved data around the uncore and copied
stale data into client core fill buffers, processors affected by MFBDS
can leak data from the fill buffer.
Shared Buffers Data Read (SBDR):
It is similar to Shared Buffer Data Sampling (SBDS) except that the
data is directly read into the architectural software-visible state.
An attacker can use these vulnerabilities to extract data from CPU fill
buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill
buffers using the VERW instruction before returning to a user or a
guest.
On CPUs not affected by MDS and TAA, user application cannot sample data
from CPU fill buffers using MDS or TAA. A guest with MMIO access can
still use DRPW or SBDR to extract data architecturally. Mitigate it with
VERW instruction to clear fill buffers before VMENTER for MMIO capable
guests.
Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control
the mitigation.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 72aad489f992871e908ff6d9055b26c6366fb864 upstream.
The {dma|pio}_mode sysfs files are incorrectly documented as having a
list of the supported DMA/PIO transfer modes, while the corresponding
fields of the *struct* ata_device hold the transfer mode IDs, not masks.
To match these docs, the {dma|pio}_mode (and even xfer_mode!) sysfs
files are handled by the ata_bitfield_name_match() macro which leads to
reading such kind of nonsense from them:
$ cat /sys/class/ata_device/dev3.0/pio_mode
XFER_UDMA_7, XFER_UDMA_6, XFER_UDMA_5, XFER_UDMA_4, XFER_MW_DMA_4,
XFER_PIO_6, XFER_PIO_5, XFER_PIO_4, XFER_PIO_3, XFER_PIO_2, XFER_PIO_1,
XFER_PIO_0
Using the correct ata_bitfield_name_search() macro fixes that:
$ cat /sys/class/ata_device/dev3.0/pio_mode
XFER_PIO_4
While fixing the file documentation, somewhat reword the {dma|pio}_mode
file doc and add a note about being mostly useful for PATA devices to
the xfer_mode file doc...
Fixes: d9027470b8 ("[libata] Add ATA transport class")
Signed-off-by: Sergey Shtylyov <s.shtylyov@omp.ru>
Cc: stable@vger.kernel.org
Signed-off-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3a21c3ac93aff7b4522b152399df8f6a041df56d upstream.
update documentation to correctly state the interrupt-cells to be 2.
Cc: stable@vger.kernel.org
Fixes: 4fd9bbc6e0 ("drivers/gpio: Altera soft IP GPIO driver devicetree binding")
Signed-off-by: Dinh Nguyen <dinguyen@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6d5aa418b3bd42cdccc36e94ee199af423ef7c84 upstream.
The reference to `explicit_in_reply_to` is pointless as when the
reference was added in the form of "#15" [1], Section 15) was "The
canonical patch format".
The reference of "#15" had not been properly updated in a couple of
reorganizations during the plain-text SubmittingPatches era.
Fix it by using `the_canonical_patch_format`.
[1]: 2ae19acaa5 ("Documentation: Add "how to write a good patch summary" to SubmittingPatches")
Signed-off-by: Akira Yokosawa <akiyks@gmail.com>
Fixes: 5903019b2a ("Documentation/SubmittingPatches: convert it to ReST markup")
Fixes: 9b2c76777a ("Documentation/SubmittingPatches: enrich the Sphinx output")
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: stable@vger.kernel.org # v4.9+
Link: https://lore.kernel.org/r/64e105a5-50be-23f2-6cae-903a2ea98e18@gmail.com
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 069c4ea6871c18bd368f27756e0f91ffb524a788 upstream.
A semicolon was missing, and the almost-alphabetical-but-not ordering
was confusing, so regroup these by category instead.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d97c68d178fbf8aaaf21b69b446f2dfb13909316 upstream.
If CONFIG_RANDOM_TRUST_CPU is set, the RNG initializes using RDRAND.
But, the user can disable (or enable) this behavior by setting
`random.trust_cpu=0/1` on the kernel command line. This allows system
builders to do reasonable things while avoiding howls from tinfoil
hatters. (Or vice versa.)
CONFIG_RANDOM_TRUST_BOOTLOADER is basically the same thing, but regards
the seed passed via EFI or device tree, which might come from RDRAND or
a TPM or somewhere else. In order to allow distros to more easily enable
this while avoiding those same howls (or vice versa), this commit adds
the corresponding `random.trust_bootloader=0/1` toggle.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Graham Christensen <graham@grahamc.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Link: https://github.com/NixOS/nixpkgs/pull/165355
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 95e6060c20a7f5db60163274c5222a725ac118f9 upstream.
With tools like kbench9000 giving more finegrained responses, and this
basically never having been used ever since it was initially added,
let's just get rid of this. There *is* still work to be done on the
interrupt handler, but this really isn't the way it's being developed.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 489c7fc44b5740d377e8cfdbf0851036e493af00 upstream.
Now that POOL_BITS == POOL_MIN_BITS, we must unconditionally wake up
entropy writers after every extraction. Therefore there's no point of
write_wakeup_threshold, so we can move it to the dustbin of unused
compatibility sysctls. While we're at it, we can fix a small comparison
where we were waking up after <= min rather than < min.
Cc: Theodore Ts'o <tytso@mit.edu>
Suggested-by: Eric Biggers <ebiggers@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 51f559d66527e238f9a5f82027bff499784d4eac ]
Add KRYO4XX gold/big cores to the list of CPUs that need the
repeat TLBI workaround. Apply this to the affected
KRYO4XX cores (rcpe to rfpe).
The variant and revision bits are implementation defined and are
different from the their Cortex CPU counterparts on which they are
based on, i.e., (r0p0 to r3p0) is equivalent to (rcpe to rfpe).
Signed-off-by: Shreyas K K <quic_shrekk@quicinc.com>
Reviewed-by: Sai Prakash Ranjan <quic_saipraka@quicinc.com>
Link: https://lore.kernel.org/r/20220512110134.12179-1-quic_shrekk@quicinc.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
This reverts commit d4d975e792.
Upstream had a follow-up fix, revert, and a semi-reverted-revert.
Instead of going through this chain which is more painful to backport,
I'm just going to revert this original commit and pick the final one.
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ef248d9bd616b04df8be25539a4dc5db4b6c56f4 ]
This fixes the near-silence of the headphone jack on the ALC256-based
Samsung Galaxy Book Flex Alpha (NP730QCJ). The magic verbs were found
through trial and error, using known ALC298 hacks as inspiration. The
fixup is auto-enabled only when the NP730QCJ is detected. It can be
manually enabled using model=alc256-samsung-headphone.
Signed-off-by: Matt Kramer <mccleetus@gmail.com>
Link: https://lore.kernel.org/r/3168355.aeNJFYEL58@linus
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit ddbd89deb7d32b1fbb879f48d68fda1a8ac58e8e upstream.
The problem I'm addressing was discovered by the LTP test covering
cve-2018-1000204.
A short description of what happens follows:
1) The test case issues a command code 00 (TEST UNIT READY) via the SG_IO
interface with: dxfer_len == 524288, dxdfer_dir == SG_DXFER_FROM_DEV
and a corresponding dxferp. The peculiar thing about this is that TUR
is not reading from the device.
2) In sg_start_req() the invocation of blk_rq_map_user() effectively
bounces the user-space buffer. As if the device was to transfer into
it. Since commit a45b599ad8 ("scsi: sg: allocate with __GFP_ZERO in
sg_build_indirect()") we make sure this first bounce buffer is
allocated with GFP_ZERO.
3) For the rest of the story we keep ignoring that we have a TUR, so the
device won't touch the buffer we prepare as if the we had a
DMA_FROM_DEVICE type of situation. My setup uses a virtio-scsi device
and the buffer allocated by SG is mapped by the function
virtqueue_add_split() which uses DMA_FROM_DEVICE for the "in" sgs (here
scatter-gather and not scsi generics). This mapping involves bouncing
via the swiotlb (we need swiotlb to do virtio in protected guest like
s390 Secure Execution, or AMD SEV).
4) When the SCSI TUR is done, we first copy back the content of the second
(that is swiotlb) bounce buffer (which most likely contains some
previous IO data), to the first bounce buffer, which contains all
zeros. Then we copy back the content of the first bounce buffer to
the user-space buffer.
5) The test case detects that the buffer, which it zero-initialized,
ain't all zeros and fails.
One can argue that this is an swiotlb problem, because without swiotlb
we leak all zeros, and the swiotlb should be transparent in a sense that
it does not affect the outcome (if all other participants are well
behaved).
Copying the content of the original buffer into the swiotlb buffer is
the only way I can think of to make swiotlb transparent in such
scenarios. So let's do just that if in doubt, but allow the driver
to tell us that the whole mapped buffer is going to be overwritten,
in which case we can preserve the old behavior and avoid the performance
impact of the extra bounce.
Signed-off-by: Halil Pasic <pasic@linux.ibm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>