commit 4237e9f4a96228ccc8a7abe5e4b30834323cd353 upstream.
Add a test to check that the verifier is able to recognize spilling of
PTR_TO_MEM registers, by reserving a ringbuf buffer, forcing the spill
of a pointer holding the buffer address to the stack, filling it back
in from the stack and writing to the memory area pointed by it.
The patch was partially contributed by CyberArk Software, Inc.
Signed-off-by: Gilad Reti <gilad.reti@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/bpf/20210113053810.13518-2-gilad.reti@gmail.com
Cc: Lorenz Bauer <lmb@isovalent.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit ecdf985d7615356b78241fdb159c091830ed0380 ]
For aligned stack writes using BPF_ST instruction track stored values
in a same way BPF_STX is handled, e.g. make sure that the following
commands produce similar verifier knowledge:
fp[-8] = 42; r1 = 42;
fp[-8] = r1;
This covers two cases:
- non-null values written to stack are stored as spill of fake
registers;
- null values written to stack are stored as STACK_ZERO marks.
Previously both cases above used STACK_MISC marks instead.
Some verifier test cases relied on the old logic to obtain STACK_MISC
marks for some stack values. These test cases are updated in the same
commit to avoid failures during bisect.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230214232030.1502829-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 713274f1f2c8 ("bpf: Fix verifier id tracking of scalars on spill")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 475244f5e06beeda7b557d9dde46a5f439bf3379 ]
Add a test case to ensure that released pointer registers will not be
leaked into the map.
Before fix:
./test_verifier 984
984/u reference tracking: try to leak released ptr reg FAIL
Unexpected success to load!
verification time 67 usec
stack depth 4
processed 23 insns (limit 1000000) max_states_per_insn 0 total_states 2
peak_states 2 mark_read 1
984/p reference tracking: try to leak released ptr reg OK
Summary: 1 PASSED, 0 SKIPPED, 1 FAILED
After fix:
./test_verifier 984
984/u reference tracking: try to leak released ptr reg OK
984/p reference tracking: try to leak released ptr reg OK
Summary: 2 PASSED, 0 SKIPPED, 0 FAILED
Signed-off-by: Youlin Li <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221103093440.3161-2-liulin063@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 8f50f16ff39dd4e2d43d1548ca66925652f8aff7 upstream.
Add coverage to the verifier tests and tests for reading bpf_sock fields to
ensure that 32-bit, 16-bit, and 8-bit loads from dst_port field are allowed
only at intended offsets and produce expected values.
While 16-bit and 8-bit access to dst_port field is straight-forward, 32-bit
wide loads need be allowed and produce a zero-padded 16-bit value for
backward compatibility.
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/r/20220130115518.213259-3-jakub@cloudflare.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
[OP: backport to 5.10: adjusted context in sock_fields.c]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b4f894633fa14d7d46ba7676f950b90a401504bb upstream.
sk_lookup doesn't allow setting data_in for bpf_prog_run. This doesn't
play well with the verifier tests, since they always set a 64 byte
input buffer. Allow not running verifier tests by setting
bpf_test.runs to a negative value and don't run the ctx access case
for sk_lookup. We have dedicated ctx access tests so skipping here
doesn't reduce coverage.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210303101816.36774-6-lmb@cloudflare.com
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b560b21f71eb4ef9dfc7c8ec1d0e4d7f9aa54b51 upstream.
This commit adds BPF verifier selftests that cover all corner cases by
packet boundary checks. Specifically, 8-byte packet reads are tested at
the beginning of data and at the beginning of data_meta, using all kinds
of boundary checks (all comparison operators: <, >, <=, >=; both
permutations of operands: data + length compared to end, end compared to
data + length). For each case there are three tests:
1. Length is just enough for an 8-byte read. Length is either 7 or 8,
depending on the comparison.
2. Length is increased by 1 - should still pass the verifier. These
cases are useful, because they failed before commit 2fa7d94afc1a
("bpf: Fix the off-by-two error in range markings").
3. Length is decreased by 1 - should be rejected by the verifier.
Some existing tests are just renamed to avoid duplication.
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211207081521.41923-1-maximmi@nvidia.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2fa7d94afc1afbb4d702760c058dc2d7ed30f226 upstream.
The first commit cited below attempts to fix the off-by-one error that
appeared in some comparisons with an open range. Due to this error,
arithmetically equivalent pieces of code could get different verdicts
from the verifier, for example (pseudocode):
// 1. Passes the verifier:
if (data + 8 > data_end)
return early
read *(u64 *)data, i.e. [data; data+7]
// 2. Rejected by the verifier (should still pass):
if (data + 7 >= data_end)
return early
read *(u64 *)data, i.e. [data; data+7]
The attempted fix, however, shifts the range by one in a wrong
direction, so the bug not only remains, but also such piece of code
starts failing in the verifier:
// 3. Rejected by the verifier, but the check is stricter than in #1.
if (data + 8 >= data_end)
return early
read *(u64 *)data, i.e. [data; data+7]
The change performed by that fix converted an off-by-one bug into
off-by-two. The second commit cited below added the BPF selftests
written to ensure than code chunks like #3 are rejected, however,
they should be accepted.
This commit fixes the off-by-two error by adjusting new_range in the
right direction and fixes the tests by changing the range into the
one that should actually fail.
Fixes: fb2a311a31 ("bpf: fix off by one for range markings with L{T, E} patterns")
Fixes: b37242c773 ("bpf: add test cases to bpf selftests to cover all access tests")
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211130181607.593149-1-maximmi@nvidia.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b9979db8340154526d9ab38a1883d6f6ba9b6d47 ]
Before this fix:
166: (b5) if r2 <= 0x1 goto pc+22
from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0xffffffff))
After this fix:
166: (b5) if r2 <= 0x1 goto pc+22
from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0x1))
While processing BPF_JLE the reg_set_min_max() would set true_reg->umax_value = 1
and call __reg_combine_64_into_32(true_reg).
Without the fix it would not pass the condition:
if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value))
since umin_value == 0 at this point.
Before commit 10bf4e83167c the umin was incorrectly ingored.
The commit 10bf4e83167c fixed the correctness issue, but pessimized
propagation of 64-bit min max into 32-bit min max and corresponding var_off.
Fixes: 10bf4e83167c ("bpf: Fix propagation of 32 bit unsigned bounds from 64 bit bounds")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211101222153.78759-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 973377ffe8148180b2651825b92ae91988141b05 upstream
In almost all cases from test_verifier that have been changed in here, we've
had an unreachable path with a load from a register which has an invalid
address on purpose. This was basically to make sure that we never walk this
path and to have the verifier complain if it would otherwise. Change it to
match on the right error for unprivileged given we now test these paths
under speculative execution.
There's one case where we match on exact # of insns_processed. Due to the
extra path, this will of course mismatch on unprivileged. Thus, restrict the
test->insn_processed check to privileged-only.
In one other case, we result in a 'pointer comparison prohibited' error. This
is similarly due to verifying an 'invalid' branch where we end up with a value
pointer on one side of the comparison.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d7a5091351756d0ae8e63134313c455624e36a13 upstream
Update various selftest error messages:
* The 'Rx tried to sub from different maps, paths, or prohibited types'
is reworked into more specific/differentiated error messages for better
guidance.
* The change into 'value -4294967168 makes map_value pointer be out of
bounds' is due to moving the mixed bounds check into the speculation
handling and thus occuring slightly later than above mentioned sanity
check.
* The change into 'math between map_value pointer and register with
unbounded min value' is similarly due to register sanity check coming
before the mixed bounds check.
* The case of 'map access: known scalar += value_ptr from different maps'
now loads fine given masks are the same from the different paths (despite
max map value size being different).
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1bad6fd52be4ce12d207e2820ceb0f29ab31fc53 upstream
Given we don't need to simulate the speculative domain for registers with
immediates anymore since the verifier uses direct imm-based rewrites instead
of having to mask, we can also lift a few cases that were previously rejected.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 10bf4e83167cc68595b85fd73bb91e8f2c086e36 ]
Similarly as b02709587e ("bpf: Fix propagation of 32-bit signed bounds
from 64-bit bounds."), we also need to fix the propagation of 32 bit
unsigned bounds from 64 bit counterparts. That is, really only set the
u32_{min,max}_value when /both/ {umin,umax}_value safely fit in 32 bit
space. For example, the register with a umin_value == 1 does /not/ imply
that u32_min_value is also equal to 1, since umax_value could be much
larger than 32 bit subregister can hold, and thus u32_min_value is in
the interval [0,1] instead.
Before fix, invalid tracking result of R2_w=inv1:
[...]
5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0
5: (35) if r2 >= 0x1 goto pc+1
[...] // goto path
7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0
7: (b6) if w2 <= 0x1 goto pc+1
[...] // goto path
9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smin_value=-9223372036854775807,smax_value=9223372032559808513,umin_value=1,umax_value=18446744069414584321,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_max_value=1) R10=fp0
9: (bc) w2 = w2
10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv1 R10=fp0
[...]
After fix, correct tracking result of R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)):
[...]
5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0
5: (35) if r2 >= 0x1 goto pc+1
[...] // goto path
7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0
7: (b6) if w2 <= 0x1 goto pc+1
[...] // goto path
9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smax_value=9223372032559808513,umax_value=18446744069414584321,var_off=(0x0; 0xffffffff00000001),s32_min_value=0,s32_max_value=1,u32_max_value=1) R10=fp0
9: (bc) w2 = w2
10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)) R10=fp0
[...]
Thus, same issue as in b02709587e holds for unsigned subregister tracking.
Also, align __reg64_bound_u32() similarly to __reg64_bound_s32() as done in
b02709587e to make them uniform again.
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Manfred Paul (@_manfp)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 0a13e3537ea67452d549a6a80da3776d6b7dedb3 upstream.
Fix up test_verifier error messages for the case where the original error
message changed, or for the case where pointer alu errors differ between
privileged and unprivileged tests. Also, add alternative tests for keeping
coverage of the original verifier rejection error message (fp alu), and
newly reject map_ptr += rX where rX == 0 given we now forbid alu on these
types for unprivileged. All test_verifier cases pass after the change. The
test case fixups were kept separate to ease backporting of core changes.
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6185266c5a853bb0f2a459e3ff594546f277609b upstream.
The verifier test labelled "valid read map access into a read-only array
2" calls the bpf_csum_diff() helper and checks its return value. However,
architecture implementations of csum_partial() (which is what the helper
uses) differ in whether they fold the return value to 16 bit or not. For
example, x86 version has ...
if (unlikely(odd)) {
result = from32to16(result);
result = ((result >> 8) & 0xff) | ((result & 0xff) << 8);
}
... while generic lib/checksum.c does:
result = from32to16(result);
if (odd)
result = ((result >> 8) & 0xff) | ((result & 0xff) << 8);
This makes the helper return different values on different architectures,
breaking the test on non-x86. To fix this, add an additional instruction
to always mask the return value to 16 bits, and update the expected return
value accordingly.
Fixes: fb2abb73e5 ("bpf, selftest: test {rd, wr}only flags and direct value access")
Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210228103017.320240-1-yauheni.kaliuta@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The test fails because of a recent fix to the verifier, even though this
program is valid. In details what happens is:
7: (61) r1 = *(u32 *)(r0 +0)
Load a 32-bit value, with signed bounds [S32_MIN, S32_MAX]. The bounds
of the 64-bit value are [0, U32_MAX]...
8: (65) if r1 s> 0xffffffff goto pc+1
... therefore this is always true (the operand is sign-extended).
10: (b4) w2 = 11
11: (6d) if r2 s> r1 goto pc+1
When true, the 64-bit bounds become [0, 10]. The 32-bit bounds are still
[S32_MIN, 10].
13: (64) w1 <<= 2
Because this is a 32-bit operation, the verifier propagates the new
32-bit bounds to the 64-bit ones, and the knowledge gained from insn 11
is lost.
14: (0f) r0 += r1
15: (7a) *(u64 *)(r0 +0) = 4
Then the verifier considers r0 unbounded here, rejecting the test. To
make the test work, change insn 8 to check the sign of the 32-bit value.
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
After a 32-bit load followed by a branch, the verifier would reduce the
maximum bound of the register to 0x7fffffff, allowing a user to bypass
bound checks. Ensure such a program is rejected.
In the second test, the 64-bit compare should not sufficient to
determine whether the signed 32-bit lower bound is 0, so the verifier
should reject the second branch.
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch tests:
int bpf_cls(struct __sk_buff *skb)
{
/* REG_6: sk
* REG_7: tp
* REG_8: req_sk
*/
sk = skb->sk;
if (!sk)
return 0;
tp = bpf_skc_to_tcp_sock(sk);
req_sk = bpf_skc_to_tcp_request_sock(sk);
if (!req_sk)
return 0;
/* !tp has not been tested, so verifier should reject. */
return *(__u8 *)tp;
}
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201019194219.1051314-1-kafai@fb.com
The 64-bit JEQ/JNE handling in reg_set_min_max() was clearing reg->id in either
true or false branch. In the case 'if (reg->id)' check was done on the other
branch the counter part register would have reg->id == 0 when called into
find_equal_scalars(). In such case the helper would incorrectly identify other
registers with id == 0 as equivalent and propagate the state incorrectly.
Fix it by preserving ID across reg_set_min_max().
In other words any kind of comparison operator on the scalar register
should preserve its ID to recognize:
r1 = r2
if (r1 == 20) {
#1 here both r1 and r2 == 20
} else if (r2 < 20) {
#2 here both r1 and r2 < 20
}
The patch is addressing #1 case. The #2 was working correctly already.
Fixes: 75748837b7 ("bpf: Propagate scalar ranges through register assignments.")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201014175608.1416-1-alexei.starovoitov@gmail.com
The llvm register allocator may use two different registers representing the
same virtual register. In such case the following pattern can be observed:
1047: (bf) r9 = r6
1048: (a5) if r6 < 0x1000 goto pc+1
1050: ...
1051: (a5) if r9 < 0x2 goto pc+66
1052: ...
1053: (bf) r2 = r9 /* r2 needs to have upper and lower bounds */
This is normal behavior of greedy register allocator.
The slides 137+ explain why regalloc introduces such register copy:
http://llvm.org/devmtg/2018-04/slides/Yatsina-LLVM%20Greedy%20Register%20Allocator.pdf
There is no way to tell llvm 'not to do this'.
Hence the verifier has to recognize such patterns.
In order to track this information without backtracking allocate ID
for scalars in a similar way as it's done for find_good_pkt_pointers().
When the verifier encounters r9 = r6 assignment it will assign the same ID
to both registers. Later if either register range is narrowed via conditional
jump propagate the register state into the other register.
Clear register ID in adjust_reg_min_max_vals() for any alu instruction. The
register ID is ignored for scalars in regsafe() and doesn't affect state
pruning. mark_reg_unknown() clears the ID. It's used to process call, endian
and other instructions. Hence ID is explicitly cleared only in
adjust_reg_min_max_vals() and in 32-bit mov.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20201009011240.48506-2-alexei.starovoitov@gmail.com
Commit 4976b718c3 ("bpf: Introduce pseudo_btf_id") switched
the order of check_subprogs() and resolve_pseudo_ldimm() in
the verifier. Now an empty prog expects to see the error "last
insn is not an the prog of a single invalid ldimm exit or jmp"
instead, because the check for subprogs comes first. It's now
pointless to validate that half of ldimm64 won't be the last
instruction.
Tested:
# ./test_verifier
Summary: 1129 PASSED, 537 SKIPPED, 0 FAILED
and the full set of bpf selftests.
Fixes: 4976b718c3 ("bpf: Introduce pseudo_btf_id")
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201007022857.2791884-1-haoluo@google.com
If we AND two values together that are known in the 32bit subregs, but not
known in the 64bit registers we rely on the tnum value to report the 32bit
subreg is known. And do not use mark_reg_known() directly from
scalar32_min_max_and()
Add an AND test to cover the case with known 32bit subreg, but unknown
64bit reg.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
LD_[ABS|IND] instructions may return from the function early. bpf_tail_call
pseudo instruction is either fallthrough or return. Allow them in the
subprograms only when subprograms are BTF annotated and have scalar return
types. Allow ld_abs and tail_call in the main program even if it calls into
subprograms. In the past that was not ok to do for ld_abs, since it was JITed
with special exit sequence. Since bpf_gen_ld_abs() was introduced the ld_abs
looks like normal exit insn from JIT point of view, so it's safe to allow them
in the main program.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Change selftest map_ptr_kern.c with disabling inlining for
one of subtests, which will fail the test without previous
verifier change. Also added to verifier test for both
"map_ptr += scalar" and "scalar += map_ptr" arithmetic.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200908175703.2463721-1-yhs@fb.com
Since the BPF_PROG_TYPE_CGROUP_SOCKOPT verifier test does not set an
attach type, bpf_prog_load_check_attach() disallows loading the program
and the test is always skipped:
#434/p perfevent for cgroup sockopt SKIP (unsupported program type 25)
Fix the issue by setting a valid attach type.
Fixes: 0456ea170c ("bpf: Enable more helpers for BPF_PROG_TYPE_CGROUP_{DEVICE,SYSCTL,SOCKOPT}")
Signed-off-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/bpf/20200710150439.126627-1-jean-philippe@linaro.org
Add selftests to test access to map pointers from bpf program for all
map types except struct_ops (that one would need additional work).
verifier test focuses mostly on scenarios that must be rejected.
prog_tests test focuses on accessing multiple fields both scalar and a
nested struct from bpf program and verifies that those fields have
expected values.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/139a6a17f8016491e39347849b951525335c6eb4.1592600985.git.rdna@fb.com
There are multiple use-cases when it's convenient to have access to bpf
map fields, both `struct bpf_map` and map type specific struct-s such as
`struct bpf_array`, `struct bpf_htab`, etc.
For example while working with sock arrays it can be necessary to
calculate the key based on map->max_entries (some_hash % max_entries).
Currently this is solved by communicating max_entries via "out-of-band"
channel, e.g. via additional map with known key to get info about target
map. That works, but is not very convenient and error-prone while
working with many maps.
In other cases necessary data is dynamic (i.e. unknown at loading time)
and it's impossible to get it at all. For example while working with a
hash table it can be convenient to know how much capacity is already
used (bpf_htab.count.counter for BPF_F_NO_PREALLOC case).
At the same time kernel knows this info and can provide it to bpf
program.
Fill this gap by adding support to access bpf map fields from bpf
program for both `struct bpf_map` and map type specific fields.
Support is implemented via btf_struct_access() so that a user can define
their own `struct bpf_map` or map type specific struct in their program
with only necessary fields and preserve_access_index attribute, cast a
map to this struct and use a field.
For example:
struct bpf_map {
__u32 max_entries;
} __attribute__((preserve_access_index));
struct bpf_array {
struct bpf_map map;
__u32 elem_size;
} __attribute__((preserve_access_index));
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 4);
__type(key, __u32);
__type(value, __u32);
} m_array SEC(".maps");
SEC("cgroup_skb/egress")
int cg_skb(void *ctx)
{
struct bpf_array *array = (struct bpf_array *)&m_array;
struct bpf_map *map = (struct bpf_map *)&m_array;
/* .. use map->max_entries or array->map.max_entries .. */
}
Similarly to other btf_struct_access() use-cases (e.g. struct tcp_sock
in net/ipv4/bpf_tcp_ca.c) the patch allows access to any fields of
corresponding struct. Only reading from map fields is supported.
For btf_struct_access() to work there should be a way to know btf id of
a struct that corresponds to a map type. To get btf id there should be a
way to get a stringified name of map-specific struct, such as
"bpf_array", "bpf_htab", etc for a map type. Two new fields are added to
`struct bpf_map_ops` to handle it:
* .map_btf_name keeps a btf name of a struct returned by map_alloc();
* .map_btf_id is used to cache btf id of that struct.
To make btf ids calculation cheaper they're calculated once while
preparing btf_vmlinux and cached same way as it's done for btf_id field
of `struct bpf_func_proto`
While calculating btf ids, struct names are NOT checked for collision.
Collisions will be checked as a part of the work to prepare btf ids used
in verifier in compile time that should land soon. The only known
collision for `struct bpf_htab` (kernel/bpf/hashtab.c vs
net/core/sock_map.c) was fixed earlier.
Both new fields .map_btf_name and .map_btf_id must be set for a map type
for the feature to work. If neither is set for a map type, verifier will
return ENOTSUPP on a try to access map_ptr of corresponding type. If
just one of them set, it's verifier misconfiguration.
Only `struct bpf_array` for BPF_MAP_TYPE_ARRAY and `struct bpf_htab` for
BPF_MAP_TYPE_HASH are supported by this patch. Other map types will be
supported separately.
The feature is available only for CONFIG_DEBUG_INFO_BTF=y and gated by
perfmon_capable() so that unpriv programs won't have access to bpf map
fields.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/6479686a0cd1e9067993df57b4c3eef0e276fec9.1592600985.git.rdna@fb.com
Adjust verifier test due to addition of new field.
Fixes: c3c16f2ea6 ("bpf: Add rx_queue_mapping to bpf_sock")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.
Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
- more efficient memory utilization by sharing ring buffer across CPUs;
- preserving ordering of events that happen sequentially in time, even
across multiple CPUs (e.g., fork/exec/exit events for a task).
These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer. Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.
Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.
One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.
Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).
The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).
Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.
There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
- variable-length records;
- if there is no more space left in ring buffer, reservation fails, no
blocking;
- memory-mappable data area for user-space applications for ease of
consumption and high performance;
- epoll notifications for new incoming data;
- but still the ability to do busy polling for new data to achieve the
lowest latency, if necessary.
BPF ringbuf provides two sets of APIs to BPF programs:
- bpf_ringbuf_output() allows to *copy* data from one place to a ring
buffer, similarly to bpf_perf_event_output();
- bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
split the whole process into two steps. First, a fixed amount of space is
reserved. If successful, a pointer to a data inside ring buffer data area
is returned, which BPF programs can use similarly to a data inside
array/hash maps. Once ready, this piece of memory is either committed or
discarded. Discard is similar to commit, but makes consumer ignore the
record.
bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.
bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().
The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.
Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.
bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
- BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
- BPF_RB_RING_SIZE returns the size of ring buffer;
- BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.
One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.
Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.
The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
- consumer counter shows up to which logical position consumer consumed the
data;
- producer counter denotes amount of data reserved by all producers.
Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.
Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.
Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.
One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().
Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.
Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
- per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
outlined above (ordering and memory consumption);
- linked list-based implementations; while some were multi-producer designs,
consuming these from user-space would be very complicated and most
probably not performant; memory-mapping contiguous piece of memory is
simpler and more performant for user-space consumers;
- io_uring is SPSC, but also requires fixed-sized elements. Naively turning
SPSC queue into MPSC w/ lock would have subpar performance compared to
locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
elements would be too limiting for BPF programs, given existing BPF
programs heavily rely on variable-sized perf buffer already;
- specialized implementations (like a new printk ring buffer, [0]) with lots
of printk-specific limitations and implications, that didn't seem to fit
well for intended use with BPF programs.
[0] https://lwn.net/Articles/779550/
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
xdp_umem.c had overlapping changes between the 64-bit math fix
for the calculation of npgs and the removal of the zerocopy
memory type which got rid of the chunk_size_nohdr member.
The mlx5 Kconfig conflict is a case where we just take the
net-next copy of the Kconfig entry dependency as it takes on
the ESWITCH dependency by one level of indirection which is
what the 'net' conflicting change is trying to ensure.
Signed-off-by: David S. Miller <davem@davemloft.net>
After previous fix for zero extension test_verifier tests #65 and #66 now
fail. Before the fix we can see the alu32 mov op at insn 10
10: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0)
R1_w=invP(id=0,
smin_value=4294967168,smax_value=4294967423,
umin_value=4294967168,umax_value=4294967423,
var_off=(0x0; 0x1ffffffff),
s32_min_value=-2147483648,s32_max_value=2147483647,
u32_min_value=0,u32_max_value=-1)
R10=fp0 fp-8_w=mmmmmmmm
10: (bc) w1 = w1
11: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0)
R1_w=invP(id=0,
smin_value=0,smax_value=2147483647,
umin_value=0,umax_value=4294967295,
var_off=(0x0; 0xffffffff),
s32_min_value=-2147483648,s32_max_value=2147483647,
u32_min_value=0,u32_max_value=-1)
R10=fp0 fp-8_w=mmmmmmmm
After the fix at insn 10 because we have 's32_min_value < 0' the following
step 11 now has 'smax_value=U32_MAX' where before we pulled the s32_max_value
bound into the smax_value as seen above in 11 with smax_value=2147483647.
10: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0)
R1_w=inv(id=0,
smin_value=4294967168,smax_value=4294967423,
umin_value=4294967168,umax_value=4294967423,
var_off=(0x0; 0x1ffffffff),
s32_min_value=-2147483648, s32_max_value=2147483647,
u32_min_value=0,u32_max_value=-1)
R10=fp0 fp-8_w=mmmmmmmm
10: (bc) w1 = w1
11: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0)
R1_w=inv(id=0,
smin_value=0,smax_value=4294967295,
umin_value=0,umax_value=4294967295,
var_off=(0x0; 0xffffffff),
s32_min_value=-2147483648, s32_max_value=2147483647,
u32_min_value=0, u32_max_value=-1)
R10=fp0 fp-8_w=mmmmmmmm
The fall out of this is by the time we get to the failing instruction at
step 14 where previously we had the following:
14: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0)
R1_w=inv(id=0,
smin_value=72057594021150720,smax_value=72057594029539328,
umin_value=72057594021150720,umax_value=72057594029539328,
var_off=(0xffffffff000000; 0xffffff),
s32_min_value=-16777216,s32_max_value=-1,
u32_min_value=-16777216,u32_max_value=-1)
R10=fp0 fp-8_w=mmmmmmmm
14: (0f) r0 += r1
We now have,
14: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0)
R1_w=inv(id=0,
smin_value=0,smax_value=72057594037927935,
umin_value=0,umax_value=72057594037927935,
var_off=(0x0; 0xffffffffffffff),
s32_min_value=-2147483648,s32_max_value=2147483647,
u32_min_value=0,u32_max_value=-1)
R10=fp0 fp-8_w=mmmmmmmm
14: (0f) r0 += r1
In the original step 14 'smin_value=72057594021150720' this trips the logic
in the verifier function check_reg_sane_offset(),
if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
verbose(env, "value %lld makes %s pointer be out of bounds\n",
smin, reg_type_str[type]);
return false;
}
Specifically, the 'smin <= -BPF_MAX_VAR_OFF' check. But with the fix
at step 14 we have bounds 'smin_value=0' so the above check is not tripped
because BPF_MAX_VAR_OFF=1<<29.
We have a smin_value=0 here because at step 10 the smaller smin_value=0 means
the subtractions at steps 11 and 12 bring the smin_value negative.
11: (17) r1 -= 2147483584
12: (17) r1 -= 2147483584
13: (77) r1 >>= 8
Then the shift clears the top bit and smin_value is set to 0. Note we still
have the smax_value in the fixed code so any reads will fail. An alternative
would be to have reg_sane_check() do both smin and smax value tests.
To fix the test we can omit the 'r1 >>=8' at line 13. This will change the
err string, but keeps the intention of the test as suggseted by the title,
"check after truncation of boundary-crossing range". If the verifier logic
changes a different value is likely to be thrown in the error or the error
will no longer be thrown forcing this test to be examined. With this change
we see the new state at step 13.
13: R0_w=map_value(id=0,off=0,ks=8,vs=8,imm=0)
R1_w=invP(id=0,
smin_value=-4294967168,smax_value=127,
umin_value=0,umax_value=18446744073709551615,
s32_min_value=-2147483648,s32_max_value=2147483647,
u32_min_value=0,u32_max_value=-1)
R10=fp0 fp-8_w=mmmmmmmm
Giving the expected out of bounds error, "value -4294967168 makes map_value
pointer be out of bounds" However, for unpriv case we see a different error
now because of the mixed signed bounds pointer arithmatic. This seems OK so
I've only added the unpriv_errstr for this. Another optino may have been to
do addition on r1 instead of subtraction but I favor the approach above
slightly.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/159077333942.6014.14004320043595756079.stgit@john-Precision-5820-Tower
Currently the following prog types don't fall back to bpf_base_func_proto()
(instead they have cgroup_base_func_proto which has a limited set of
helpers from bpf_base_func_proto):
* BPF_PROG_TYPE_CGROUP_DEVICE
* BPF_PROG_TYPE_CGROUP_SYSCTL
* BPF_PROG_TYPE_CGROUP_SOCKOPT
I don't see any specific reason why we shouldn't use bpf_base_func_proto(),
every other type of program (except bpf-lirc and, understandably, tracing)
use it, so let's fall back to bpf_base_func_proto for those prog types
as well.
This basically boils down to adding access to the following helpers:
* BPF_FUNC_get_prandom_u32
* BPF_FUNC_get_smp_processor_id
* BPF_FUNC_get_numa_node_id
* BPF_FUNC_tail_call
* BPF_FUNC_ktime_get_ns
* BPF_FUNC_spin_lock (CAP_SYS_ADMIN)
* BPF_FUNC_spin_unlock (CAP_SYS_ADMIN)
* BPF_FUNC_jiffies64 (CAP_SYS_ADMIN)
I've also added bpf_perf_event_output() because it's really handy for
logging and debugging.
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200420174610.77494-1-sdf@google.com