[ Upstream commit c4abd7352023aa96114915a0bb2b88016a425cda ]
Stuff CR0 and/or CR4 to be compliant with a restricted guest if and only
if KVM itself is not configured to utilize unrestricted guests, i.e. don't
stuff CR0/CR4 for a restricted L2 that is running as the guest of an
unrestricted L1. Any attempt to VM-Enter a restricted guest with invalid
CR0/CR4 values should fail, i.e. in a nested scenario, KVM (as L0) should
never observe a restricted L2 with incompatible CR0/CR4, since nested
VM-Enter from L1 should have failed.
And if KVM does observe an active, restricted L2 with incompatible state,
e.g. due to a KVM bug, fudging CR0/CR4 instead of letting VM-Enter fail
does more harm than good, as KVM will often neglect to undo the side
effects, e.g. won't clear rmode.vm86_active on nested VM-Exit, and thus
the damage can easily spill over to L1. On the other hand, letting
VM-Enter fail due to bad guest state is more likely to contain the damage
to L2 as KVM relies on hardware to perform most guest state consistency
checks, i.e. KVM needs to be able to reflect a failed nested VM-Enter into
L1 irrespective of (un)restricted guest behavior.
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Fixes: bddd82d19e ("KVM: nVMX: KVM needs to unset "unrestricted guest" VM-execution control in vmcs02 if vmcs12 doesn't set it")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230613203037.1968489-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 470750b3425513b9f63f176e564e63e0e7998afc ]
Keep CR3 load/store exiting enable as needed when running L2 in order to
honor L1's desires. This fixes a largely theoretical bug where L1 could
intercept CR3 but not CR0.PG and end up not getting the desired CR3 exits
when L2 enables paging. In other words, the existing !is_paging() check
inadvertantly handles the normal case for L2 where vmx_set_cr0() is
called during VM-Enter, which is guaranteed to run with paging enabled,
and thus will never clear the bits.
Removing the !is_paging() check will also allow future consolidation and
cleanup of the related code. From a performance perspective, this is
all a nop, as the VMCS controls shadow will optimize away the VMWRITE
when the controls are in the desired state.
Add a comment explaining why CR3 is intercepted, with a big disclaimer
about not querying the old CR3. Because vmx_set_cr0() is used for flows
that are not directly tied to MOV CR3, e.g. vCPU RESET/INIT and nested
VM-Enter, it's possible that is_paging() is not synchronized with CR3
load/store exiting. This is actually guaranteed in the current code, as
KVM starts with CR3 interception disabled. Obviously that can be fixed,
but there's no good reason to play whack-a-mole, and it tends to end
poorly, e.g. descriptor table exiting for UMIP emulation attempted to be
precise in the past and ended up botching the interception toggling.
Fixes: fe3ef05c75 ("KVM: nVMX: Prepare vmcs02 from vmcs01 and vmcs12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stable-dep-of: c4abd7352023 ("KVM: VMX: Don't fudge CR0 and CR4 for restricted L2 guest")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c834fd7fc1308a0e0429d203a6c3af528cd902fa ]
Move the CR0/CR3/CR4 shenanigans for EPT without unrestricted guest back
into vmx_set_cr0(). This will allow a future patch to eliminate the
rather gross stuffing of vcpu->arch.cr0 in the paging transition cases
by snapshotting the old CR0.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stable-dep-of: c4abd7352023 ("KVM: VMX: Don't fudge CR0 and CR4 for restricted L2 guest")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ee5a5584cba316bc90bc2fad0c6d10b71f1791cb ]
Opt-in to forcing CR0.WP=1 for shadow paging, and stop lying about WP
being "always on" for unrestricted guest. In addition to making KVM a
wee bit more honest, this paves the way for additional cleanup.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stable-dep-of: c4abd7352023 ("KVM: VMX: Don't fudge CR0 and CR4 for restricted L2 guest")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6cd88243c7e03845a450795e134b488fc2afb736 upstream.
If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access. A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.
To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary. A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.
It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed. However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses. Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[OP: use VCPU_STAT() for debugfs entries]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4984563823f0034d3533854c1b50e729f5191089 upstream.
Extend VMX's nested intercept logic for emulated instructions to handle
"pause" interception, in quotes because KVM's emulator doesn't filter out
NOPs when checking for nested intercepts. Failure to allow emulation of
NOPs results in KVM injecting a #UD into L2 on any NOP that collides with
the emulator's definition of PAUSE, i.e. on all single-byte NOPs.
For PAUSE itself, honor L1's PAUSE-exiting control, but ignore PLE to
avoid unnecessarily injecting a #UD into L2. Per the SDM, the first
execution of PAUSE after VM-Entry is treated as the beginning of a new
loop, i.e. will never trigger a PLE VM-Exit, and so L1 can't expect any
given execution of PAUSE to deterministically exit.
... the processor considers this execution to be the first execution of
PAUSE in a loop. (It also does so for the first execution of PAUSE at
CPL 0 after VM entry.)
All that said, the PLE side of things is currently a moot point, as KVM
doesn't expose PLE to L1.
Note, vmx_check_intercept() is still wildly broken when L1 wants to
intercept an instruction, as KVM injects a #UD instead of synthesizing a
nested VM-Exit. That issue extends far beyond NOP/PAUSE and needs far
more effort to fix, i.e. is a problem for the future.
Fixes: 07721feee4 ("KVM: nVMX: Don't emulate instructions in guest mode")
Cc: Mathias Krause <minipli@grsecurity.net>
Cc: stable@vger.kernel.org
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20230405002359.418138-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 93827a0a36396f2fd6368a54a020f420c8916e9b upstream.
KVM enables 'Enlightened VMCS' and 'Enlightened MSR Bitmap' when running as
a nested hypervisor on top of Hyper-V. When MSR bitmap is updated,
evmcs_touch_msr_bitmap function uses current_vmcs per-cpu variable to mark
that the msr bitmap was changed.
vmx_vcpu_create() modifies the msr bitmap via vmx_disable_intercept_for_msr
-> vmx_msr_bitmap_l01_changed which in the end calls this function. The
function checks for current_vmcs if it is null but the check is
insufficient because current_vmcs is not initialized. Because of this, the
code might incorrectly write to the structure pointed by current_vmcs value
left by another task. Preemption is not disabled, the current task can be
preempted and moved to another CPU while current_vmcs is accessed multiple
times from evmcs_touch_msr_bitmap() which leads to crash.
The manipulation of MSR bitmaps by callers happens only for vmcs01 so the
solution is to use vmx->vmcs01.vmcs instead of current_vmcs.
BUG: kernel NULL pointer dereference, address: 0000000000000338
PGD 4e1775067 P4D 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
...
RIP: 0010:vmx_msr_bitmap_l01_changed+0x39/0x50 [kvm_intel]
...
Call Trace:
vmx_disable_intercept_for_msr+0x36/0x260 [kvm_intel]
vmx_vcpu_create+0xe6/0x540 [kvm_intel]
kvm_arch_vcpu_create+0x1d1/0x2e0 [kvm]
kvm_vm_ioctl_create_vcpu+0x178/0x430 [kvm]
kvm_vm_ioctl+0x53f/0x790 [kvm]
__x64_sys_ioctl+0x8a/0xc0
do_syscall_64+0x5c/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fixes: ceef7d10df ("KVM: x86: VMX: hyper-v: Enlightened MSR-Bitmap support")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Alexandru Matei <alexandru.matei@uipath.com>
Link: https://lore.kernel.org/r/20230123221208.4964-1-alexandru.matei@uipath.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
[manual backport: evmcs.h got renamed to hyperv.h in a later
version, modified in evmcs.h instead]
Signed-off-by: Alexandru Matei <alexandru.matei@uipath.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b84155c38076b36d625043a06a2f1c90bde62903 upstream.
In preparation to enabling 'Enlightened MSR Bitmap' feature for Hyper-V
guests move MSR bitmap update tracking to a dedicated helper.
Note: vmx_msr_bitmap_l01_changed() is called when MSR bitmap might be
updated. KVM doesn't check if the bit we're trying to set is already set
(or the bit it's trying to clear is already cleared). Such situations
should not be common and a few false positives should not be a problem.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211129094704.326635-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Alexandru Matei <alexandru.matei@uipath.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 250552b925ce400c17d166422fde9bb215958481 upstream.
When KVM runs as a nested hypervisor on top of Hyper-V it uses Enlightened
VMCS and enables Enlightened MSR Bitmap feature for its L1s and L2s (which
are actually L2s and L3s from Hyper-V's perspective). When MSR bitmap is
updated, KVM has to reset HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP from
clean fields to make Hyper-V aware of the change. For KVM's L1s, this is
done in vmx_disable_intercept_for_msr()/vmx_enable_intercept_for_msr().
MSR bitmap for L2 is build in nested_vmx_prepare_msr_bitmap() by blending
MSR bitmap for L1 and L1's idea of MSR bitmap for L2. KVM, however, doesn't
check if the resulting bitmap is different and never cleans
HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP in eVMCS02. This is incorrect and
may result in Hyper-V missing the update.
The issue could've been solved by calling evmcs_touch_msr_bitmap() for
eVMCS02 from nested_vmx_prepare_msr_bitmap() unconditionally but doing so
would not give any performance benefits (compared to not using Enlightened
MSR Bitmap at all). 3-level nesting is also not a very common setup
nowadays.
Don't enable 'Enlightened MSR Bitmap' feature for KVM's L2s (real L3s) for
now.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211129094704.326635-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Alexandru Matei <alexandru.matei@uipath.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2e7eab81425ad6c875f2ed47c0ce01e78afc38a5 ]
According to Intel's document on Indirect Branch Restricted
Speculation, "Enabling IBRS does not prevent software from controlling
the predicted targets of indirect branches of unrelated software
executed later at the same predictor mode (for example, between two
different user applications, or two different virtual machines). Such
isolation can be ensured through use of the Indirect Branch Predictor
Barrier (IBPB) command." This applies to both basic and enhanced IBRS.
Since L1 and L2 VMs share hardware predictor modes (guest-user and
guest-kernel), hardware IBRS is not sufficient to virtualize
IBRS. (The way that basic IBRS is implemented on pre-eIBRS parts,
hardware IBRS is actually sufficient in practice, even though it isn't
sufficient architecturally.)
For virtual CPUs that support IBRS, add an indirect branch prediction
barrier on emulated VM-exit, to ensure that the predicted targets of
indirect branches executed in L1 cannot be controlled by software that
was executed in L2.
Since we typically don't intercept guest writes to IA32_SPEC_CTRL,
perform the IBPB at emulated VM-exit regardless of the current
IA32_SPEC_CTRL.IBRS value, even though the IBPB could technically be
deferred until L1 sets IA32_SPEC_CTRL.IBRS, if IA32_SPEC_CTRL.IBRS is
clear at emulated VM-exit.
This is CVE-2022-2196.
Fixes: 5c911beff2 ("KVM: nVMX: Skip IBPB when switching between vmcs01 and vmcs02")
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20221019213620.1953281-3-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit a44b331614e6f7e63902ed7dff7adc8c85edd8bc upstream.
When serializing and deserializing kvm_sregs, attributes of the segment
descriptors are stored by user space. For unusable segments,
vmx_segment_access_rights skips all attributes and sets them to 0.
This means we zero out the DPL (Descriptor Privilege Level) for unusable
entries.
Unusable segments are - contrary to their name - usable in 64bit mode and
are used by guests to for example create a linear map through the
NULL selector.
VMENTER checks if SS.DPL is correct depending on the CS segment type.
For types 9 (Execute Only) and 11 (Execute Read), CS.DPL must be equal to
SS.DPL [1].
We have seen real world guests setting CS to a usable segment with DPL=3
and SS to an unusable segment with DPL=3. Once we go through an sregs
get/set cycle, SS.DPL turns to 0. This causes the virtual machine to crash
reproducibly.
This commit changes the attribute logic to always preserve attributes for
unusable segments. According to [2] SS.DPL is always saved on VM exits,
regardless of the unusable bit so user space applications should have saved
the information on serialization correctly.
[3] specifies that besides SS.DPL the rest of the attributes of the
descriptors are undefined after VM entry if unusable bit is set. So, there
should be no harm in setting them all to the previous state.
[1] Intel SDM Vol 3C 26.3.1.2 Checks on Guest Segment Registers
[2] Intel SDM Vol 3C 27.3.2 Saving Segment Registers and Descriptor-Table
Registers
[3] Intel SDM Vol 3C 26.3.2.2 Loading Guest Segment Registers and
Descriptor-Table Registers
Cc: Alexander Graf <graf@amazon.de>
Cc: stable@vger.kernel.org
Signed-off-by: Hendrik Borghorst <hborghor@amazon.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Alexander Graf <graf@amazon.com>
Message-Id: <20221114164823.69555-1-hborghor@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eba9799b5a6efe2993cf92529608e4aa8163d73b upstream.
Deliberately truncate the exception error code when shoving it into the
VMCS (VM-Entry field for vmcs01 and vmcs02, VM-Exit field for vmcs12).
Intel CPUs are incapable of handling 32-bit error codes and will never
generate an error code with bits 31:16, but userspace can provide an
arbitrary error code via KVM_SET_VCPU_EVENTS. Failure to drop the bits
on exception injection results in failed VM-Entry, as VMX disallows
setting bits 31:16. Setting the bits on VM-Exit would at best confuse
L1, and at worse induce a nested VM-Entry failure, e.g. if L1 decided to
reinject the exception back into L2.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20220830231614.3580124-3-seanjc@google.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit c2fe3cd4604ac87c587db05d41843d667dc43815 ]
Split out VMX's checks on CR4.VMXE to a dedicated hook, .is_valid_cr4(),
and invoke the new hook from kvm_valid_cr4(). This fixes an issue where
KVM_SET_SREGS would return success while failing to actually set CR4.
Fixing the issue by explicitly checking kvm_x86_ops.set_cr4()'s return
in __set_sregs() is not a viable option as KVM has already stuffed a
variety of vCPU state.
Note, kvm_valid_cr4() and is_valid_cr4() have different return types and
inverted semantics. This will be remedied in a future patch.
Fixes: 5e1746d620 ("KVM: nVMX: Allow setting the VMXE bit in CR4")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a447e38a7fadb2e554c3942dda183e55cccd5df0 ]
Drop vmx_set_cr4()'s explicit check on the 'nested' module param now
that common x86 handles the check by incorporating VMXE into the CR4
reserved bits, via kvm_cpu_caps. X86_FEATURE_VMX is set in kvm_cpu_caps
(by vmx_set_cpu_caps()), if and only if 'nested' is true.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d3a9e4146a6f79f19430bca3f2a4d6ebaaffe36b ]
Drop vmx_set_cr4()'s somewhat hidden guest_cpuid_has() check on VMXE now
that common x86 handles the check by incorporating VMXE into the CR4
reserved bits, i.e. in cr4_guest_rsvd_bits. This fixes a bug where KVM
incorrectly rejects KVM_SET_SREGS with CR4.VMXE=1 if it's executed
before KVM_SET_CPUID{,2}.
Fixes: 5e1746d620 ("KVM: nVMX: Allow setting the VMXE bit in CR4")
Reported-by: Stas Sergeev <stsp@users.sourceforge.net>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit bea7e31a5caccb6fe8ed989c065072354f0ecb52 upstream.
For legacy IBRS to work, the IBRS bit needs to be always re-written
after vmexit, even if it's already on.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fc02735b14fff8c6678b521d324ade27b1a3d4cf upstream.
On eIBRS systems, the returns in the vmexit return path from
__vmx_vcpu_run() to vmx_vcpu_run() are exposed to RSB poisoning attacks.
Fix that by moving the post-vmexit spec_ctrl handling to immediately
after the vmexit.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bb06650634d3552c0f8557e9d16aa1a408040e28 upstream.
Convert __vmx_vcpu_run()'s 'launched' argument to 'flags', in
preparation for doing SPEC_CTRL handling immediately after vmexit, which
will need another flag.
This is much easier than adding a fourth argument, because this code
supports both 32-bit and 64-bit, and the fourth argument on 32-bit would
have to be pushed on the stack.
Note that __vmx_vcpu_run_flags() is called outside of the noinstr
critical section because it will soon start calling potentially
traceable functions.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 150f17bfab37e981ba03b37440638138ff2aa9ec upstream.
Replace inline assembly in nested_vmx_check_vmentry_hw
with a call to __vmx_vcpu_run. The function is not
performance critical, so (double) GPR save/restore
in __vmx_vcpu_run can be tolerated, as far as performance
effects are concerned.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Reviewed-and-tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[sean: dropped versioning info from changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201231002702.2223707-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit eba04b20e4861d9bdbd8470a13c0c6e824521a36 upstream.
Switch to GFP_KERNEL_ACCOUNT for a handful of allocations that are
clearly associated with a single task/VM.
Note, there are a several SEV allocations that aren't accounted, but
those can (hopefully) be fixed by using the local stack for memory.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210331023025.2485960-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sudip: adjust context]
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 027bbb884be006b05d9c577d6401686053aa789e upstream
The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an
accurate indicator on all CPUs of whether the VERW instruction will
overwrite fill buffers. FB_CLEAR enumeration in
IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not
vulnerable to MDS/TAA, indicating that microcode does overwrite fill
buffers.
Guests running in VMM environments may not be aware of all the
capabilities/vulnerabilities of the host CPU. Specifically, a guest may
apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable
to MDS/TAA even when the physical CPU is not. On CPUs that enumerate
FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill
buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS
during VMENTER and resetting on VMEXIT. For guests that enumerate
FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM
will not use FB_CLEAR_DIS.
Irrespective of guest state, host overwrites CPU buffers before VMENTER
to protect itself from an MMIO capable guest, as part of mitigation for
MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca upstream
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst.
These vulnerabilities are broadly categorized as:
Device Register Partial Write (DRPW):
Some endpoint MMIO registers incorrectly handle writes that are
smaller than the register size. Instead of aborting the write or only
copying the correct subset of bytes (for example, 2 bytes for a 2-byte
write), more bytes than specified by the write transaction may be
written to the register. On some processors, this may expose stale
data from the fill buffers of the core that created the write
transaction.
Shared Buffers Data Sampling (SBDS):
After propagators may have moved data around the uncore and copied
stale data into client core fill buffers, processors affected by MFBDS
can leak data from the fill buffer.
Shared Buffers Data Read (SBDR):
It is similar to Shared Buffer Data Sampling (SBDS) except that the
data is directly read into the architectural software-visible state.
An attacker can use these vulnerabilities to extract data from CPU fill
buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill
buffers using the VERW instruction before returning to a user or a
guest.
On CPUs not affected by MDS and TAA, user application cannot sample data
from CPU fill buffers using MDS or TAA. A guest with MMIO access can
still use DRPW or SBDR to extract data architecturally. Mitigate it with
VERW instruction to clear fill buffers before VMENTER for MMIO capable
guests.
Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control
the mitigation.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b9bed78e2fa9571b7c983b20666efa0009030c71 ]
Set vmcs.GUEST_PENDING_DBG_EXCEPTIONS.BS, a.k.a. the pending single-step
breakpoint flag, when re-injecting a #DB with RFLAGS.TF=1, and STI or
MOVSS blocking is active. Setting the flag is necessary to make VM-Entry
consistency checks happy, as VMX has an invariant that if RFLAGS.TF is
set and STI/MOVSS blocking is true, then the previous instruction must
have been STI or MOV/POP, and therefore a single-step #DB must be pending
since the RFLAGS.TF cannot have been set by the previous instruction,
i.e. the one instruction delay after setting RFLAGS.TF must have already
expired.
Normally, the CPU sets vmcs.GUEST_PENDING_DBG_EXCEPTIONS.BS appropriately
when recording guest state as part of a VM-Exit, but #DB VM-Exits
intentionally do not treat the #DB as "guest state" as interception of
the #DB effectively makes the #DB host-owned, thus KVM needs to manually
set PENDING_DBG.BS when forwarding/re-injecting the #DB to the guest.
Note, although this bug can be triggered by guest userspace, doing so
requires IOPL=3, and guest userspace running with IOPL=3 has full access
to all I/O ports (from the guest's perspective) and can crash/reboot the
guest any number of ways. IOPL=3 is required because STI blocking kicks
in if and only if RFLAGS.IF is toggled 0=>1, and if CPL>IOPL, STI either
takes a #GP or modifies RFLAGS.VIF, not RFLAGS.IF.
MOVSS blocking can be initiated by userspace, but can be coincident with
a #DB if and only if DR7.GD=1 (General Detect enabled) and a MOV DR is
executed in the MOVSS shadow. MOV DR #GPs at CPL>0, thus MOVSS blocking
is problematic only for CPL0 (and only if the guest is crazy enough to
access a DR in a MOVSS shadow). All other sources of #DBs are either
suppressed by MOVSS blocking (single-step, code fetch, data, and I/O),
are mutually exclusive with MOVSS blocking (T-bit task switch), or are
already handled by KVM (ICEBP, a.k.a. INT1).
This bug was originally found by running tests[1] created for XSA-308[2].
Note that Xen's userspace test emits ICEBP in the MOVSS shadow, which is
presumably why the Xen bug was deemed to be an exploitable DOS from guest
userspace. KVM already handles ICEBP by skipping the ICEBP instruction
and thus clears MOVSS blocking as a side effect of its "emulation".
[1] http://xenbits.xenproject.org/docs/xtf/xsa-308_2main_8c_source.html
[2] https://xenbits.xen.org/xsa/advisory-308.html
Reported-by: David Woodhouse <dwmw2@infradead.org>
Reported-by: Alexander Graf <graf@amazon.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220120000624.655815-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit fdba608f15e2427419997b0898750a49a735afcb upstream.
Drop a check that guards triggering a posted interrupt on the currently
running vCPU, and more importantly guards waking the target vCPU if
triggering a posted interrupt fails because the vCPU isn't IN_GUEST_MODE.
If a vIRQ is delivered from asynchronous context, the target vCPU can be
the currently running vCPU and can also be blocking, in which case
skipping kvm_vcpu_wake_up() is effectively dropping what is supposed to
be a wake event for the vCPU.
The "do nothing" logic when "vcpu == running_vcpu" mostly works only
because the majority of calls to ->deliver_posted_interrupt(), especially
when using posted interrupts, come from synchronous KVM context. But if
a device is exposed to the guest using vfio-pci passthrough, the VFIO IRQ
and vCPU are bound to the same pCPU, and the IRQ is _not_ configured to
use posted interrupts, wake events from the device will be delivered to
KVM from IRQ context, e.g.
vfio_msihandler()
|
|-> eventfd_signal()
|
|-> ...
|
|-> irqfd_wakeup()
|
|->kvm_arch_set_irq_inatomic()
|
|-> kvm_irq_delivery_to_apic_fast()
|
|-> kvm_apic_set_irq()
This also aligns the non-nested and nested usage of triggering posted
interrupts, and will allow for additional cleanups.
Fixes: 379a3c8ee4 ("KVM: VMX: Optimize posted-interrupt delivery for timer fastpath")
Cc: stable@vger.kernel.org
Reported-by: Longpeng (Mike) <longpeng2@huawei.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2b4a5a5d56881ece3c66b9a9a8943a6f41bd7349 upstream.
Flush the current VPID when handling KVM_REQ_TLB_FLUSH_GUEST instead of
always flushing vpid01. Any TLB flush that is triggered when L2 is
active is scoped to L2's VPID (if it has one), e.g. if L2 toggles CR4.PGE
and L1 doesn't intercept PGE writes, then KVM's emulation of the TLB
flush needs to be applied to L2's VPID.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 07ffaf343e34 ("KVM: nVMX: Sync all PGDs on nested transition with shadow paging")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7dfbc624eb5726367900c8d86deff50836240361 upstream.
Check the current VMCS controls to determine if an MSR write will be
intercepted due to MSR bitmaps being disabled. In the nested VMX case,
KVM will disable MSR bitmaps in vmcs02 if they're disabled in vmcs12 or
if KVM can't map L1's bitmaps for whatever reason.
Note, the bad behavior is relatively benign in the current code base as
KVM sets all bits in vmcs02's MSR bitmap by default, clears bits if and
only if L0 KVM also disables interception of an MSR, and only uses the
buggy helper for MSR_IA32_SPEC_CTRL. Because KVM explicitly tests WRMSR
before disabling interception of MSR_IA32_SPEC_CTRL, the flawed check
will only result in KVM reading MSR_IA32_SPEC_CTRL from hardware when it
isn't strictly necessary.
Tag the fix for stable in case a future fix wants to use
msr_write_intercepted(), in which case a buggy implementation in older
kernels could prove subtly problematic.
Fixes: d28b387fb7 ("KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109013047.2041518-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ec5a4919fa7b7d8c7a2af1c7e799b1fe4be84343 upstream.
Unregister KVM's posted interrupt wakeup handler during unsetup so that a
spurious interrupt that arrives after kvm_intel.ko is unloaded doesn't
call into freed memory.
Fixes: bf9f6ac8d7 ("KVM: Update Posted-Interrupts Descriptor when vCPU is blocked")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009001107.3936588-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3a25dfa67fe40f3a2690af2c562e0947a78bd6a0 upstream.
Since commit c300ab9f08 ("KVM: x86: Replace late check_nested_events() hack with
more precise fix") there is no longer the certainty that check_nested_events()
tries to inject an external interrupt vmexit to L1 on every call to vcpu_enter_guest.
Therefore, even in that case we need to set KVM_REQ_EVENT. This ensures
that inject_pending_event() is called, and from there kvm_check_nested_events().
Fixes: c300ab9f08 ("KVM: x86: Replace late check_nested_events() hack with more precise fix")
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8d68bad6d869fae8f4d50ab6423538dec7da72d1 upstream.
Windows Server 2022 with Hyper-V role enabled failed to boot on KVM when
enlightened VMCS is advertised. Debugging revealed there are two exposed
secondary controls it is not happy with: SECONDARY_EXEC_ENABLE_VMFUNC and
SECONDARY_EXEC_SHADOW_VMCS. These controls are known to be unsupported,
as there are no corresponding fields in eVMCSv1 (see the comment above
EVMCS1_UNSUPPORTED_2NDEXEC definition).
Previously, commit 31de3d2500 ("x86/kvm/hyper-v: move VMX controls
sanitization out of nested_enable_evmcs()") introduced the required
filtering mechanism for VMX MSRs but for some reason put only known
to be problematic (and not full EVMCS1_UNSUPPORTED_* lists) controls
there.
Note, Windows Server 2022 seems to have gained some sanity check for VMX
MSRs: it doesn't even try to launch a guest when there's something it
doesn't like, nested_evmcs_check_controls() mechanism can't catch the
problem.
Let's be bold this time and instead of playing whack-a-mole just filter out
all unsupported controls from VMX MSRs.
Fixes: 31de3d2500 ("x86/kvm/hyper-v: move VMX controls sanitization out of nested_enable_evmcs()")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210907163530.110066-1-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b33bb78a1fada6445c265c585ee0dd0fc6279102 upstream.
Mark #ACs that won't be reinjected to the guest as wanted by L0 so that
KVM handles split-lock #AC from L2 instead of forwarding the exception to
L1. Split-lock #AC isn't yet virtualized, i.e. L1 will treat it like a
regular #AC and do the wrong thing, e.g. reinject it into L2.
Fixes: e6f8b6c12f ("KVM: VMX: Extend VMXs #AC interceptor to handle split lock #AC in guest")
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622172244.3561540-1-seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 160457140187c5fb127b844e5a85f87f00a01b14 upstream.
Defer the call to account guest time until after servicing any IRQ(s)
that happened in the guest or immediately after VM-Exit. Tick-based
accounting of vCPU time relies on PF_VCPU being set when the tick IRQ
handler runs, and IRQs are blocked throughout the main sequence of
vcpu_enter_guest(), including the call into vendor code to actually
enter and exit the guest.
This fixes a bug where reported guest time remains '0', even when
running an infinite loop in the guest:
https://bugzilla.kernel.org/show_bug.cgi?id=209831
Fixes: 87fa7f3e98 ("x86/kvm: Move context tracking where it belongs")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210505002735.1684165-4-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5104d7ffcf24749939bea7fdb5378d186473f890 upstream.
Disable preemption when probing a user return MSR via RDSMR/WRMSR. If
the MSR holds a different value per logical CPU, the WRMSR could corrupt
the host's value if KVM is preempted between the RDMSR and WRMSR, and
then rescheduled on a different CPU.
Opportunistically land the helper in common x86, SVM will use the helper
in a future commit.
Fixes: 4be5341026 ("KVM: VMX: Initialize vmx->guest_msrs[] right after allocation")
Cc: stable@vger.kernel.org
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-6-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8aec21c04caa2000f91cf8822ae0811e4b0c3971 upstream.
Clear KVM's RDPID capability if the ENABLE_RDTSCP secondary exec control is
unsupported. Despite being enumerated in a separate CPUID flag, RDPID is
bundled under the same VMCS control as RDTSCP and will #UD in VMX non-root
if ENABLE_RDTSCP is not enabled.
Fixes: 41cd02c6f7 ("kvm: x86: Expose RDPID in KVM_GET_SUPPORTED_CPUID")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-2-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a217a6593cec8b315d4c2f344bae33660b39b703 upstream.
In VMX, the host NMI handler needs to be invoked after NMI VM-Exit.
Before commit 1a5488ef0d ("KVM: VMX: Invoke NMI handler via indirect
call instead of INTn"), this was done by INTn ("int $2"). But INTn
microcode is relatively expensive, so the commit reworked NMI VM-Exit
handling to invoke the kernel handler by function call.
But this missed a detail. The NMI entry point for direct invocation is
fetched from the IDT table and called on the kernel stack. But on 64-bit
the NMI entry installed in the IDT expects to be invoked on the IST stack.
It relies on the "NMI executing" variable on the IST stack to work
correctly, which is at a fixed position in the IST stack. When the entry
point is unexpectedly called on the kernel stack, the RSP-addressed "NMI
executing" variable is obviously also on the kernel stack and is
"uninitialized" and can cause the NMI entry code to run in the wrong way.
Provide a non-ist entry point for VMX which shares the C-function with
the regular NMI entry and invoke the new asm entry point instead.
On 32-bit this just maps to the regular NMI entry point as 32-bit has no
ISTs and is not affected.
[ tglx: Made it independent for backporting, massaged changelog ]
Fixes: 1a5488ef0d ("KVM: VMX: Invoke NMI handler via indirect call instead of INTn")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Lai Jiangshan <laijs@linux.alibaba.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87r1imi8i1.ffs@nanos.tec.linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit dbdd096a5a74b94f6b786a47baef2085859b0dce ]
Disable pass-through of the FS and GS base MSRs for 32-bit KVM. Intel's
SDM unequivocally states that the MSRs exist if and only if the CPU
supports x86-64. FS_BASE and GS_BASE are mostly a non-issue; a clever
guest could opportunistically use the MSRs without issue. KERNEL_GS_BASE
is a bigger problem, as a clever guest would subtly be broken if it were
migrated, as KVM disallows software access to the MSRs, and unlike the
direct variants, KERNEL_GS_BASE needs to be explicitly migrated as it's
not captured in the VMCS.
Fixes: 25c5f225be ("KVM: VMX: Enable MSR Bitmap feature")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210422023831.3473491-1-seanjc@google.com>
[*NOT* for stable kernels. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d9e46d344e62a0d56fd86a8289db5bed8a57c92e ]
If the VM entry/exit controls for loading/saving MSR_EFER are either
not available (an older processor or explicitly disabled) or not
used (host and guest values are the same), reading GUEST_IA32_EFER
from the VMCS returns an inaccurate value.
Because of this, in dump_vmcs() don't use GUEST_IA32_EFER to decide
whether to print the PDPTRs - always do so if the fields exist.
Fixes: 4eb64dce8d ("KVM: x86: dump VMCS on invalid entry")
Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210318120841.133123-2-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 04c4f2ee3f68c9a4bf1653d15f1a9a435ae33f7a ]
__vmx_handle_exit() uses vcpu->run->internal.ndata as an index for
an array access. Since vcpu->run is (can be) mapped to a user address
space with a writer permission, the 'ndata' could be updated by the
user process at anytime (the user process can set it to outside the
bounds of the array).
So, it is not safe that __vmx_handle_exit() uses the 'ndata' that way.
Fixes: 1aa561b1a4 ("kvm: x86: Add "last CPU" to some KVM_EXIT information")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210413154739.490299-1-reijiw@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8e53324021645f820a01bf8aa745711c802c8542 ]
Convert vcpu_vmx.exit_reason from a u32 to a union (of size u32). The
full VM_EXIT_REASON field is comprised of a 16-bit basic exit reason in
bits 15:0, and single-bit modifiers in bits 31:16.
Historically, KVM has only had to worry about handling the "failed
VM-Entry" modifier, which could only be set in very specific flows and
required dedicated handling. I.e. manually stripping the FAILED_VMENTRY
bit was a somewhat viable approach. But even with only a single bit to
worry about, KVM has had several bugs related to comparing a basic exit
reason against the full exit reason store in vcpu_vmx.
Upcoming Intel features, e.g. SGX, will add new modifier bits that can
be set on more or less any VM-Exit, as opposed to the significantly more
restricted FAILED_VMENTRY, i.e. correctly handling everything in one-off
flows isn't scalable. Tracking exit reason in a union forces code to
explicitly choose between consuming the full exit reason and the basic
exit, and is a convenient way to document and access the modifiers.
No functional change intended.
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20201106090315.18606-2-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7131636e7ea5b50ca910f8953f6365ef2d1f741c upstream.
Userspace that does not know about KVM_GET_MSR_FEATURE_INDEX_LIST
will generally use the default value for MSR_IA32_ARCH_CAPABILITIES.
When this happens and the host has tsx=on, it is possible to end up with
virtual machines that have HLE and RTM disabled, but TSX_CTRL available.
If the fleet is then switched to tsx=off, kvm_get_arch_capabilities()
will clear the ARCH_CAP_TSX_CTRL_MSR bit and it will not be possible to
use the tsx=off hosts as migration destinations, even though the guests
do not have TSX enabled.
To allow this migration, allow guests to write to their TSX_CTRL MSR,
while keeping the host MSR unchanged for the entire life of the guests.
This ensures that TSX remains disabled and also saves MSR reads and
writes, and it's okay to do because with tsx=off we know that guests will
not have the HLE and RTM features in their CPUID. (If userspace sets
bogus CPUID data, we do not expect HLE and RTM to work in guests anyway).
Cc: stable@vger.kernel.org
Fixes: cbbaa2727a ("KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 39485ed95d6b83b62fa75c06c2c4d33992e0d971 upstream.
Until commit e7c587da12 ("x86/speculation: Use synthetic bits for
IBRS/IBPB/STIBP"), KVM was testing both Intel and AMD CPUID bits before
allowing the guest to write MSR_IA32_SPEC_CTRL and MSR_IA32_PRED_CMD.
Testing only Intel bits on VMX processors, or only AMD bits on SVM
processors, fails if the guests are created with the "opposite" vendor
as the host.
While at it, also tweak the host CPU check to use the vendor-agnostic
feature bit X86_FEATURE_IBPB, since we only care about the availability
of the MSR on the host here and not about specific CPUID bits.
Fixes: e7c587da12 ("x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP")
Cc: stable@vger.kernel.org
Reported-by: Denis V. Lunev <den@openvz.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It was noticed that evmcs_sanitize_exec_ctrls() is not being executed
nowadays despite the code checking 'enable_evmcs' static key looking
correct. Turns out, static key magic doesn't work in '__init' section
(and it is unclear when things changed) but setup_vmcs_config() is called
only once per CPU so we don't really need it to. Switch to checking
'enlightened_vmcs' instead, it is supposed to be in sync with
'enable_evmcs'.
Opportunistically make evmcs_sanitize_exec_ctrls '__init' and drop unneeded
extra newline from it.
Reported-by: Yang Weijiang <weijiang.yang@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201014143346.2430936-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull KVM fixes from Paolo Bonzini:
"Two fixes for this merge window, and an unrelated bugfix for a host
hang"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: ioapic: break infinite recursion on lazy EOI
KVM: vmx: rename pi_init to avoid conflict with paride
KVM: x86/mmu: Avoid modulo operator on 64-bit value to fix i386 build
allyesconfig results in:
ld: drivers/block/paride/paride.o: in function `pi_init':
(.text+0x1340): multiple definition of `pi_init'; arch/x86/kvm/vmx/posted_intr.o:posted_intr.c:(.init.text+0x0): first defined here
make: *** [Makefile:1164: vmlinux] Error 1
because commit:
commit 8888cdd099
Author: Xiaoyao Li <xiaoyao.li@intel.com>
Date: Wed Sep 23 11:31:11 2020 -0700
KVM: VMX: Extract posted interrupt support to separate files
added another pi_init(), though one already existed in the paride code.
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...