Commit Graph

10 Commits

Author SHA1 Message Date
Pu Wen
8cf6b66585 x86/cpu/hygon: Fix the CPU topology evaluation for real
commit ee545b94d39a00c93dc98b1dbcbcf731d2eadeb4 upstream.

Hygon processors with a model ID > 3 have CPUID leaf 0xB correctly
populated and don't need the fixed package ID shift workaround. The fixup
is also incorrect when running in a guest.

Fixes: e0ceeae708 ("x86/CPU/hygon: Fix phys_proc_id calculation logic for multi-die processors")
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/tencent_594804A808BD93A4EBF50A994F228E3A7F07@qq.com
Link: https://lore.kernel.org/r/20230814085112.089607918@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-28 16:54:55 +00:00
Borislav Petkov
154d744fbe x86/cpu: Restore AMD's DE_CFG MSR after resume
commit 2632daebafd04746b4b96c2f26a6021bc38f6209 upstream.

DE_CFG contains the LFENCE serializing bit, restore it on resume too.
This is relevant to older families due to the way how they do S3.

Unify and correct naming while at it.

Fixes: e4d0e84e49 ("x86/cpu/AMD: Make LFENCE a serializing instruction")
Reported-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Reported-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-16 09:57:20 +01:00
Peter Zijlstra
ea1aa926f4 x86/cpu/amd: Add Spectral Chicken
commit d7caac991feeef1b871ee6988fd2c9725df09039 upstream.

Zen2 uarchs have an undocumented, unnamed, MSR that contains a chicken
bit for some speculation behaviour. It needs setting.

Note: very belatedly AMD released naming; it's now officially called
      MSR_AMD64_DE_CFG2 and MSR_AMD64_DE_CFG2_SUPPRESS_NOBR_PRED_BIT
      but shall remain the SPECTRAL CHICKEN.

Suggested-by: Andrew Cooper <Andrew.Cooper3@citrix.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-25 11:26:45 +02:00
Jane Malalane
df8a74fc15 x86/cpu: Fix migration safety with X86_BUG_NULL_SEL
commit 415de44076640483648d6c0f6d645a9ee61328ad upstream.

Currently, Linux probes for X86_BUG_NULL_SEL unconditionally which
makes it unsafe to migrate in a virtualised environment as the
properties across the migration pool might differ.

To be specific, the case which goes wrong is:

1. Zen1 (or earlier) and Zen2 (or later) in a migration pool
2. Linux boots on Zen2, probes and finds the absence of X86_BUG_NULL_SEL
3. Linux is then migrated to Zen1

Linux is now running on a X86_BUG_NULL_SEL-impacted CPU while believing
that the bug is fixed.

The only way to address the problem is to fully trust the "no longer
affected" CPUID bit when virtualised, because in the above case it would
be clear deliberately to indicate the fact "you might migrate to
somewhere which has this behaviour".

Zen3 adds the NullSelectorClearsBase CPUID bit to indicate that loading
a NULL segment selector zeroes the base and limit fields, as well as
just attributes. Zen2 also has this behaviour but doesn't have the NSCB
bit.

 [ bp: Minor touchups. ]

Signed-off-by: Jane Malalane <jane.malalane@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20211021104744.24126-1-jane.malalane@citrix.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18 14:03:40 +01:00
Yazen Ghannam
700d098ace x86/CPU/AMD: Save AMD NodeId as cpu_die_id
[ Upstream commit 028c221ed1904af9ac3c5162ee98f48966de6b3d ]

AMD systems provide a "NodeId" value that represents a global ID
indicating to which "Node" a logical CPU belongs. The "Node" is a
physical structure equivalent to a Die, and it should not be confused
with logical structures like NUMA nodes. Logical nodes can be adjusted
based on firmware or other settings whereas the physical nodes/dies are
fixed based on hardware topology.

The NodeId value can be used when a physical ID is needed by software.

Save the AMD NodeId to struct cpuinfo_x86.cpu_die_id. Use the value
from CPUID or MSR as appropriate. Default to phys_proc_id otherwise.
Do so for both AMD and Hygon systems.

Drop the node_id parameter from cacheinfo_*_init_llc_id() as it is no
longer needed.

Update the x86 topology documentation.

Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201109210659.754018-2-Yazen.Ghannam@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-12-30 11:54:29 +01:00
Peter Zijlstra
0cd39f4600 locking/seqlock, headers: Untangle the spaghetti monster
By using lockdep_assert_*() from seqlock.h, the spaghetti monster
attacked.

Attack back by reducing seqlock.h dependencies from two key high level headers:

 - <linux/seqlock.h>:               -Remove <linux/ww_mutex.h>
 - <linux/time.h>:                  -Remove <linux/seqlock.h>
 - <linux/sched.h>:                 +Add    <linux/seqlock.h>

The price was to add it to sched.h ...

Core header fallout, we add direct header dependencies instead of gaining them
parasitically from higher level headers:

 - <linux/dynamic_queue_limits.h>:  +Add <asm/bug.h>
 - <linux/hrtimer.h>:               +Add <linux/seqlock.h>
 - <linux/ktime.h>:                 +Add <asm/bug.h>
 - <linux/lockdep.h>:               +Add <linux/smp.h>
 - <linux/sched.h>:                 +Add <linux/seqlock.h>
 - <linux/videodev2.h>:             +Add <linux/kernel.h>

Arch headers fallout:

 - PARISC: <asm/timex.h>:           +Add <asm/special_insns.h>
 - SH:     <asm/io.h>:              +Add <asm/page.h>
 - SPARC:  <asm/timer_64.h>:        +Add <uapi/asm/asi.h>
 - SPARC:  <asm/vvar.h>:            +Add <asm/processor.h>, <asm/barrier.h>
                                    -Remove <linux/seqlock.h>
 - X86:    <asm/fixmap.h>:          +Add <asm/pgtable_types.h>
                                    -Remove <asm/acpi.h>

There's also a bunch of parasitic header dependency fallout in .c files, not listed
separately.

[ mingo: Extended the changelog, split up & fixed the original patch. ]

Co-developed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200804133438.GK2674@hirez.programming.kicks-ass.net
2020-08-06 16:13:13 +02:00
Josh Poimboeuf
be261ffce6 x86: Remove X86_FEATURE_MFENCE_RDTSC
AMD and Intel both have serializing lfence (X86_FEATURE_LFENCE_RDTSC).
They've both had it for a long time, and AMD has had it enabled in Linux
since Spectre v1 was announced.

Back then, there was a proposal to remove the serializing mfence feature
bit (X86_FEATURE_MFENCE_RDTSC), since both AMD and Intel have
serializing lfence.  At the time, it was (ahem) speculated that some
hypervisors might not yet support its removal, so it remained for the
time being.

Now a year-and-a-half later, it should be safe to remove.

I asked Andrew Cooper about whether it's still needed:

  So if you're virtualised, you've got no choice in the matter.  lfence
  is either dispatch-serialising or not on AMD, and you won't be able to
  change it.

  Furthermore, you can't accurately tell what state the bit is in, because
  the MSR might not be virtualised at all, or may not reflect the true
  state in hardware.  Worse still, attempting to set the bit may not be
  successful even if there isn't a fault for doing so.

  Xen sets the DE_CFG bit unconditionally, as does Linux by the looks of
  things (see MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT).  ISTR other hypervisor
  vendors saying the same, but I don't have any information to hand.

  If you are running under a hypervisor which has been updated, then
  lfence will almost certainly be dispatch-serialising in practice, and
  you'll almost certainly see the bit already set in DE_CFG.  If you're
  running under a hypervisor which hasn't been patched since Spectre,
  you've already lost in many more ways.

  I'd argue that X86_FEATURE_MFENCE_RDTSC is not worth keeping.

So remove it.  This will reduce some code rot, and also make it easier
to hook barrier_nospec() up to a cmdline disable for performance
raisins, without having to need an alternative_3() macro.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/d990aa51e40063acb9888e8c1b688e41355a9588.1562255067.git.jpoimboe@redhat.com
2019-07-22 12:00:51 +02:00
Pu Wen
e0ceeae708 x86/CPU/hygon: Fix phys_proc_id calculation logic for multi-die processors
The Hygon family 18h multi-die processor platform supports 1, 2 or
4-Dies per socket. The topology looks like this:

  System View (with 1-Die 2-Socket):
             |------------|
           ------       -----
   SOCKET0 | D0 |       | D1 |  SOCKET1
           ------       -----

  System View (with 2-Die 2-socket):
             --------------------
             |     -------------|------
             |     |            |     |
           ------------       ------------
   SOCKET0 | D1 -- D0 |       | D3 -- D2 | SOCKET1
           ------------       ------------

  System View (with 4-Die 2-Socket) :
             --------------------
             |     -------------|------
             |     |            |     |
           ------------       ------------
           | D1 -- D0 |       | D7 -- D6 |
           | |  \/ |  |       | |  \/ |  |
   SOCKET0 | |  /\ |  |       | |  /\ |  | SOCKET1
           | D2 -- D3 |       | D4 -- D5 |
           ------------       ------------
             |     |            |     |
             ------|------------|     |
                   --------------------

Currently

  phys_proc_id = initial_apicid >> bits

calculates the physical processor ID from the initial_apicid by shifting
*bits*.

However, this does not work for 1-Die and 2-Die 2-socket systems.

According to document [1] section 2.1.11.1, the bits is the value of
CPUID_Fn80000008_ECX[12:15]. The possible values are 4, 5 or 6 which
mean:

  4 - 1 die
  5 - 2 dies
  6 - 3/4 dies.

Hygon programs the initial ApicId the same way as AMD. The ApicId is
read from CPUID_Fn00000001_EBX (see section 2.1.11.1 of referrence [1])
and the definition is as below (see section 2.1.10.2.1.3 of [1]):

      -------------------------------------------------
  Bit |     6     |   5  4  |    3   |    2   1   0   |
      |-----------|---------|--------|----------------|
  IDs | Socket ID | Node ID | CCX ID | Core/Thread ID |
      -------------------------------------------------

So for 3/4-Die configurations, the bits variable is 6, which is the same
as the ApicID definition field.

For 1-Die and 2-Die configurations, bits is 4 or 5, which will cause the
right shifted result to not be exactly the value of socket ID.

However, the socket ID should be obtained from ApicId[6]. To fix the
problem and match the ApicID field definition, set the shift bits to 6
for all Hygon family 18h multi-die CPUs.

Because AMD doesn't have 2-Socket systems with 1-Die/2-Die processors
(see reference [2]), this doesn't need to be changed on the AMD side but
only for Hygon.

References:
[1] https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
[2] https://www.amd.com/en/products/specifications/processors

 [bp: heavily massage commit message. ]

Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1553355740-19999-1-git-send-email-puwen@hygon.cn
2019-03-23 17:41:09 +01:00
Pu Wen
d4f7423efd x86/cpu: Get cache info and setup cache cpumap for Hygon Dhyana
The Hygon Dhyana CPU has a topology extensions bit in CPUID. With
this bit, the kernel can get the cache information. So add support in
cpuid4_cache_lookup_regs() to get the correct cache size.

The Hygon Dhyana CPU also discovers num_cache_leaves via CPUID leaf
0x8000001d, so add support to it in find_num_cache_leaves().

Also add cacheinfo_hygon_init_llc_id() and init_hygon_cacheinfo()
functions to initialize Dhyana cache info. Setup cache cpumap in the
same way as AMD does.

Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: bp@alien8.de
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/2a686b2ac0e2f5a1f2f5f101124d9dd44f949731.1537533369.git.puwen@hygon.cn
2018-09-27 18:28:57 +02:00
Pu Wen
c9661c1e80 x86/cpu: Create Hygon Dhyana architecture support file
Add x86 architecture support for a new processor: Hygon Dhyana Family
18h. Carve out initialization code needed by Dhyana into a separate
compilation unit.

To identify Hygon Dhyana CPU, add a new vendor type X86_VENDOR_HYGON.

Since Dhyana uses AMD functionality to a large degree, select
CPU_SUP_AMD which provides that functionality.

 [ bp: drop explicit license statement as it has an SPDX tag already. ]

Signed-off-by: Pu Wen <puwen@hygon.cn>
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/1a882065223bacbde5726f3beaa70cebd8dcd814.1537533369.git.puwen@hygon.cn
2018-09-27 16:14:05 +02:00