Commit Graph

10226 Commits

Author SHA1 Message Date
Maciej S. Szmigiero
910caee346 KVM: x86: Ignore MSR_AMD64_TW_CFG access
commit 2770d4722036d6bd24bcb78e9cd7f6e572077d03 upstream.

Hyper-V enabled Windows Server 2022 KVM VM cannot be started on Zen1 Ryzen
since it crashes at boot with SYSTEM_THREAD_EXCEPTION_NOT_HANDLED +
STATUS_PRIVILEGED_INSTRUCTION (in other words, because of an unexpected #GP
in the guest kernel).

This is because Windows tries to set bit 8 in MSR_AMD64_TW_CFG and can't
handle receiving a #GP when doing so.

Give this MSR the same treatment that commit 2e32b71906
("x86, kvm: Add MSR_AMD64_BU_CFG2 to the list of ignored MSRs") gave
MSR_AMD64_BU_CFG2 under justification that this MSR is baremetal-relevant
only.
Although apparently it was then needed for Linux guests, not Windows as in
this case.

With this change, the aforementioned guest setup is able to finish booting
successfully.

This issue can be reproduced either on a Summit Ridge Ryzen (with
just "-cpu host") or on a Naples EPYC (with "-cpu host,stepping=1" since
EPYC is ordinarily stepping 2).

Alternatively, userspace could solve the problem by using MSR filters, but
forcing every userspace to define a filter isn't very friendly and doesn't
add much, if any, value.  The only potential hiccup is if one of these
"baremetal-only" MSRs ever requires actual emulation and/or has F/M/S
specific behavior.  But if that happens, then KVM can still punt *that*
handling to userspace since userspace MSR filters "win" over KVM's default
handling.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/1ce85d9c7c9e9632393816cf19c902e0a3f411f1.1697731406.git.maciej.szmigiero@oracle.com
[sean: call out MSR filtering alternative]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-28 16:54:56 +00:00
Mike Rapoport (IBM)
a7aa2f1ca8 x86/mm: Drop the 4 MB restriction on minimal NUMA node memory size
[ Upstream commit a1e2b8b36820d8c91275f207e77e91645b7c6836 ]

Qi Zheng reported crashes in a production environment and provided a
simplified example as a reproducer:

 |  For example, if we use Qemu to start a two NUMA node kernel,
 |  one of the nodes has 2M memory (less than NODE_MIN_SIZE),
 |  and the other node has 2G, then we will encounter the
 |  following panic:
 |
 |    BUG: kernel NULL pointer dereference, address: 0000000000000000
 |    <...>
 |    RIP: 0010:_raw_spin_lock_irqsave+0x22/0x40
 |    <...>
 |    Call Trace:
 |      <TASK>
 |      deactivate_slab()
 |      bootstrap()
 |      kmem_cache_init()
 |      start_kernel()
 |      secondary_startup_64_no_verify()

The crashes happen because of inconsistency between the nodemask that
has nodes with less than 4MB as memoryless, and the actual memory fed
into the core mm.

The commit:

  9391a3f9c7 ("[PATCH] x86_64: Clear more state when ignoring empty node in SRAT parsing")

... that introduced minimal size of a NUMA node does not explain why
a node size cannot be less than 4MB and what boot failures this
restriction might fix.

Fixes have been submitted to the core MM code to tighten up the
memory topologies it accepts and to not crash on weird input:

  mm: page_alloc: skip memoryless nodes entirely
  mm: memory_hotplug: drop memoryless node from fallback lists

Andrew has accepted them into the -mm tree, but there are no
stable SHA1's yet.

This patch drops the limitation for minimal node size on x86:

  - which works around the crash without the fixes to the core MM.
  - makes x86 topologies less weird,
  - removes an arbitrary and undocumented limitation on NUMA topologies.

[ mingo: Improved changelog clarity. ]

Reported-by: Qi Zheng <zhengqi.arch@bytedance.com>
Tested-by: Mario Casquero <mcasquer@redhat.com>
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@surriel.com>
Link: https://lore.kernel.org/r/ZS+2qqjEO5/867br@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28 16:54:49 +00:00
Adrian Hunter
14042d6d80 x86: Share definition of __is_canonical_address()
[ Upstream commit 1fb85d06ad6754796cd1b920639ca9d8840abefd ]

Reduce code duplication by moving canonical address code to a common header
file.

Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220131072453.2839535-3-adrian.hunter@intel.com
Stable-dep-of: f79936545fb1 ("x86/sev-es: Allow copy_from_kernel_nofault() in earlier boot")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:06:56 +01:00
David Howells
bdb7de7ed5 iov_iter, x86: Be consistent about the __user tag on copy_mc_to_user()
[ Upstream commit 066baf92bed934c9fb4bcee97a193f47aa63431c ]

copy_mc_to_user() has the destination marked __user on powerpc, but not on
x86; the latter results in a sparse warning in lib/iov_iter.c.

Fix this by applying the tag on x86 too.

Fixes: ec6347bb43 ("x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()")
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/20230925120309.1731676-3-dhowells@redhat.com
cc: Dan Williams <dan.j.williams@intel.com>
cc: Thomas Gleixner <tglx@linutronix.de>
cc: Ingo Molnar <mingo@redhat.com>
cc: Borislav Petkov <bp@alien8.de>
cc: Dave Hansen <dave.hansen@linux.intel.com>
cc: "H. Peter Anvin" <hpa@zytor.com>
cc: Alexander Viro <viro@zeniv.linux.org.uk>
cc: Jens Axboe <axboe@kernel.dk>
cc: Christoph Hellwig <hch@lst.de>
cc: Christian Brauner <christian@brauner.io>
cc: Matthew Wilcox <willy@infradead.org>
cc: Linus Torvalds <torvalds@linux-foundation.org>
cc: David Laight <David.Laight@ACULAB.COM>
cc: x86@kernel.org
cc: linux-block@vger.kernel.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-20 11:06:43 +01:00
Josh Poimboeuf
c761d34a7e x86/mm: Fix RESERVE_BRK() for older binutils
commit e32683c6f7d22ba624e0bfc58b02cf3348bdca63 upstream.

With binutils 2.26, RESERVE_BRK() causes a build failure:

  /tmp/ccnGOKZ5.s: Assembler messages:
  /tmp/ccnGOKZ5.s:98: Error: missing ')'
  /tmp/ccnGOKZ5.s:98: Error: missing ')'
  /tmp/ccnGOKZ5.s:98: Error: missing ')'
  /tmp/ccnGOKZ5.s:98: Error: junk at end of line, first unrecognized
  character is `U'

The problem is this line:

  RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE)

Specifically, the INIT_PGT_BUF_SIZE macro which (via PAGE_SIZE's use
_AC()) has a "1UL", which makes older versions of the assembler unhappy.
Unfortunately the _AC() macro doesn't work for inline asm.

Inline asm was only needed here to convince the toolchain to add the
STT_NOBITS flag.  However, if a C variable is placed in a section whose
name is prefixed with ".bss", GCC and Clang automatically set
STT_NOBITS.  In fact, ".bss..page_aligned" already relies on this trick.

So fix the build failure (and simplify the macro) by allocating the
variable in C.

Also, add NOLOAD to the ".brk" output section clause in the linker
script.  This is a failsafe in case the ".bss" prefix magic trick ever
stops working somehow.  If there's a section type mismatch, the GNU
linker will force the ".brk" output section to be STT_NOBITS.  The LLVM
linker will fail with a "section type mismatch" error.

Note this also changes the name of the variable from .brk.##name to
__brk_##name.  The variable names aren't actually used anywhere, so it's
harmless.

Fixes: a1e2c031ec39 ("x86/mm: Simplify RESERVE_BRK()")
Reported-by: Joe Damato <jdamato@fastly.com>
Reported-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Joe Damato <jdamato@fastly.com>
Link: https://lore.kernel.org/r/22d07a44c80d8e8e1e82b9a806ddc8c6bbb2606e.1654759036.git.jpoimboe@kernel.org
[nathan: Fix trivial conflict due to lack of 81519f778830]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-08 17:30:46 +01:00
Josh Poimboeuf
01a5e17e3e x86/mm: Simplify RESERVE_BRK()
commit a1e2c031ec3949b8c039b739c0b5bf9c30007b00 upstream.

RESERVE_BRK() reserves data in the .brk_reservation section.  The data
is initialized to zero, like BSS, so the macro specifies 'nobits' to
prevent the data from taking up space in the vmlinux binary.  The only
way to get the compiler to do that (without putting the variable in .bss
proper) is to use inline asm.

The macro also has a hack which encloses the inline asm in a discarded
function, which allows the size to be passed (global inline asm doesn't
allow inputs).

Remove the need for the discarded function hack by just stringifying the
size rather than supplying it as an input to the inline asm.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220506121631.133110232@infradead.org
[nathan: Resolve conflict due to lack of 2b6ff7dea670]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-08 17:30:46 +01:00
Thomas Gleixner
b9b197f659 x86/i8259: Skip probing when ACPI/MADT advertises PCAT compatibility
commit 128b0c9781c9f2651bea163cb85e52a6c7be0f9e upstream.

David and a few others reported that on certain newer systems some legacy
interrupts fail to work correctly.

Debugging revealed that the BIOS of these systems leaves the legacy PIC in
uninitialized state which makes the PIC detection fail and the kernel
switches to a dummy implementation.

Unfortunately this fallback causes quite some code to fail as it depends on
checks for the number of legacy PIC interrupts or the availability of the
real PIC.

In theory there is no reason to use the PIC on any modern system when
IO/APIC is available, but the dependencies on the related checks cannot be
resolved trivially and on short notice. This needs lots of analysis and
rework.

The PIC detection has been added to avoid quirky checks and force selection
of the dummy implementation all over the place, especially in VM guest
scenarios. So it's not an option to revert the relevant commit as that
would break a lot of other scenarios.

One solution would be to try to initialize the PIC on detection fail and
retry the detection, but that puts the burden on everything which does not
have a PIC.

Fortunately the ACPI/MADT table header has a flag field, which advertises
in bit 0 that the system is PCAT compatible, which means it has a legacy
8259 PIC.

Evaluate that bit and if set avoid the detection routine and keep the real
PIC installed, which then gets initialized (for nothing) and makes the rest
of the code with all the dependencies work again.

Fixes: e179f69141 ("x86, irq, pic: Probe for legacy PIC and set legacy_pic appropriately")
Reported-by: David Lazar <dlazar@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: David Lazar <dlazar@gmail.com>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Mario Limonciello <mario.limonciello@amd.com>
Cc: stable@vger.kernel.org
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218003
Link: https://lore.kernel.org/r/875y2u5s8g.ffs@tglx
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-08 17:30:46 +01:00
Borislav Petkov (AMD)
ec93456c02 x86/cpu: Fix AMD erratum #1485 on Zen4-based CPUs
commit f454b18e07f518bcd0c05af17a2239138bff52de upstream.

Fix erratum #1485 on Zen4 parts where running with STIBP disabled can
cause an #UD exception. The performance impact of the fix is negligible.

Reported-by: René Rebe <rene@exactcode.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: René Rebe <rene@exactcode.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/D99589F4-BC5D-430B-87B2-72C20370CF57@exactcode.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-25 11:54:15 +02:00
Kirill A. Shutemov
d20beafaa6 x86/boot/compressed: Reserve more memory for page tables
[ Upstream commit f530ee95b72e77b09c141c4b1a4b94d1199ffbd9 ]

The decompressor has a hard limit on the number of page tables it can
allocate. This limit is defined at compile-time and will cause boot
failure if it is reached.

The kernel is very strict and calculates the limit precisely for the
worst-case scenario based on the current configuration. However, it is
easy to forget to adjust the limit when a new use-case arises. The
worst-case scenario is rarely encountered during sanity checks.

In the case of enabling 5-level paging, a use-case was overlooked. The
limit needs to be increased by one to accommodate the additional level.
This oversight went unnoticed until Aaron attempted to run the kernel
via kexec with 5-level paging and unaccepted memory enabled.

Update wost-case calculations to include 5-level paging.

To address this issue, let's allocate some extra space for page tables.
128K should be sufficient for any use-case. The logic can be simplified
by using a single value for all kernel configurations.

[ Also add a warning, should this memory run low - by Dave Hansen. ]

Fixes: 34bbb0009f ("x86/boot/compressed: Enable 5-level paging during decompression stage")
Reported-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915070221.10266-1-kirill.shutemov@linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-23 11:01:09 +02:00
Sean Christopherson
28df38af32 x86/virt: Drop unnecessary check on extended CPUID level in cpu_has_svm()
[ Upstream commit 5df8ecfe3632d5879d1f154f7aa8de441b5d1c89 ]

Drop the explicit check on the extended CPUID level in cpu_has_svm(), the
kernel's cached CPUID info will leave the entire SVM leaf unset if said
leaf is not supported by hardware.  Prior to using cached information,
the check was needed to avoid false positives due to Intel's rather crazy
CPUID behavior of returning the values of the maximum supported leaf if
the specified leaf is unsupported.

Fixes: 682a810887 ("x86/kvm/svm: Simplify cpu_has_svm()")
Link: https://lore.kernel.org/r/20230721201859.2307736-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19 12:20:25 +02:00
Janusz Krzysztofik
3f0d83994e x86/mm: Fix PAT bit missing from page protection modify mask
[ Upstream commit 548cb932051fb6232ac983ed6673dae7bdf3cf4c ]

Visible glitches have been observed when running graphics applications on
Linux under Xen hypervisor.  Those observations have been confirmed with
failures from kms_pwrite_crc Intel GPU test that verifies data coherency
of DRM frame buffer objects using hardware CRC checksums calculated by
display controllers, exposed to userspace via debugfs.  Affected
processing paths have then been identified with new IGT test variants that
mmap the objects using different methods and caching modes [1].

When running as a Xen PV guest, Linux uses Xen provided PAT configuration
which is different from its native one.  In particular, Xen specific PTE
encoding of write-combining caching, likely used by graphics applications,
differs from the Linux default one found among statically defined minimal
set of supported modes.  Since Xen defines PTE encoding of the WC mode as
_PAGE_PAT, it no longer belongs to the minimal set, depends on correct
handling of _PAGE_PAT bit, and can be mismatched with write-back caching.

When a user calls mmap() for a DRM buffer object, DRM device specific
.mmap file operation, called from mmap_region(), takes care of setting PTE
encoding bits in a vm_page_prot field of an associated virtual memory area
structure.  Unfortunately, _PAGE_PAT bit is not preserved when the vma's
.vm_flags are then applied to .vm_page_prot via vm_set_page_prot().  Bits
to be preserved are determined with _PAGE_CHG_MASK symbol that doesn't
cover _PAGE_PAT.  As a consequence, WB caching is requested instead of WC
when running under Xen (also, WP is silently changed to WT, and UC
downgraded to UC_MINUS).  When running on bare metal, WC is not affected,
but WP and WT extra modes are unintentionally replaced with WC and UC,
respectively.

WP and WT modes, encoded with _PAGE_PAT bit set, were introduced by commit
281d4078be ("x86: Make page cache mode a real type").  Care was taken
to extend _PAGE_CACHE_MASK symbol with that additional bit, but that
symbol has never been used for identification of bits preserved when
applying page protection flags.  Support for all cache modes under Xen,
including the problematic WC mode, was then introduced by commit
47591df505 ("xen: Support Xen pv-domains using PAT").

The issue needs to be fixed by including _PAGE_PAT bit into a bitmask used
by pgprot_modify() for selecting bits to be preserved.  We can do that
either internally to pgprot_modify() (as initially proposed), or by making
_PAGE_PAT a part of _PAGE_CHG_MASK.  If we go for the latter then, since
_PAGE_PAT is the same as _PAGE_PSE, we need to note that _HPAGE_CHG_MASK
-- a huge pmds' counterpart of _PAGE_CHG_MASK, introduced by commit
c489f1257b ("thp: add pmd_modify"), defined as (_PAGE_CHG_MASK |
_PAGE_PSE) -- will no longer differ from _PAGE_CHG_MASK.  If such
modification of _PAGE_CHG_MASK was irrelevant to its users then one might
wonder why that new _HPAGE_CHG_MASK symbol was introduced instead of
reusing the existing one with that otherwise irrelevant bit (_PAGE_PSE in
that case) added.

Add _PAGE_PAT to _PAGE_CHG_MASK and _PAGE_PAT_LARGE to _HPAGE_CHG_MASK for
symmetry.  Split out common bits from both symbols to a common symbol for
clarity.

[ dhansen: tweak the solution changelog description ]

[1] https://gitlab.freedesktop.org/drm/igt-gpu-tools/-/commit/0f0754413f14

Fixes: 281d4078be ("x86: Make page cache mode a real type")
Signed-off-by: Janusz Krzysztofik <janusz.krzysztofik@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Shyti <andi.shyti@linux.intel.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Tested-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Link: https://gitlab.freedesktop.org/drm/intel/-/issues/7648
Link: https://lore.kernel.org/all/20230710073613.8006-2-janusz.krzysztofik%40linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19 12:20:11 +02:00
Borislav Petkov (AMD)
69712baf24 x86/CPU/AMD: Fix the DIV(0) initial fix attempt
commit f58d6fbcb7c848b7f2469be339bc571f2e9d245b upstream.

Initially, it was thought that doing an innocuous division in the #DE
handler would take care to prevent any leaking of old data from the
divider but by the time the fault is raised, the speculation has already
advanced too far and such data could already have been used by younger
operations.

Therefore, do the innocuous division on every exit to userspace so that
userspace doesn't see any potentially old data from integer divisions in
kernel space.

Do the same before VMRUN too, to protect host data from leaking into the
guest too.

Fixes: 77245f1c3c64 ("x86/CPU/AMD: Do not leak quotient data after a division by 0")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230811213824.10025-1-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 15:26:58 +02:00
Peter Zijlstra
06597b650b x86/cpu: Cleanup the untrain mess
commit e7c25c441e9e0fa75b4c83e0b26306b702cfe90d upstream.

Since there can only be one active return_thunk, there only needs be
one (matching) untrain_ret. It fundamentally doesn't make sense to
allow multiple untrain_ret at the same time.

Fold all the 3 different untrain methods into a single (temporary)
helper stub.

Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121149.042774962@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 15:26:57 +02:00
Peter Zijlstra
e0f50b0e41 x86/cpu: Rename srso_(.*)_alias to srso_alias_\1
commit 42be649dd1f2eee6b1fb185f1a231b9494cf095f upstream.

For a more consistent namespace.

  [ bp: Fixup names in the doc too. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.976236447@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 15:26:57 +02:00
Peter Zijlstra
0676a39253 x86/cpu: Rename original retbleed methods
commit d025b7bac07a6e90b6b98b487f88854ad9247c39 upstream.

Rename the original retbleed return thunk and untrain_ret to
retbleed_return_thunk() and retbleed_untrain_ret().

No functional changes.

Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.909378169@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 15:26:57 +02:00
Peter Zijlstra
8b0ff83e8a x86/cpu: Clean up SRSO return thunk mess
commit d43490d0ab824023e11d0b57d0aeec17a6e0ca13 upstream.

Use the existing configurable return thunk. There is absolute no
justification for having created this __x86_return_thunk alternative.

To clarify, the whole thing looks like:

Zen3/4 does:

  srso_alias_untrain_ret:
	  nop2
	  lfence
	  jmp srso_alias_return_thunk
	  int3

  srso_alias_safe_ret: // aliasses srso_alias_untrain_ret just so
	  add $8, %rsp
	  ret
	  int3

  srso_alias_return_thunk:
	  call srso_alias_safe_ret
	  ud2

While Zen1/2 does:

  srso_untrain_ret:
	  movabs $foo, %rax
	  lfence
	  call srso_safe_ret           (jmp srso_return_thunk ?)
	  int3

  srso_safe_ret: // embedded in movabs instruction
	  add $8,%rsp
          ret
          int3

  srso_return_thunk:
	  call srso_safe_ret
	  ud2

While retbleed does:

  zen_untrain_ret:
	  test $0xcc, %bl
	  lfence
	  jmp zen_return_thunk
          int3

  zen_return_thunk: // embedded in the test instruction
	  ret
          int3

Where Zen1/2 flush the BTB entry using the instruction decoder trick
(test,movabs) Zen3/4 use BTB aliasing. SRSO adds a return sequence
(srso_safe_ret()) which forces the function return instruction to
speculate into a trap (UD2).  This RET will then mispredict and
execution will continue at the return site read from the top of the
stack.

Pick one of three options at boot (evey function can only ever return
once).

  [ bp: Fixup commit message uarch details and add them in a comment in
    the code too. Add a comment about the srso_select_mitigation()
    dependency on retbleed_select_mitigation(). Add moar ifdeffery for
    32-bit builds. Add a dummy srso_untrain_ret_alias() definition for
    32-bit alternatives needing the symbol. ]

Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.842775684@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 15:26:57 +02:00
Peter Zijlstra
bd3d12e6fd x86/alternative: Make custom return thunk unconditional
commit 095b8303f3835c68ac4a8b6d754ca1c3b6230711 upstream.

There is infrastructure to rewrite return thunks to point to any
random thunk one desires, unwrap that from CALL_THUNKS, which up to
now was the sole user of that.

  [ bp: Make the thunks visible on 32-bit and add ifdeffery for the
    32-bit builds. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.775293785@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-26 15:26:57 +02:00
Arnd Bergmann
98eaa12c96 x86: Move gds_ucode_mitigated() declaration to header
commit eb3515dc99c7c85f4170b50838136b2a193f8012 upstream.

The declaration got placed in the .c file of the caller, but that
causes a warning for the definition:

arch/x86/kernel/cpu/bugs.c:682:6: error: no previous prototype for 'gds_ucode_mitigated' [-Werror=missing-prototypes]

Move it to a header where both sides can observe it instead.

Fixes: 81ac7e5d74174 ("KVM: Add GDS_NO support to KVM")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: stable@kernel.org
Link: https://lore.kernel.org/all/20230809130530.1913368-2-arnd%40kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-16 18:21:00 +02:00
Borislav Petkov (AMD)
b6fc2fbf89 x86/CPU/AMD: Do not leak quotient data after a division by 0
commit 77245f1c3c6495521f6a3af082696ee2f8ce3921 upstream.

Under certain circumstances, an integer division by 0 which faults, can
leave stale quotient data from a previous division operation on Zen1
microarchitectures.

Do a dummy division 0/1 before returning from the #DE exception handler
in order to avoid any leaks of potentially sensitive data.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-11 11:57:56 +02:00
Masami Hiramatsu
ba7d1dae9f x86/kprobes: Use int3 instead of debug trap for single-step
[ Upstream commit 6256e668b7af9d81472e03c6a171630c08f8858a ]

Use int3 instead of debug trap exception for single-stepping the
probed instructions. Some instructions which change the ip
registers or modify IF flags are emulated because those are not
able to be single-stepped by int3 or may allow the interrupt
while single-stepping.

This actually changes the kprobes behavior.

- kprobes can not probe following instructions; int3, iret,
  far jmp/call which get absolute address as immediate,
  indirect far jmp/call, indirect near jmp/call with addressing
  by memory (register-based indirect jmp/call are OK), and
  vmcall/vmlaunch/vmresume/vmxoff.

- If the kprobe post_handler doesn't set before registering,
  it may not be called in some case even if you set it afterwards.
  (IOW, kprobe booster is enabled at registration, user can not
   change it)

But both are rare issue, unsupported instructions will not be
used in the kernel (or rarely used), and post_handlers are
rarely used (I don't see it except for the test code).

Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/161469874601.49483.11985325887166921076.stgit@devnote2
[Huafei: Fix trivial conflict in arch/x86/kernel/kprobes/core.c due to
the previously backported commit 6dd3b8c9f5881]
Signed-off-by: Li Huafei <lihuafei1@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-11 11:57:46 +02:00
Masami Hiramatsu
ff97a14c8a x86/kprobes: Do not decode opcode in resume_execution()
[ Upstream commit abd82e533d88df1521e3da6799b83ce88852ab88 ]

Currently, kprobes decodes the opcode right after single-stepping in
resume_execution(). But the opcode was already decoded while preparing
arch_specific_insn in arch_copy_kprobe().

Decode the opcode in arch_copy_kprobe() instead of in resume_execution()
and set some flags which classify the opcode for the resuming process.

 [ bp: Massage commit message. ]

Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/160830072561.349576.3014979564448023213.stgit@devnote2
Signed-off-by: Li Huafei <lihuafei1@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-11 11:57:45 +02:00
Borislav Petkov (AMD)
384d41bea9 x86/srso: Add IBPB on VMEXIT
Upstream commit: d893832d0e1ef41c72cdae444268c1d64a2be8ad

Add the option to flush IBPB only on VMEXIT in order to protect from
malicious guests but one otherwise trusts the software that runs on the
hypervisor.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:40 +02:00
Borislav Petkov (AMD)
4acaea47e3 x86/srso: Add IBPB
Upstream commit: 233d6f68b98d480a7c42ebe78c38f79d44741ca9

Add the option to mitigate using IBPB on a kernel entry. Pull in the
Retbleed alternative so that the IBPB call from there can be used. Also,
if Retbleed mitigation is done using IBPB, the same mitigation can and
must be used here.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:40 +02:00
Borislav Petkov (AMD)
e47af0c255 x86/srso: Add SRSO_NO support
Upstream commit: 1b5277c0ea0b247393a9c426769fde18cff5e2f6

Add support for the CPUID flag which denotes that the CPU is not
affected by SRSO.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:40 +02:00
Borislav Petkov (AMD)
df76a59feb x86/srso: Add IBPB_BRTYPE support
Upstream commit: 79113e4060aba744787a81edb9014f2865193854

Add support for the synthetic CPUID flag which "if this bit is 1,
it indicates that MSR 49h (PRED_CMD) bit 0 (IBPB) flushes all branch
type predictions from the CPU branch predictor."

This flag is there so that this capability in guests can be detected
easily (otherwise one would have to track microcode revisions which is
impossible for guests).

It is also needed only for Zen3 and -4. The other two (Zen1 and -2)
always flush branch type predictions by default.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:40 +02:00
Borislav Petkov (AMD)
3f9b7101be x86/srso: Add a Speculative RAS Overflow mitigation
Upstream commit: fb3bd914b3ec28f5fb697ac55c4846ac2d542855

Add a mitigation for the speculative return address stack overflow
vulnerability found on AMD processors.

The mitigation works by ensuring all RET instructions speculate to
a controlled location, similar to how speculation is controlled in the
retpoline sequence.  To accomplish this, the __x86_return_thunk forces
the CPU to mispredict every function return using a 'safe return'
sequence.

To ensure the safety of this mitigation, the kernel must ensure that the
safe return sequence is itself free from attacker interference.  In Zen3
and Zen4, this is accomplished by creating a BTB alias between the
untraining function srso_untrain_ret_alias() and the safe return
function srso_safe_ret_alias() which results in evicting a potentially
poisoned BTB entry and using that safe one for all function returns.

In older Zen1 and Zen2, this is accomplished using a reinterpretation
technique similar to Retbleed one: srso_untrain_ret() and
srso_safe_ret().

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:40 +02:00
Kim Phillips
34f23ba8a3 x86/cpu, kvm: Add support for CPUID_80000021_EAX
commit 8415a74852d7c24795007ee9862d25feb519007c upstream.

Add support for CPUID leaf 80000021, EAX. The majority of the features will be
used in the kernel and thus a separate leaf is appropriate.

Include KVM's reverse_cpuid entry because features are used by VM guests, too.

  [ bp: Massage commit message. ]

Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-2-kim.phillips@amd.com
[bwh: Backported to 6.1: adjust context]
Signed-off-by: Ben Hutchings <benh@debian.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:40 +02:00
Borislav Petkov (AMD)
073a28a9b5 x86/bugs: Increase the x86 bugs vector size to two u32s
Upstream commit: 0e52740ffd10c6c316837c6c128f460f1aaba1ea

There was never a doubt in my mind that they would not fit into a single
u32 eventually.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:39 +02:00
Sean Christopherson
437fa179f2 x86/cpufeatures: Assign dedicated feature word for CPUID_0x8000001F[EAX]
commit fb35d30fe5b06cc24444f0405da8fbe0be5330d1 upstream.

Collect the scattered SME/SEV related feature flags into a dedicated
word.  There are now five recognized features in CPUID.0x8000001F.EAX,
with at least one more on the horizon (SEV-SNP).  Using a dedicated word
allows KVM to use its automagic CPUID adjustment logic when reporting
the set of supported features to userspace.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Link: https://lkml.kernel.org/r/20210122204047.2860075-2-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:39 +02:00
Tom Lendacky
baf6d6c39e x86/cpu: Add VM page flush MSR availablility as a CPUID feature
commit 69372cf01290b9587d2cee8fbe161d75d55c3adc upstream.

On systems that do not have hardware enforced cache coherency between
encrypted and unencrypted mappings of the same physical page, the
hypervisor can use the VM page flush MSR (0xc001011e) to flush the cache
contents of an SEV guest page. When a small number of pages are being
flushed, this can be used in place of issuing a WBINVD across all CPUs.

CPUID 0x8000001f_eax[2] is used to determine if the VM page flush MSR is
available. Add a CPUID feature to indicate it is supported and define the
MSR.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <f1966379e31f9b208db5257509c4a089a87d33d0.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:39 +02:00
Daniel Sneddon
288a2f6bc1 x86/speculation: Add Gather Data Sampling mitigation
commit 8974eb588283b7d44a7c91fa09fcbaf380339f3a upstream

Gather Data Sampling (GDS) is a hardware vulnerability which allows
unprivileged speculative access to data which was previously stored in
vector registers.

Intel processors that support AVX2 and AVX512 have gather instructions
that fetch non-contiguous data elements from memory. On vulnerable
hardware, when a gather instruction is transiently executed and
encounters a fault, stale data from architectural or internal vector
registers may get transiently stored to the destination vector
register allowing an attacker to infer the stale data using typical
side channel techniques like cache timing attacks.

This mitigation is different from many earlier ones for two reasons.
First, it is enabled by default and a bit must be set to *DISABLE* it.
This is the opposite of normal mitigation polarity. This means GDS can
be mitigated simply by updating microcode and leaving the new control
bit alone.

Second, GDS has a "lock" bit. This lock bit is there because the
mitigation affects the hardware security features KeyLocker and SGX.
It needs to be enabled and *STAY* enabled for these features to be
mitigated against GDS.

The mitigation is enabled in the microcode by default. Disable it by
setting gather_data_sampling=off or by disabling all mitigations with
mitigations=off. The mitigation status can be checked by reading:

    /sys/devices/system/cpu/vulnerabilities/gather_data_sampling

Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:38 +02:00
Thomas Gleixner
7a2f42bce9 x86/fpu: Remove cpuinfo argument from init functions
commit 1f34bb2a24643e0087652d81078e4f616562738d upstream

Nothing in the call chain requires it

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.783704297@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:37 +02:00
Thomas Gleixner
18fcd72da1 init, x86: Move mem_encrypt_init() into arch_cpu_finalize_init()
commit 439e17576eb47f26b78c5bbc72e344d4206d2327 upstream

Invoke the X86ism mem_encrypt_init() from X86 arch_cpu_finalize_init() and
remove the weak fallback from the core code.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.670360645@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:37 +02:00
Thomas Gleixner
e5eb18e164 x86/cpu: Switch to arch_cpu_finalize_init()
commit 7c7077a72674402654f3291354720cd73cdf649e upstream

check_bugs() is a dumping ground for finalizing the CPU bringup. Only parts of
it has to do with actual CPU bugs.

Split it apart into arch_cpu_finalize_init() and cpu_select_mitigations().

Fixup the bogus 32bit comments while at it.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230613224545.019583869@linutronix.de
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08 19:57:36 +02:00
Aneesh Kumar K.V
7289ca7a51 mm: rename p4d_page_vaddr to p4d_pgtable and make it return pud_t *
[ Upstream commit dc4875f0e791de554bdc45aa1dbd6e45e107e50f ]

No functional change in this patch.

[aneesh.kumar@linux.ibm.com: m68k build error reported by kernel robot]
  Link: https://lkml.kernel.org/r/87tulxnb2v.fsf@linux.ibm.com

Link: https://lkml.kernel.org/r/20210615110859.320299-2-aneesh.kumar@linux.ibm.com
Link: https://lore.kernel.org/linuxppc-dev/CAHk-=wi+J+iodze9FtjM3Zi4j4OeS+qqbKxME9QN4roxPEXH9Q@mail.gmail.com/
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stable-dep-of: 0da90af431ab ("powerpc/book3s64/mm: Fix DirectMap stats in /proc/meminfo")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27 08:43:58 +02:00
Aneesh Kumar K.V
bfad110188 mm: rename pud_page_vaddr to pud_pgtable and make it return pmd_t *
[ Upstream commit 9cf6fa2458443118b84090aa1bf7a3630b5940e8 ]

No functional change in this patch.

[aneesh.kumar@linux.ibm.com: fix]
  Link: https://lkml.kernel.org/r/87wnqtnb60.fsf@linux.ibm.com
[sfr@canb.auug.org.au: another fix]
  Link: https://lkml.kernel.org/r/20210619134410.89559-1-aneesh.kumar@linux.ibm.com

Link: https://lkml.kernel.org/r/20210615110859.320299-1-aneesh.kumar@linux.ibm.com
Link: https://lore.kernel.org/linuxppc-dev/CAHk-=wi+J+iodze9FtjM3Zi4j4OeS+qqbKxME9QN4roxPEXH9Q@mail.gmail.com/
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stable-dep-of: 0da90af431ab ("powerpc/book3s64/mm: Fix DirectMap stats in /proc/meminfo")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27 08:43:58 +02:00
Juergen Gross
cba85e1cb7 x86/mm: Fix __swp_entry_to_pte() for Xen PV guests
[ Upstream commit 0f88130e8a6fd185b0aeb5d8e286083735f2585a ]

Normally __swp_entry_to_pte() is never called with a value translating
to a valid PTE. The only known exception is pte_swap_tests(), resulting
in a WARN splat in Xen PV guests, as __pte_to_swp_entry() did
translate the PFN of the valid PTE to a guest local PFN, while
__swp_entry_to_pte() doesn't do the opposite translation.

Fix that by using __pte() in __swp_entry_to_pte() instead of open
coding the native variant of it.

For correctness do the similar conversion for __swp_entry_to_pmd().

Fixes: 05289402d7 ("mm/debug_vm_pgtable: add tests validating arch helpers for core MM features")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230306123259.12461-1-jgross@suse.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27 08:43:35 +02:00
Ravi Bangoria
365f546de5 perf/ibs: Fix interface via core pmu events
[ Upstream commit 2fad201fe38ff9a692acedb1990ece2c52a29f95 ]

Although, IBS pmus can be invoked via their own interface, indirect
IBS invocation via core pmu events is also supported with fixed set
of events: cpu-cycles:p, r076:p (same as cpu-cycles:p) and r0C1:p
(micro-ops) for user convenience.

This indirect IBS invocation is broken since commit 66d258c5b0
("perf/core: Optimize perf_init_event()"), which added RAW pmu under
'pmu_idr' list and thus if event_init() fails with RAW pmu, it started
returning error instead of trying other pmus.

Forward precise events from core pmu to IBS by overwriting 'type' and
'config' in the kernel copy of perf_event_attr. Overwriting will cause
perf_init_event() to retry with updated 'type' and 'config', which will
automatically forward event to IBS pmu.

Without patch:
  $ sudo ./perf record -C 0 -e r076:p -- sleep 1
  Error:
  The r076:p event is not supported.

With patch:
  $ sudo ./perf record -C 0 -e r076:p -- sleep 1
  [ perf record: Woken up 1 times to write data ]
  [ perf record: Captured and wrote 0.341 MB perf.data (37 samples) ]

Fixes: 66d258c5b0 ("perf/core: Optimize perf_init_event()")
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230504110003.2548-3-ravi.bangoria@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27 08:43:35 +02:00
Borislav Petkov (AMD)
93df00f9d4 x86/cpu/amd: Add a Zenbleed fix
Upstream commit: 522b1d69219d8f083173819fde04f994aa051a98

Add a fix for the Zen2 VZEROUPPER data corruption bug where under
certain circumstances executing VZEROUPPER can cause register
corruption or leak data.

The optimal fix is through microcode but in the case the proper
microcode revision has not been applied, enable a fallback fix using
a chicken bit.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-24 19:09:12 +02:00
Tony Luck
18c9cf4633 x86/cpu: Drop spurious underscore from RAPTOR_LAKE #define
[ Upstream commit 7d697f0d5737768fa1039b8953b67c08d8d406d1 ]

Convention for all the other "lake" CPUs is all one word.

So s/RAPTOR_LAKE/RAPTORLAKE/

Fixes: fbdb5e8f2926 ("x86/cpu: Add Raptor Lake to Intel family")
Reported-by: Rui Zhang <rui.zhang@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20211119170832.1034220-1-tony.luck@intel.com
Stable-dep-of: ce0b15d11ad8 ("x86/mm: Avoid incomplete Global INVLPG flushes")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-05 09:07:01 +02:00
Tony Luck
4a8980cb2a x86/cpu: Add Raptor Lake to Intel family
[ Upstream commit fbdb5e8f2926ae9636c9fa6f42c7426132ddeeb2 ]

Add model ID for Raptor Lake.

[ dhansen: These get added as soon as possible so that folks doing
  development can leverage them. ]

Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20211112182835.924977-1-tony.luck@intel.com
Stable-dep-of: ce0b15d11ad8 ("x86/mm: Avoid incomplete Global INVLPG flushes")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-05 09:07:01 +02:00
Dave Hansen
d4a5e6ae99 x86/mm: Avoid incomplete Global INVLPG flushes
commit ce0b15d11ad837fbacc5356941712218e38a0a83 upstream.

The INVLPG instruction is used to invalidate TLB entries for a
specified virtual address.  When PCIDs are enabled, INVLPG is supposed
to invalidate TLB entries for the specified address for both the
current PCID *and* Global entries.  (Note: Only kernel mappings set
Global=1.)

Unfortunately, some INVLPG implementations can leave Global
translations unflushed when PCIDs are enabled.

As a workaround, never enable PCIDs on affected processors.

I expect there to eventually be microcode mitigations to replace this
software workaround.  However, the exact version numbers where that
will happen are not known today.  Once the version numbers are set in
stone, the processor list can be tweaked to only disable PCIDs on
affected processors with affected microcode.

Note: if anyone wants a quick fix that doesn't require patching, just
stick 'nopcid' on your kernel command-line.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-30 12:57:57 +01:00
Rishabh Bhatnagar
ebd3010d42 KVM: x86: Fix recording of guest steal time / preempted status
From: David Woodhouse <dwmw2@infradead.org>

commit 7e2175ebd695f17860c5bd4ad7616cce12ed4591 upstream.

In commit b043138246 ("x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is
not missed") we switched to using a gfn_to_pfn_cache for accessing the
guest steal time structure in order to allow for an atomic xchg of the
preempted field. This has a couple of problems.

Firstly, kvm_map_gfn() doesn't work at all for IOMEM pages when the
atomic flag is set, which it is in kvm_steal_time_set_preempted(). So a
guest vCPU using an IOMEM page for its steal time would never have its
preempted field set.

Secondly, the gfn_to_pfn_cache is not invalidated in all cases where it
should have been. There are two stages to the GFN->PFN conversion;
first the GFN is converted to a userspace HVA, and then that HVA is
looked up in the process page tables to find the underlying host PFN.
Correct invalidation of the latter would require being hooked up to the
MMU notifiers, but that doesn't happen---so it just keeps mapping and
unmapping the *wrong* PFN after the userspace page tables change.

In the !IOMEM case at least the stale page *is* pinned all the time it's
cached, so it won't be freed and reused by anyone else while still
receiving the steal time updates. The map/unmap dance only takes care
of the KVM administrivia such as marking the page dirty.

Until the gfn_to_pfn cache handles the remapping automatically by
integrating with the MMU notifiers, we might as well not get a
kernel mapping of it, and use the perfectly serviceable userspace HVA
that we already have.  We just need to implement the atomic xchg on
the userspace address with appropriate exception handling, which is
fairly trivial.

Cc: stable@vger.kernel.org
Fixes: b043138246 ("x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <3645b9b889dac6438394194bb5586a46b68d581f.camel@infradead.org>
[I didn't entirely agree with David's assessment of the
 usefulness of the gfn_to_pfn cache, and integrated the outcome
 of the discussion in the above commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[risbhat@amazon.com: Use the older mark_page_dirty_in_slot api without
kvm argument]
Signed-off-by: Rishabh Bhatnagar <risbhat@amazon.com>
Tested-by: Allen Pais <apais@linux.microsoft.com>
Acked-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-17 11:48:18 +02:00
Paolo Bonzini
529f41f0eb KVM: x86: do not report a vCPU as preempted outside instruction boundaries
commit 6cd88243c7e03845a450795e134b488fc2afb736 upstream.

If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access.  A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.

To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary.  A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.

It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed.  However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses.  Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.

Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[OP: use VCPU_STAT() for debugfs entries]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-17 11:48:16 +02:00
Linus Torvalds
411b8ad505 x86/resctl: fix scheduler confusion with 'current'
commit 7fef099702527c3b2c5234a2ea6a24411485a13a upstream.

The implementation of 'current' on x86 is very intentionally special: it
is a very common thing to look up, and it uses 'this_cpu_read_stable()'
to get the current thread pointer efficiently from per-cpu storage.

And the keyword in there is 'stable': the current thread pointer never
changes as far as a single thread is concerned.  Even if when a thread
is preempted, or moved to another CPU, or even across an explicit call
'schedule()' that thread will still have the same value for 'current'.

It is, after all, the kernel base pointer to thread-local storage.
That's why it's stable to begin with, but it's also why it's important
enough that we have that special 'this_cpu_read_stable()' access for it.

So this is all done very intentionally to allow the compiler to treat
'current' as a value that never visibly changes, so that the compiler
can do CSE and combine multiple different 'current' accesses into one.

However, there is obviously one very special situation when the
currently running thread does actually change: inside the scheduler
itself.

So the scheduler code paths are special, and do not have a 'current'
thread at all.  Instead there are _two_ threads: the previous and the
next thread - typically called 'prev' and 'next' (or prev_p/next_p)
internally.

So this is all actually quite straightforward and simple, and not all
that complicated.

Except for when you then have special code that is run in scheduler
context, that code then has to be aware that 'current' isn't really a
valid thing.  Did you mean 'prev'? Did you mean 'next'?

In fact, even if then look at the code, and you use 'current' after the
new value has been assigned to the percpu variable, we have explicitly
told the compiler that 'current' is magical and always stable.  So the
compiler is quite free to use an older (or newer) value of 'current',
and the actual assignment to the percpu storage is not relevant even if
it might look that way.

Which is exactly what happened in the resctl code, that blithely used
'current' in '__resctrl_sched_in()' when it really wanted the new
process state (as implied by the name: we're scheduling 'into' that new
resctl state).  And clang would end up just using the old thread pointer
value at least in some configurations.

This could have happened with gcc too, and purely depends on random
compiler details.  Clang just seems to have been more aggressive about
moving the read of the per-cpu current_task pointer around.

The fix is trivial: just make the resctl code adhere to the scheduler
rules of using the prev/next thread pointer explicitly, instead of using
'current' in a situation where it just wasn't valid.

That same code is then also used outside of the scheduler context (when
a thread resctl state is explicitly changed), and then we will just pass
in 'current' as that pointer, of course.  There is no ambiguity in that
case.

The fix may be trivial, but noticing and figuring out what went wrong
was not.  The credit for that goes to Stephane Eranian.

Reported-by: Stephane Eranian <eranian@google.com>
Link: https://lore.kernel.org/lkml/20230303231133.1486085-1-eranian@google.com/
Link: https://lore.kernel.org/lkml/alpine.LFD.2.01.0908011214330.3304@localhost.localdomain/
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Stephane Eranian <eranian@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11 16:40:19 +01:00
Valentin Schneider
9554af9801 x86/resctrl: Apply READ_ONCE/WRITE_ONCE to task_struct.{rmid,closid}
commit 6d3b47ddffed70006cf4ba360eef61e9ce097d8f upstream.

A CPU's current task can have its {closid, rmid} fields read locally
while they are being concurrently written to from another CPU.
This can happen anytime __resctrl_sched_in() races with either
__rdtgroup_move_task() or rdt_move_group_tasks().

Prevent load / store tearing for those accesses by giving them the
READ_ONCE() / WRITE_ONCE() treatment.

Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/9921fda88ad81afb9885b517fbe864a2bc7c35a9.1608243147.git.reinette.chatre@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11 16:40:19 +01:00
Borislav Petkov (AMD)
87cf9bc78c x86/microcode/AMD: Add a @cpu parameter to the reloading functions
commit a5ad92134bd153a9ccdcddf09a95b088f36c3cce upstream.

Will be used in a subsequent change.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230130161709.11615-3-bp@alien8.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11 16:39:59 +01:00
Sean Christopherson
8ff2cc2f87 x86/crash: Disable virt in core NMI crash handler to avoid double shootdown
commit 26044aff37a5455b19a91785086914fd33053ef4 upstream.

Disable virtualization in crash_nmi_callback() and rework the
emergency_vmx_disable_all() path to do an NMI shootdown if and only if a
shootdown has not already occurred.   NMI crash shootdown fundamentally
can't support multiple invocations as responding CPUs are deliberately
put into halt state without unblocking NMIs.  But, the emergency reboot
path doesn't have any work of its own, it simply cares about disabling
virtualization, i.e. so long as a shootdown occurred, emergency reboot
doesn't care who initiated the shootdown, or when.

If "crash_kexec_post_notifiers" is specified on the kernel command line,
panic() will invoke crash_smp_send_stop() and result in a second call to
nmi_shootdown_cpus() during native_machine_emergency_restart().

Invoke the callback _before_ disabling virtualization, as the current
VMCS needs to be cleared before doing VMXOFF.  Note, this results in a
subtle change in ordering between disabling virtualization and stopping
Intel PT on the responding CPUs.  While VMX and Intel PT do interact,
VMXOFF and writes to MSR_IA32_RTIT_CTL do not induce faults between one
another, which is all that matters when panicking.

Harden nmi_shootdown_cpus() against multiple invocations to try and
capture any such kernel bugs via a WARN instead of hanging the system
during a crash/dump, e.g. prior to the recent hardening of
register_nmi_handler(), re-registering the NMI handler would trigger a
double list_add() and hang the system if CONFIG_BUG_ON_DATA_CORRUPTION=y.

 list_add double add: new=ffffffff82220800, prev=ffffffff8221cfe8, next=ffffffff82220800.
 WARNING: CPU: 2 PID: 1319 at lib/list_debug.c:29 __list_add_valid+0x67/0x70
 Call Trace:
  __register_nmi_handler+0xcf/0x130
  nmi_shootdown_cpus+0x39/0x90
  native_machine_emergency_restart+0x1c9/0x1d0
  panic+0x237/0x29b

Extract the disabling logic to a common helper to deduplicate code, and
to prepare for doing the shootdown in the emergency reboot path if SVM
is supported.

Note, prior to commit ed72736183c4 ("x86/reboot: Force all cpus to exit
VMX root if VMX is supported"), nmi_shootdown_cpus() was subtly protected
against a second invocation by a cpu_vmx_enabled() check as the kdump
handler would disable VMX if it ran first.

Fixes: ed72736183c4 ("x86/reboot: Force all cpus to exit VMX root if VMX is supported")
Cc: stable@vger.kernel.org
Reported-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/all/20220427224924.592546-2-gpiccoli@igalia.com
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20221130233650.1404148-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11 16:39:58 +01:00
Sean Christopherson
537be939a8 x86/virt: Force GIF=1 prior to disabling SVM (for reboot flows)
commit 6a3236580b0b1accc3976345e723104f74f6f8e6 upstream.

Set GIF=1 prior to disabling SVM to ensure that INIT is recognized if the
kernel is disabling SVM in an emergency, e.g. if the kernel is about to
jump into a crash kernel or may reboot without doing a full CPU RESET.
If GIF is left cleared, the new kernel (or firmware) will be unabled to
awaken APs.  Eat faults on STGI (due to EFER.SVME=0) as it's possible
that SVM could be disabled via NMI shootdown between reading EFER.SVME
and executing STGI.

Link: https://lore.kernel.org/all/cbcb6f35-e5d7-c1c9-4db9-fe5cc4de579a@amd.com
Cc: stable@vger.kernel.org
Cc: Andrew Cooper <Andrew.Cooper3@citrix.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20221130233650.1404148-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11 16:39:58 +01:00
Breno Leitao
4707c94f7f x86/bugs: Reset speculation control settings on init
[ Upstream commit 0125acda7d76b943ca55811df40ed6ec0ecf670f ]

Currently, x86_spec_ctrl_base is read at boot time and speculative bits
are set if Kconfig items are enabled. For example, IBRS is enabled if
CONFIG_CPU_IBRS_ENTRY is configured, etc. These MSR bits are not cleared
if the mitigations are disabled.

This is a problem when kexec-ing a kernel that has the mitigation
disabled from a kernel that has the mitigation enabled. In this case,
the MSR bits are not cleared during the new kernel boot. As a result,
this might have some performance degradation that is hard to pinpoint.

This problem does not happen if the machine is (hard) rebooted because
the bit will be cleared by default.

  [ bp: Massage. ]

Suggested-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20221128153148.1129350-1-leitao@debian.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-03-11 16:39:49 +01:00