Currently, css_sets don't pin the associated cgroups. This is okay as
a cgroup with css_sets associated are not allowed to be removed;
however, to help resource tracking for zombie tasks, this is scheduled
to change such that a cgroup can be removed even when it has css_sets
associated as long as none of them are populated.
To ensure that a cgroup doesn't go away while css_sets are still
associated with it, make each associated css_set hold a reference on
the cgroup if non-root.
v2: Root cgroups are special and shouldn't be ref'd by css_sets.
Signed-off-by: Tejun Heo <tj@kernel.org>
Relocate cgroup_get(), cgroup_tryget() and cgroup_put() upwards. This
is pure code reorganization to prepare for future changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
To trigger release agent when the last task leaves the cgroup,
check_for_release() is called from put_css_set_locked(); however,
css_set being unlinked is being decoupled from task leaving the cgroup
and the correct condition to test is cgroup->nr_populated dropping to
zero which check_for_release() is already updated to test.
This patch moves check_for_release() invocation from
put_css_set_locked() to cgroup_update_populated().
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, cgroup_has_tasks() tests whether the target cgroup has any
css_set linked to it. This works because a css_set's refcnt converges
with the number of tasks linked to it and thus there's no css_set
linked to a cgroup if it doesn't have any live tasks.
To help tracking resource usage of zombie tasks, putting the ref of
css_set will be separated from disassociating the task from the
css_set which means that a cgroup may have css_sets linked to it even
when it doesn't have any live tasks.
This patch replaces cgroup_has_tasks() with cgroup_is_populated()
which tests cgroup->nr_populated instead which locally counts the
number of populated css_sets. Unlike cgroup_has_tasks(),
cgroup_is_populated() is recursive - if any of the descendants is
populated, the cgroup is populated too. While this changes the
meaning of the test, all the existing users are okay with the change.
While at it, replace the open-coded ->populated_cnt test in
cgroup_events_show() with cgroup_is_populated().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Currently, cgroup->nr_populated counts whether the cgroup has any
css_sets linked to it and the number of children which has non-zero
->nr_populated. This works because a css_set's refcnt converges with
the number of tasks linked to it and thus there's no css_set linked to
a cgroup if it doesn't have any live tasks.
To help tracking resource usage of zombie tasks, putting the ref of
css_set will be separated from disassociating the task from the
css_set which means that a cgroup may have css_sets linked to it even
when it doesn't have any live tasks.
This patch updates cgroup->nr_populated so that for the cgroup itself
it counts the number of css_sets which have tasks associated with them
so that empty css_sets don't skew the populated test.
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull workqueue fixlet from Tejun Heo:
"Single patch to make delayed work always be queued on the local CPU"
This is not actually something we should guarantee, but it's something
we by accident have historically done, and at least one call site has
grown to depend on it.
I'm going to fix that known broken callsite, but in the meantime this
makes the accidental behavior be explicit, just in case there are other
cases that might depend on it.
* 'for-4.3-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: make sure delayed work run in local cpu
It was found while running a database workload on large systems that
significant time was spent trying to acquire the sighand lock.
The issue was that whenever an itimer expired, many threads ended up
simultaneously trying to send the signal. Most of the time, nothing
happened after acquiring the sighand lock because another thread
had just already sent the signal and updated the "next expire" time.
The fastpath_timer_check() didn't help much since the "next expire"
time was updated after the threads exit fastpath_timer_check().
This patch addresses this by having the thread_group_cputimer structure
maintain a boolean to signify when a thread in the group is already
checking for process wide timers, and adds extra logic in the fastpath
to check the boolean.
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: George Spelvin <linux@horizon.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: hideaki.kimura@hpe.com
Cc: terry.rudd@hpe.com
Cc: scott.norton@hpe.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1444849677-29330-5-git-send-email-jason.low2@hp.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
By now there isn't any subcommand for mod.
Before:
sh$ echo '*:mod:ipv6:a' > set_ftrace_filter
sh$ echo '*:mod:ipv6' > set_ftrace_filter
had the same results, but now first will result in:
sh$ echo '*:mod:ipv6:a' > set_ftrace_filter
-bash: echo: write error: Invalid argument
Also, I clarified ftrace_mod_callback code a little.
Link: http://lkml.kernel.org/r/1443545176-3215-1-git-send-email-0x7f454c46@gmail.com
Signed-off-by: Dmitry Safonov <0x7f454c46@gmail.com>
[ converted 'if (ret == 0)' to 'if (!ret)' ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There are quite a few cases in which device drivers, bus types or
even the PM core itself may benefit from knowing whether or not
the platform firmware will be involved in the upcoming system power
transition (during system suspend) or whether or not it was involved
in it (during system resume).
For this reason, introduce global system suspend flags that can be
used by the platform code to expose that information for the benefit
of the other parts of the kernel and make the ACPI core set them
as appropriate.
Users of the new flags will be added later.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
since eBPF programs and maps use kernel memory consider it 'locked' memory
from user accounting point of view and charge it against RLIMIT_MEMLOCK limit.
This limit is typically set to 64Kbytes by distros, so almost all
bpf+tracing programs would need to increase it, since they use maps,
but kernel charges maximum map size upfront.
For example the hash map of 1024 elements will be charged as 64Kbyte.
It's inconvenient for current users and changes current behavior for root,
but probably worth doing to be consistent root vs non-root.
Similar accounting logic is done by mmap of perf_event.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order to let unprivileged users load and execute eBPF programs
teach verifier to prevent pointer leaks.
Verifier will prevent
- any arithmetic on pointers
(except R10+Imm which is used to compute stack addresses)
- comparison of pointers
(except if (map_value_ptr == 0) ... )
- passing pointers to helper functions
- indirectly passing pointers in stack to helper functions
- returning pointer from bpf program
- storing pointers into ctx or maps
Spill/fill of pointers into stack is allowed, but mangling
of pointers stored in the stack or reading them byte by byte is not.
Within bpf programs the pointers do exist, since programs need to
be able to access maps, pass skb pointer to LD_ABS insns, etc
but programs cannot pass such pointer values to the outside
or obfuscate them.
Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs,
so that socket filters (tcpdump), af_packet (quic acceleration)
and future kcm can use it.
tracing and tc cls/act program types still require root permissions,
since tracing actually needs to be able to see all kernel pointers
and tc is for root only.
For example, the following unprivileged socket filter program is allowed:
int bpf_prog1(struct __sk_buff *skb)
{
u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol));
u64 *value = bpf_map_lookup_elem(&my_map, &index);
if (value)
*value += skb->len;
return 0;
}
but the following program is not:
int bpf_prog1(struct __sk_buff *skb)
{
u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol));
u64 *value = bpf_map_lookup_elem(&my_map, &index);
if (value)
*value += (u64) skb;
return 0;
}
since it would leak the kernel address into the map.
Unprivileged socket filter bpf programs have access to the
following helper functions:
- map lookup/update/delete (but they cannot store kernel pointers into them)
- get_random (it's already exposed to unprivileged user space)
- get_smp_processor_id
- tail_call into another socket filter program
- ktime_get_ns
The feature is controlled by sysctl kernel.unprivileged_bpf_disabled.
This toggle defaults to off (0), but can be set true (1). Once true,
bpf programs and maps cannot be accessed from unprivileged process,
and the toggle cannot be set back to false.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, get_unbound_pool() uses kzalloc() to allocate the
worker pool. Actually, we can use the right node to do the
allocation, achieving local memory access.
This patch selects target node first, and uses kzalloc_node()
instead.
Signed-off-by: Xunlei Pang <pang.xunlei@linaro.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
In apply_slack(), find_last_bit() is applied to a bitmask consisting
of precisely BITS_PER_LONG bits. Since mask is non-zero, we might as
well eliminate the function call and use __fls() directly. On x86_64,
this shaves 23 bytes of the only caller, mod_timer().
This also gets rid of Coverity CID 1192106, but that is a false
positive: Coverity is not aware that mask != 0 implies that
find_last_bit will not return BITS_PER_LONG.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/1443771931-6284-1-git-send-email-linux@rasmusvillemoes.dk
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull scheduler fix from Thomas Gleixner:
"Fix a long standing state race in finish_task_switch()"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Fix TASK_DEAD race in finish_task_switch()
eBPF socket filter programs may see junk in 'u32 cb[5]' area,
since it could have been used by protocol layers earlier.
For socket filter programs used in af_packet we need to clean
20 bytes of skb->cb area if it could be used by the program.
For programs attached to TCP/UDP sockets we need to save/restore
these 20 bytes, since it's used by protocol layers.
Remove SK_RUN_FILTER macro, since it's no longer used.
Long term we may move this bpf cb area to per-cpu scratch, but that
requires addition of new 'per-cpu load/store' instructions,
so not suitable as a short term fix.
Fixes: d691f9e8d4 ("bpf: allow programs to write to certain skb fields")
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If an irq chip does not implement the irq_disable callback, then we
use a lazy approach for disabling the interrupt. That means that the
interrupt is marked disabled, but the interrupt line is not
immediately masked in the interrupt chip. It only becomes masked if
the interrupt is raised while it's marked disabled. We use this to avoid
possibly expensive mask/unmask operations for common case operations.
Unfortunately there are devices which do not allow the interrupt to be
disabled easily at the device level. They are forced to use
disable_irq_nosync(). This can result in taking each interrupt twice.
Instead of enforcing the non lazy mode on all interrupts of a irq
chip, provide a settings flag, which can be set by the driver for that
particular interrupt line.
Reported-and-tested-by: Duc Dang <dhdang@apm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Jason Cooper <jason@lakedaemon.net>
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1510092348370.6097@nanos
Given that pmem ranges come with numa-locality hints, arrange for the
resulting driver objects to be obtained from node-local memory.
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Hint to closest numa node for the placement of newly allocated pages.
As that is where the device's other allocations will originate by
default when it does not specify a NUMA node.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Make devm_memremap consistent with the error return scheme of
devm_memremap_pages to remove special casing in the pmem driver.
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When a CPU is offlined all interrupts that have an action are migrated to
other still online CPUs. However, if the interrupt has chained handler
installed this is not done. Chained handlers are used by GPIO drivers which
support interrupts, for instance.
When the affinity is not corrected properly we end up in situation where
most interrupts are not arriving to the online CPUs anymore. For example on
Intel Braswell system which has SD-card card detection signal connected to
a GPIO the IO-APIC routing entries look like below after CPU1 is offlined:
pin30, enabled , level, low , V(52), IRR(0), S(0), logical , D(03), M(1)
pin31, enabled , level, low , V(42), IRR(0), S(0), logical , D(03), M(1)
pin32, enabled , level, low , V(62), IRR(0), S(0), logical , D(03), M(1)
pin5b, enabled , level, low , V(72), IRR(0), S(0), logical , D(03), M(1)
The problem here is that the destination mask still contains both CPUs even
if CPU1 is already offline. This means that the IO-APIC still routes
interrupts to the other CPU as well.
We solve the problem by providing a default action for chained interrupts.
This action allows the migration code to correct affinity (as it finds
desc->action != NULL).
Also make the default action handler to emit a warning if for some reason a
chained handler ends up calling it.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Link: http://lkml.kernel.org/r/1444039935-30475-1-git-send-email-mika.westerberg@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
While recently arguing on a seccomp discussion that raw prandom_u32()
access shouldn't be exposed to unpriviledged user space, I forgot the
fact that SKF_AD_RANDOM extension actually already does it for some time
in cBPF via commit 4cd3675ebf ("filter: added BPF random opcode").
Since prandom_u32() is being used in a lot of critical networking code,
lets be more conservative and split their states. Furthermore, consolidate
eBPF and cBPF prandom handlers to use the new internal PRNG. For eBPF,
bpf_get_prandom_u32() was only accessible for priviledged users, but
should that change one day, we also don't want to leak raw sequences
through things like eBPF maps.
One thought was also to have own per bpf_prog states, but due to ABI
reasons this is not easily possible, i.e. the program code currently
cannot access bpf_prog itself, and copying the rnd_state to/from the
stack scratch space whenever a program uses the prng seems not really
worth the trouble and seems too hacky. If needed, taus113 could in such
cases be implemented within eBPF using a map entry to keep the state
space, or get_random_bytes() could become a second helper in cases where
performance would not be critical.
Both sides can trigger a one-time late init via prandom_init_once() on
the shared state. Performance-wise, there should even be a tiny gain
as bpf_user_rnd_u32() saves one function call. The PRNG needs to live
inside the BPF core since kernels could have a NET-less config as well.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Cc: Chema Gonzalez <chema@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Earlier versions of synchronize_sched_expedited() can prematurely end
grace periods due to the fact that a CPU marked as cpu_is_offline()
can still be using RCU read-side critical sections during the time that
CPU makes its last pass through the scheduler and into the idle loop
and during the time that a given CPU is in the process of coming online.
This commit therefore eliminates this window by adding additional
interaction with the CPU-hotplug operations.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit redirects synchronize_rcu_expedited()'s wait to
synchronize_sched_expedited_wait(), thus enabling RCU CPU
stall warnings.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>