Pull "Renesas ARM Based SoC Fixes for v4.13" from Simon Horman:
Correct order of sound clock frequencies for Salvator boards
used by r8a7795 and r8a7796 SoCs.
These sounds clock frequencies are used as the ADG clock (output clocks
for audio module) initial setting and sound codec's initial system clock
which needs the maximum clock frequency. Thus, descending order is
required.
* tag 'renesas-fixes-for-v4.13' of https://git.kernel.org/pub/scm/linux/kernel/git/horms/renesas:
arm64: renesas: salvator-common: sound clock-frequency needs descending order
KVM: s390: fixup missing srcu lock
We need to hold the srcu lock when accessing memory slots
during migration
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Run kvm-unit-tests/eventinj.flat in L1 w/ ept=0 on both L0 and L1:
Before NMI IRET test
Sending NMI to self
NMI isr running stack 0x461000
Sending nested NMI to self
After nested NMI to self
Nested NMI isr running rip=40038e
After iret
After NMI to self
FAIL: NMI
Commit 4c4a6f790e (KVM: nVMX: track NMI blocking state separately
for each VMCS) tracks NMI blocking state separately for vmcs01 and
vmcs02. However it is not enough:
- The L2 (kvm-unit-tests/eventinj.flat) generates NMI that will fault
on IRET, so the L2 can generate #PF which can be intercepted by L0.
- L0 walks L1's guest page table and sees the mapping is invalid, it
resumes the L1 guest and injects the #PF into L1. At this point the
vmcs02 has nmi_known_unmasked=true.
- L1 sets set bit 3 (blocking by NMI) in the interruptibility-state field
of vmcs12 (and fixes the shadow page table) before resuming L2 guest.
- L1 executes VMRESUME to resume L2, causing a vmexit to L0
- during VMRESUME emulation, prepare_vmcs02 sets bit 3 in the
interruptibility-state field of vmcs02, but nmi_known_unmasked is
still true.
- L2 immediately exits to L0 with another page fault, because L0 still has
not updated the NGVA->HPA page tables. However, nmi_known_unmasked is
true so vmx_recover_nmi_blocking does not do anything.
The fix is to update nmi_known_unmasked when preparing vmcs02 from vmcs12.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The PI vector for L0 and L1 must be different. If dest vcpu0
is in guest mode while vcpu1 is delivering a non-nested PI to
vcpu0, there wont't be any vmexit so that the non-nested interrupt
will be delayed.
Signed-off-by: Wincy Van <fanwenyi0529@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We are using the same vector for nested/non-nested posted
interrupts delivery, this may cause interrupts latency in
L1 since we can't kick the L2 vcpu out of vmx-nonroot mode.
This patch introduces a new vector which is only for nested
posted interrupts to solve the problems above.
Signed-off-by: Wincy Van <fanwenyi0529@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts the change of commit f85c758dbe,
as the behavior it modified was intended.
The VM is running in 32-bit PAE mode, and Table 4-7 of the Intel manual
says:
Table 4-7. Use of CR3 with PAE Paging
Bit Position(s) Contents
4:0 Ignored
31:5 Physical address of the 32-Byte aligned
page-directory-pointer table used for linear-address
translation
63:32 Ignored (these bits exist only on processors supporting
the Intel-64 architecture)
To placate the static checker, write the mask explicitly as an
unsigned long constant instead of using a 32-bit unsigned constant.
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Fixes: f85c758dbe
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
write_sysreg() may misparse the value argument because it is used
without parentheses to protect it.
This patch adds the ( ) in order to avoid any surprises.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
[will: same change to write_sysreg_s]
Signed-off-by: Will Deacon <will.deacon@arm.com>
In commit efe0160cfd ("powerpc/64: Linker on-demand sfpr functions
for modules"), we added an ld version check early in the powerpc
top-level Makefile.
Because the Makefile runs before the kernel config is setup, the
checks for CONFIG_CPU_LITTLE_ENDIAN etc. all take the default case. So
we end up configuring ld for 32-bit big endian.
That would be OK, except that for historical (or perhaps no) reason,
we use 'override LD' to add the endian flags to the LD variable
itself, rather than the normal approach of adding them to LDFLAGS.
The end result is that when we check the ld version we run it as:
$(CROSS_COMPILE)ld -EB -m elf32ppc --version
This often works, unless you are using a 64-bit only and/or little
endian only, toolchain. In which case you see something like:
$ make defconfig
powerpc64le-linux-ld: unrecognised emulation mode: elf32ppc
Supported emulations: elf64lppc elf32lppc elf32lppclinux elf32lppcsim
/bin/sh: 1: [: -ge: unexpected operator
The proper fix is to stop using 'override LD', but that will require a
fair bit of testing. Instead we can fix it for now just by reordering
the Makefile to do the version check earlier.
Fixes: efe0160cfd ("powerpc/64: Linker on-demand sfpr functions for modules")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
As for commit 68baf692c4 ("powerpc/pseries: Fix of_node_put()
underflow during DLPAR remove"), the call to of_node_put() must be
removed from pSeries_reconfig_remove_node().
dlpar_detach_node() and pSeries_reconfig_remove_node() both call
of_detach_node(), and thus the node should not be released in both
cases.
Fixes: 0829f6d1f6 ("of: device_node kobject lifecycle fixes")
Cc: stable@vger.kernel.org # v3.15+
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
There's a somewhat architectural issue with Radix MMU and KVM.
When coming out of a guest with AIL (Alternate Interrupt Location, ie,
MMU enabled), we start executing hypervisor code with the PID register
still containing whatever the guest has been using.
The problem is that the CPU can (and will) then start prefetching or
speculatively load from whatever host context has that same PID (if
any), thus bringing translations for that context into the TLB, which
Linux doesn't know about.
This can cause stale translations and subsequent crashes.
Fixing this in a way that is neither racy nor a huge performance
impact is difficult. We could just make the host invalidations always
use broadcast forms but that would hurt single threaded programs for
example.
We chose to fix it instead by partitioning the PID space between guest
and host. This is possible because today Linux only use 19 out of the
20 bits of PID space, so existing guests will work if we make the host
use the top half of the 20 bits space.
We additionally add support for a property to indicate to Linux the
size of the PID register which will be useful if we eventually have
processors with a larger PID space available.
There is still an issue with malicious guests purposefully setting the
PID register to a value in the hosts PID range. Hopefully future HW
can prevent that, but in the meantime, we handle it with a pair of
kludges:
- On the way out of a guest, before we clear the current VCPU in the
PACA, we check the PID and if it's outside of the permitted range
we flush the TLB for that PID.
- When context switching, if the mm is "new" on that CPU (the
corresponding bit was set for the first time in the mm cpumask), we
check if any sibling thread is in KVM (has a non-NULL VCPU pointer
in the PACA). If that is the case, we also flush the PID for that
CPU (core).
This second part is needed to handle the case where a process is
migrated (or starts a new pthread) on a sibling thread of the CPU
coming out of KVM, as there's a window where stale translations can
exist before we detect it and flush them out.
A future optimization could be added by keeping track of whether the
PID has ever been used and avoid doing that for completely fresh PIDs.
We could similarily mark PIDs that have been the subject of a global
invalidation as "fresh". But for now this will do.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Rework the asm to build with CONFIG_PPC_RADIX_MMU=n, drop
unneeded include of kvm_book3s_asm.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Pull dma mapping fixes from Christoph Hellwig:
"split the global dma coherent pool from the per-device pool.
This fixes a regression in the earlier 4.13 pull requests where the
global pool would override a per-device CMA pool (Vladimir Murzin)"
* tag 'dma-mapping-4.13-2' of git://git.infradead.org/users/hch/dma-mapping:
ARM: NOMMU: Wire-up default DMA interface
dma-coherent: introduce interface for default DMA pool
It's always bothered me that we only disable preemption in
copy_user_page around the call to flush_dcache_page_asm.
This patch extends this to after the copy.
Signed-off-by: John David Anglin <dave.anglin@bell.net>
Cc: stable@vger.kernel.org # 4.9+
Signed-off-by: Helge Deller <deller@gmx.de>
Helge noticed that we flush the TLB page in flush_cache_page but not in
flush_cache_range or flush_cache_mm.
For a long time, we have had random segmentation faults building
packages on machines with PA8800/8900 processors. These machines only
support equivalent aliases. We don't see these faults on machines that
don't require strict coherency. So, it appears TLB speculation
sometimes leads to cache corruption on machines that require coherency.
This patch adds TLB flushes to flush_cache_range and flush_cache_mm when
coherency is required. We only flush the TLB in flush_cache_page when
coherency is required.
The patch also optimizes flush_cache_range. It turns out we always have
the right context to use flush_user_dcache_range_asm and
flush_user_icache_range_asm.
The patch has been tested for some time on rp3440, rp3410 and A500-44.
It's been boot tested on c8000. No random segmentation faults were
observed during testing.
Signed-off-by: John David Anglin <dave.anglin@bell.net>
Cc: stable@vger.kernel.org # 4.9+
Signed-off-by: Helge Deller <deller@gmx.de>
Some machines can't power off the machine, so disable the lockup detectors to
avoid this watchdog BUG to show up every few seconds:
watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [systemd-shutdow:1]
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # 4.9+
The Page Deallocation Table (PDT) holds the physical addresses of all broken
memory addresses. With the physical address we now are able to show which DIMM
slot (e.g. 1a, 3c) actually holds the broken memory module so that users are
able to replace it.
Signed-off-by: Helge Deller <deller@gmx.de>
Add a firmware wrapper function, which asks PDC firmware for the DIMM slot of a
physical address. This is needed to show users which DIMM module needs
replacement in case a broken DIMM was encountered.
Signed-off-by: Helge Deller <deller@gmx.de>
Commit c9c2877d08 ("parisc: Add Page Deallocation Table (PDT) support")
introduced the pdc_pat_mem_read_pd_pdt() firmware helper function, which
crashed the system because it trashed the stack if the
pdc_pat_mem_read_pd_retinfo struct was located on the stack (and which is
in size less than the required 32 64-bit values).
Fix it by using the pdc_result struct instead when calling firmware and copy
the return values back into the result struct when finished sucessfully.
While debugging this code I noticed that the pdc_type wasn't set correctly
either, so let's fix that too.
Fixes: c9c2877d08 ("parisc: Add Page Deallocation Table (PDT) support")
Signed-off-by: Helge Deller <deller@gmx.de>
Pull s390 fixes from Martin Schwidefsky:
"Three bug fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/mm: set change and reference bit on lazy key enablement
s390: chp: handle CRW_ERC_INIT for channel-path status change
s390/perf: fix problem state detection
kvm_pmu_overflow_set() is called from perf's interrupt handler,
making the call of kvm_vgic_inject_irq() from it introduced with
"KVM: arm/arm64: PMU: remove request-less vcpu kick" a really bad
idea, as it's quite easy to try and retake a lock that the
interrupted context is already holding. The fix is to use a vcpu
kick, leaving the interrupt injection to kvm_pmu_sync_hwstate(),
like it was doing before the refactoring. We don't just revert,
though, because before the kick was request-less, leaving the vcpu
exposed to the request-less vcpu kick race, and also because the
kick was used unnecessarily from register access handlers.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The optional prefetch instructions in the copy_page() routine are
inconsistent: at the start of the function, two cachelines are
prefetched beyond the one being loaded in the first iteration, but
in the loop, the prefetch is one more line ahead. This appears to
be unintentional, so let's fix it.
While at it, fix the comment style and white space.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In kernels with CONFIG_IWMMXT=y running on non-iWMMXt hardware, the
signal frame can be left partially uninitialised in such a way
that userspace cannot parse uc_regspace[] safely. In particular,
this means that the VFP registers cannot be located reliably in the
signal frame when a multi_v7_defconfig kernel is run on the
majority of platforms.
The cause is that the uc_regspace[] is laid out statically based on
the kernel config, but the decision of whether to save/restore the
iWMMXt registers must be a runtime decision.
To minimise breakage of software that may assume a fixed layout,
this patch emits a dummy block of the same size as iwmmxt_sigframe,
for non-iWMMXt threads. However, the magic and size of this block
are now filled in to help parsers skip over it. A new DUMMY_MAGIC
is defined for this purpose.
It is probably legitimate (if non-portable) for userspace to
manufacture its own sigframe for sigreturn, and there is no obvious
reason why userspace should be required to insert a DUMMY_MAGIC
block when running on non-iWMMXt hardware, when omitting it has
worked just fine forever in other configurations. So in this case,
sigreturn does not require this block to be present.
Reported-by: Edmund Grimley-Evans <Edmund.Grimley-Evans@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
preserve_iwmmxt_context() and restore_iwmmxt_context() lack __user
accessors on their arguments pointing to the user signal frame.
There does not be appear to be a bug here, but this omission is
inconsistent with the crunch and vfp sigframe access functions.
This patch adds the annotations, for consistency.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Commit f98a8bf9ee ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB
ioctl() to change HPT size", 2016-12-20) changed the behaviour of
the KVM_PPC_ALLOCATE_HTAB ioctl so that it now allocates a new HPT
and new revmap array if there was a previously-allocated HPT of a
different size from the size being requested. In this case, we need
to reset the rmap arrays of the memslots, because the rmap arrays
will contain references to HPTEs which are no longer valid. Worse,
these references are also references to slots in the new revmap
array (which parallels the HPT), and the new revmap array contains
random contents, since it doesn't get zeroed on allocation.
The effect of having these stale references to slots in the revmap
array that contain random contents is that subsequent calls to
functions such as kvmppc_add_revmap_chain will crash because they
will interpret the non-zero contents of the revmap array as HPTE
indexes and thus index outside of the revmap array. This leads to
host crashes such as the following.
[ 7072.862122] Unable to handle kernel paging request for data at address 0xd000000c250c00f8
[ 7072.862218] Faulting instruction address: 0xc0000000000e1c78
[ 7072.862233] Oops: Kernel access of bad area, sig: 11 [#1]
[ 7072.862286] SMP NR_CPUS=1024
[ 7072.862286] NUMA
[ 7072.862325] PowerNV
[ 7072.862378] Modules linked in: kvm_hv vhost_net vhost tap xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_mangle ip6table_security ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables rpcrdma ib_isert iscsi_target_mod ib_iser libiscsi scsi_transport_iscsi ib_srpt target_core_mod ib_srp scsi_transport_srp ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm iw_cxgb3 mlx5_ib ib_core ses enclosure scsi_transport_sas ipmi_powernv ipmi_devintf ipmi_msghandler powernv_op_panel i2c_opal nfsd auth_rpcgss oid_registry
[ 7072.863085] nfs_acl lockd grace sunrpc kvm_pr kvm xfs libcrc32c scsi_dh_alua dm_service_time radeon lpfc nvme_fc nvme_fabrics nvme_core scsi_transport_fc i2c_algo_bit tg3 drm_kms_helper ptp pps_core syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm dm_multipath i2c_core cxgb3 mlx5_core mdio [last unloaded: kvm_hv]
[ 7072.863381] CPU: 72 PID: 56929 Comm: qemu-system-ppc Not tainted 4.12.0-kvm+ #59
[ 7072.863457] task: c000000fe29e7600 task.stack: c000001e3ffec000
[ 7072.863520] NIP: c0000000000e1c78 LR: c0000000000e2e3c CTR: c0000000000e25f0
[ 7072.863596] REGS: c000001e3ffef560 TRAP: 0300 Not tainted (4.12.0-kvm+)
[ 7072.863658] MSR: 9000000100009033 <SF,HV,EE,ME,IR,DR,RI,LE,TM[E]>
[ 7072.863667] CR: 44082882 XER: 20000000
[ 7072.863767] CFAR: c0000000000e2e38 DAR: d000000c250c00f8 DSISR: 42000000 SOFTE: 1
GPR00: c0000000000e2e3c c000001e3ffef7e0 c000000001407d00 d000000c250c00f0
GPR04: d00000006509fb70 d00000000b3d2048 0000000003ffdfb7 0000000000000000
GPR08: 00000001007fdfb7 00000000c000000f d0000000250c0000 000000000070f7bf
GPR12: 0000000000000008 c00000000fdad000 0000000010879478 00000000105a0d78
GPR16: 00007ffaf4080000 0000000000001190 0000000000000000 0000000000010000
GPR20: 4001ffffff000415 d00000006509fb70 0000000004091190 0000000ee1881190
GPR24: 0000000003ffdfb7 0000000003ffdfb7 00000000007fdfb7 c000000f5c958000
GPR28: d00000002d09fb70 0000000003ffdfb7 d00000006509fb70 d00000000b3d2048
[ 7072.864439] NIP [c0000000000e1c78] kvmppc_add_revmap_chain+0x88/0x130
[ 7072.864503] LR [c0000000000e2e3c] kvmppc_do_h_enter+0x84c/0x9e0
[ 7072.864566] Call Trace:
[ 7072.864594] [c000001e3ffef7e0] [c000001e3ffef830] 0xc000001e3ffef830 (unreliable)
[ 7072.864671] [c000001e3ffef830] [c0000000000e2e3c] kvmppc_do_h_enter+0x84c/0x9e0
[ 7072.864751] [c000001e3ffef920] [d00000000b38d878] kvmppc_map_vrma+0x168/0x200 [kvm_hv]
[ 7072.864831] [c000001e3ffef9e0] [d00000000b38a684] kvmppc_vcpu_run_hv+0x1284/0x1300 [kvm_hv]
[ 7072.864914] [c000001e3ffefb30] [d00000000f465664] kvmppc_vcpu_run+0x44/0x60 [kvm]
[ 7072.865008] [c000001e3ffefb60] [d00000000f461864] kvm_arch_vcpu_ioctl_run+0x114/0x290 [kvm]
[ 7072.865152] [c000001e3ffefbe0] [d00000000f453c98] kvm_vcpu_ioctl+0x598/0x7a0 [kvm]
[ 7072.865292] [c000001e3ffefd40] [c000000000389328] do_vfs_ioctl+0xd8/0x8c0
[ 7072.865410] [c000001e3ffefde0] [c000000000389be4] SyS_ioctl+0xd4/0x130
[ 7072.865526] [c000001e3ffefe30] [c00000000000b760] system_call+0x58/0x6c
[ 7072.865644] Instruction dump:
[ 7072.865715] e95b2110 793a0020 7b4926e4 7f8a4a14 409e0098 807c000c 786326e4 7c6a1a14
[ 7072.865857] 935e0008 7bbd0020 813c000c 913e000c <93a30008> 93bc000c 48000038 60000000
[ 7072.866001] ---[ end trace 627b6e4bf8080edc ]---
Note that to trigger this, it is necessary to use a recent upstream
QEMU (or other userspace that resizes the HPT at CAS time), specify
a maximum memory size substantially larger than the current memory
size, and boot a guest kernel that does not support HPT resizing.
This fixes the problem by resetting the rmap arrays when the old HPT
is freed.
Fixes: f98a8bf9ee ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB ioctl() to change HPT size")
Cc: stable@vger.kernel.org # v4.11+
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When compiling the 4.13-rc kernel I got those linker errors:
libgcc2.c:(.text+0x110): relocation truncated to fit: R_PARISC_PCREL22F against symbol `$$divU'
defined in .text.div section in /usr/lib/gcc/hppa64-linux-gnu/4.9.2/libgcc.a(_divU.o)
hppa64-linux-gnu-ld: /usr/lib/gcc/hppa64-linux-gnu/4.9.2/libgcc.a(_moddi3.o)(.text+0x174): cannot reach $$divU
Avoid such errors by bundling the millicode routines in the linker script.
Signed-off-by: Helge Deller <deller@gmx.de>
Before the irq handler detects a low stack and then panics the kernel, disable
further stack checks to avoid recursive panics.
Reported-by: John David Anglin <dave.anglin@bell.net>
Signed-off-by: Helge Deller <deller@gmx.de>
Commit dc6416f1d7 ("xen/x86: Call
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE) from xen_play_dead()")
introduced an error leading to a stack overflow of the idle task when
a cpu was brought offline/online many times: by calling
cpu_startup_entry() instead of returning at the end of xen_play_dead()
do_idle() would be entered again and again.
Don't use cpu_startup_entry(), but cpuhp_online_idle() instead allowing
to return from xen_play_dead().
Cc: <stable@vger.kernel.org> # 4.12
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
CONFIG_BOOTPARAM_HOTPLUG_CPU0 allows to offline CPU0 but Xen HVM guests
BUG() in xen_teardown_timer(). Remove the BUG_ON(), this is probably a
leftover from ancient times when CPU0 hotplug was impossible, it works
just fine for HVM.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Pull tty/serial fixes from Greg KH:
"Here are some small tty and serial driver fixes for 4.13-rc2. Nothing
huge at all, a revert of a patch that turned out to break things, a
fix up for a new tty ioctl we added in 4.13-rc1 to get the uapi
definition correct, and a few minor serial driver fixes for reported
issues.
All of these have been in linux-next for a while with no reported
issues"
* tag 'tty-4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty:
tty: Fix TIOCGPTPEER ioctl definition
tty: hide unused pty_get_peer function
tty: serial: lpuart: Fix the logic for detecting the 32-bit type UART
serial: imx: Prevent TX buffer PIO write when a DMA has been started
Revert "serial: imx-serial - move DMA buffer configuration to DT"
serial: sh-sci: Uninitialized variables in sysfs files
serial: st-asc: Potential error pointer dereference
Pull KVM fixes from Radim Krčmář:
"A bunch of small fixes for x86"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: x86: hyperv: avoid livelock in oneshot SynIC timers
KVM: VMX: Fix invalid guest state detection after task-switch emulation
x86: add MULTIUSER dependency for KVM
KVM: nVMX: Disallow VM-entry in MOV-SS shadow
KVM: nVMX: track NMI blocking state separately for each VMCS
KVM: x86: masking out upper bits
Pull powerpc fixes from Michael Ellerman:
"A handful of fixes, mostly for new code:
- some reworking of the new STRICT_KERNEL_RWX support to make sure we
also remove executable permission from __init memory before it's
freed.
- a fix to some recent optimisations to the hypercall entry where we
were clobbering r12, this was breaking nested guests (PR KVM).
- a fix for the recent patch to opal_configure_cores(). This could
break booting on bare metal Power8 boxes if the kernel was built
without CONFIG_JUMP_LABEL_FEATURE_CHECK_DEBUG.
- .. and finally a workaround for spurious PMU interrupts on Power9
DD2.
Thanks to: Nicholas Piggin, Anton Blanchard, Balbir Singh"
* tag 'powerpc-4.13-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/mm: Mark __init memory no-execute when STRICT_KERNEL_RWX=y
powerpc/mm/hash: Refactor hash__mark_rodata_ro()
powerpc/mm/radix: Refactor radix__mark_rodata_ro()
powerpc/64s: Fix hypercall entry clobbering r12 input
powerpc/perf: Avoid spurious PMU interrupts after idle
powerpc/powernv: Fix boot on Power8 bare metal due to opal_configure_cores()
Pull x86 fixes from Ingo Molnar:
"Half of the fixes are for various build time warnings triggered by
randconfig builds. Most (but not all...) were harmless.
There's also:
- ACPI boundary condition fixes
- UV platform fixes
- defconfig updates
- an AMD K6 CPU init fix
- a %pOF printk format related preparatory change
- .. and a warning fix related to the tlb/PCID changes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/devicetree: Convert to using %pOF instead of ->full_name
x86/platform/uv/BAU: Disable BAU on single hub configurations
x86/platform/intel-mid: Fix a format string overflow warning
x86/platform: Add PCI dependency for PUNIT_ATOM_DEBUG
x86/build: Silence the build with "make -s"
x86/io: Add "memory" clobber to insb/insw/insl/outsb/outsw/outsl
x86/fpu/math-emu: Avoid bogus -Wint-in-bool-context warning
x86/fpu/math-emu: Fix possible uninitialized variable use
perf/x86: Shut up false-positive -Wmaybe-uninitialized warning
x86/defconfig: Remove stale, old Kconfig options
x86/ioapic: Pass the correct data to unmask_ioapic_irq()
x86/acpi: Prevent out of bound access caused by broken ACPI tables
x86/mm, KVM: Fix warning when !CONFIG_PREEMPT_COUNT
x86/platform/uv/BAU: Fix congested_response_us not taking effect
x86/cpu: Use indirect call to measure performance in init_amd_k6()
Pull perf fixes from Ingo Molnar:
"Two hw-enablement patches, two race fixes, three fixes for regressions
of semantics, plus a number of tooling fixes"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Add proper condition to run sched_task callbacks
perf/core: Fix locking for children siblings group read
perf/core: Fix scheduling regression of pinned groups
perf/x86/intel: Fix debug_store reset field for freq events
perf/x86/intel: Add Goldmont Plus CPU PMU support
perf/x86/intel: Enable C-state residency events for Apollo Lake
perf symbols: Accept zero as the kernel base address
Revert "perf/core: Drop kernel samples even though :u is specified"
perf annotate: Fix broken arrow at row 0 connecting jmp instruction to its target
perf evsel: State in the default event name if attr.exclude_kernel is set
perf evsel: Fix attr.exclude_kernel setting for default cycles:p
Pull core fixes from Ingo Molnar:
"A fix to WARN_ON_ONCE() done by modules, plus a MAINTAINERS update"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
debug: Fix WARN_ON_ONCE() for modules
MAINTAINERS: Update the PTRACE entry
xtensa's asm/device.h is a verbatim copy of asm-generic/device.h and
does not add any arch specific extensions. Thus, use the asm-generic
header directly.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>