I've been getting the following warning when doing randbuilds
since forever. Now it finally pissed me off just the perfect
amount so that I can fix it.
arch/x86/kernel/cpu/intel_cacheinfo.c:489:27: warning: ‘cache_disable_0’ defined but not used [-Wunused-variable]
arch/x86/kernel/cpu/intel_cacheinfo.c:491:27: warning: ‘cache_disable_1’ defined but not used [-Wunused-variable] arch/x86/kernel/cpu/intel_cacheinfo.c:524:27: warning: ‘subcaches’ defined but not used [-Wunused-variable]
It happens because in randconfigs where CONFIG_SYSFS is not set,
the whole sysfs-interface to L3 cache index disabling is
remaining unused and gcc correctly warns about it. Make it
optional, depending on CONFIG_SYSFS too, as is the case with
other sysfs-related machinery in this file.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Link: http://lkml.kernel.org/r/1359969195-27362-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Explicitly merging these two branches due to nontrivial conflicts and
to allow further work.
Resolved Conflicts:
arch/x86/kernel/head32.c
arch/x86/kernel/head64.c
arch/x86/mm/init_64.c
arch/x86/realmode/init.c
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Implementation of early update ucode on Intel's CPU.
load_ucode_intel_bsp() scans ucode in initrd image file which is a cpio format
ucode followed by ordinary initrd image file. The binary ucode file is stored
in kernel/x86/microcode/GenuineIntel.bin in the cpio data. All ucode
patches with the same model as BSP are saved in memory. A matching ucode patch
is updated on BSP.
load_ucode_intel_ap() reads saved ucoded patches and updates ucode on AP.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: http://lkml.kernel.org/r/1356075872-3054-9-git-send-email-fenghua.yu@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Pull x86 fixes from Peter Anvin:
"This is a collection of miscellaneous fixes, the most important one is
the fix for the Samsung laptop bricking issue (auto-blacklisting the
samsung-laptop driver); the efi_enabled() changes you see below are
prerequisites for that fix.
The other issues fixed are booting on OLPC XO-1.5, an UV fix, NMI
debugging, and requiring CAP_SYS_RAWIO for MSR references, just as
with I/O port references."
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
samsung-laptop: Disable on EFI hardware
efi: Make 'efi_enabled' a function to query EFI facilities
smp: Fix SMP function call empty cpu mask race
x86/msr: Add capabilities check
x86/dma-debug: Bump PREALLOC_DMA_DEBUG_ENTRIES
x86/olpc: Fix olpc-xo1-sci.c build errors
arch/x86/platform/uv: Fix incorrect tlb flush all issue
x86-64: Fix unwind annotations in recent NMI changes
x86-32: Start out cr0 clean, disable paging before modifying cr3/4
Originally 'efi_enabled' indicated whether a kernel was booted from
EFI firmware. Over time its semantics have changed, and it now
indicates whether or not we are booted on an EFI machine with
bit-native firmware, e.g. 64-bit kernel with 64-bit firmware.
The immediate motivation for this patch is the bug report at,
https://bugs.launchpad.net/ubuntu-cdimage/+bug/1040557
which details how running a platform driver on an EFI machine that is
designed to run under BIOS can cause the machine to become
bricked. Also, the following report,
https://bugzilla.kernel.org/show_bug.cgi?id=47121
details how running said driver can also cause Machine Check
Exceptions. Drivers need a new means of detecting whether they're
running on an EFI machine, as sadly the expression,
if (!efi_enabled)
hasn't been a sufficient condition for quite some time.
Users actually want to query 'efi_enabled' for different reasons -
what they really want access to is the list of available EFI
facilities.
For instance, the x86 reboot code needs to know whether it can invoke
the ResetSystem() function provided by the EFI runtime services, while
the ACPI OSL code wants to know whether the EFI config tables were
mapped successfully. There are also checks in some of the platform
driver code to simply see if they're running on an EFI machine (which
would make it a bad idea to do BIOS-y things).
This patch is a prereq for the samsung-laptop fix patch.
Cc: David Airlie <airlied@linux.ie>
Cc: Corentin Chary <corentincj@iksaif.net>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Peter Jones <pjones@redhat.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Steve Langasek <steve.langasek@canonical.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Konrad Rzeszutek Wilk <konrad@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
During kdump kernel's booting stage, it need to find low ram for
swiotlb buffer when system does not support intel iommu/dmar remapping.
kexed-tools is appending memmap=exactmap and range from /proc/iomem
with "Crash kernel", and that range is above 4G for 64bit after boot
protocol 2.12.
We need to add another range in /proc/iomem like "Crash kernel low",
so kexec-tools could find that info and append to kdump kernel
command line.
Try to reserve some under 4G if the normal "Crash kernel" is above 4G.
User could specify the size with crashkernel_low=XX[KMG].
-v2: fix warning that is found by Fengguang's test robot.
-v3: move out get_mem_size change to another patch, to solve compiling
warning that is found by Borislav Petkov <bp@alien8.de>
-v4: user must specify crashkernel_low if system does not support
intel or amd iommu.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-31-git-send-email-yinghai@kernel.org
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Rob Landley <rob@landley.net>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We should set mappings only for usable memory ranges under max_pfn
Otherwise causes same problem that is fixed by
x86, mm: Only direct map addresses that are marked as E820_RAM
This patch exposes pfn_mapped array, and only sets ident mapping for ranges
in that array.
This patch relies on new kernel_ident_mapping_init that could handle existing
pgd/pud between different calls.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-25-git-send-email-yinghai@kernel.org
Cc: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Now ident_mapping_init is checking if pgd/pud is present for every 2M,
so several 2Ms are in same PUD, it will keep checking if pud is there
with same pud.
init_level4_page just does not check existing pgd/pud.
We could use generic mapping_init with different settings in info to
replace those two local grown version functions.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-24-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We only map a single 2 MiB page per #PF, even though we should be able
to do this a full gigabyte at a time with no additional memory cost.
This is a workaround for a broken AMD reference BIOS (and its
derivatives in shipping system) which maps a large chunk of memory as
WB in the MTRR system but will #MC if the processor wanders off and
tries to prefetch that memory, which can happen any time the memory is
mapped in the TLB.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-13-git-send-email-yinghai@kernel.org
Cc: Alexander Duyck <alexander.h.duyck@intel.com>
[ hpa: rewrote the patch description ]
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all
64-bit code has to use page tables. This makes it awkward before we
have first set up properly all-covering page tables to access objects
that are outside the static kernel range.
So far we have dealt with that simply by mapping a fixed amount of
low memory, but that fails in at least two upcoming use cases:
1. We will support load and run kernel, struct boot_params, ramdisk,
command line, etc. above the 4 GiB mark.
2. need to access ramdisk early to get microcode to update that as
early possible.
We could use early_iomap to access them too, but it will make code to
messy and hard to be unified with 32 bit.
Hence, set up a #PF table and use a fixed number of buffers to set up
page tables on demand. If the buffers fill up then we simply flush
them and start over. These buffers are all in __initdata, so it does
not increase RAM usage at runtime.
Thus, with the help of the #PF handler, we can set the final kernel
mapping from blank, and switch to init_level4_pgt later.
During the switchover in head_64.S, before #PF handler is available,
we use three pages to handle kernel crossing 1G, 512G boundaries with
sharing page by playing games with page aliasing: the same page is
mapped twice in the higher-level tables with appropriate wraparound.
The kernel region itself will be properly mapped; other mappings may
be spurious.
early_make_pgtable is using kernel high mapping address to access pages
to set page table.
-v4: Add phys_base offset to make kexec happy, and add
init_mapping_kernel() - Yinghai
-v5: fix compiling with xen, and add back ident level3 and level2 for xen
also move back init_level4_pgt from BSS to DATA again.
because we have to clear it anyway. - Yinghai
-v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai
-v7: remove not needed clear_page for init_level4_page
it is with fill 512,8,0 already in head_64.S - Yinghai
-v8: we need to keep that handler alive until init_mem_mapping and don't
let early_trap_init to trash that early #PF handler.
So split early_trap_pf_init out and move it down. - Yinghai
-v9: switchover only cover kernel space instead of 1G so could avoid
touch possible mem holes. - Yinghai
-v11: change far jmp back to far return to initial_code, that is needed
to fix failure that is reported by Konrad on AMD systems. - Yinghai
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We want to support struct boot_params (formerly known as the
zero-page, or real-mode data) above the 4 GiB mark. We will have #PF
handler to set page table for not accessible ram early, but want to
limit it before x86_64_start_reservations to limit the code change to
native path only.
Also we will need the ramdisk info in struct boot_params to access the microcode
blob in ramdisk in x86_64_start_kernel, so copy struct boot_params early makes
it accessing ramdisk info simple.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-9-git-send-email-yinghai@kernel.org
Cc: Alexander Duyck <alexander.h.duyck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Coming patches to x86/mm2 require the changes and advanced baseline in
x86/boot.
Resolved Conflicts:
arch/x86/kernel/setup.c
mm/nobootmem.c
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Use the new sentinel field to detect bootloaders which fail to follow
protocol and don't initialize fields in struct boot_params that they
do not explicitly initialize to zero.
Based on an original patch and research by Yinghai Lu.
Changed by hpa to be invoked both in the decompression path and in the
kernel proper; the latter for the case where a bootloader takes over
decompression.
Originally-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-26-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This callback replaces the old __eoi_ioapic_pin function
which needs a special path for interrupt remapping.
Signed-off-by: Joerg Roedel <joro@8bytes.org>
Acked-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
This call-back points to the right function for initializing
the msi_msg structure. The old code for msi_msg generation
was split up into the irq-remapped and the default case.
The irq-remapped case just calls into the specific Intel or
AMD implementation when the device is behind an IOMMU.
Otherwise the default function is called.
Signed-off-by: Joerg Roedel <joro@8bytes.org>
Acked-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
This function does irq-remapping specific interrupt setup
like modifying the chip defaults.
Signed-off-by: Joerg Roedel <joro@8bytes.org>
Acked-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The function is called unconditionally now in IO-APIC code
removing another irq_remapped() check from x86 core code.
Signed-off-by: Joerg Roedel <joro@8bytes.org>
Acked-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
This function is only called from default_ioapic_set_affinity()
which is only used when interrupt remapping is disabled
since the introduction of the set_affinity function pointer.
So the check will always evaluate as true and can be
removed.
Signed-off-by: Joerg Roedel <joro@8bytes.org>
Acked-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Move all the code to either to the header file
asm/irq_remapping.h or to drivers/iommu/.
Signed-off-by: Joerg Roedel <joro@8bytes.org>
Acked-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>