Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Optimized support for Intel "Cluster-on-Die" (CoD) topologies (Dave
Hansen)
- Various sched/idle refinements for better idle handling (Nicolas
Pitre, Daniel Lezcano, Chuansheng Liu, Vincent Guittot)
- sched/numa updates and optimizations (Rik van Riel)
- sysbench speedup (Vincent Guittot)
- capacity calculation cleanups/refactoring (Vincent Guittot)
- Various cleanups to thread group iteration (Oleg Nesterov)
- Double-rq-lock removal optimization and various refactorings
(Kirill Tkhai)
- various sched/deadline fixes
... and lots of other changes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/dl: Use dl_bw_of() under rcu_read_lock_sched()
sched/fair: Delete resched_cpu() from idle_balance()
sched, time: Fix build error with 64 bit cputime_t on 32 bit systems
sched: Improve sysbench performance by fixing spurious active migration
sched/x86: Fix up typo in topology detection
x86, sched: Add new topology for multi-NUMA-node CPUs
sched/rt: Use resched_curr() in task_tick_rt()
sched: Use rq->rd in sched_setaffinity() under RCU read lock
sched: cleanup: Rename 'out_unlock' to 'out_free_new_mask'
sched: Use dl_bw_of() under RCU read lock
sched/fair: Remove duplicate code from can_migrate_task()
sched, mips, ia64: Remove __ARCH_WANT_UNLOCKED_CTXSW
sched: print_rq(): Don't use tasklist_lock
sched: normalize_rt_tasks(): Don't use _irqsave for tasklist_lock, use task_rq_lock()
sched: Fix the task-group check in tg_has_rt_tasks()
sched/fair: Leverage the idle state info when choosing the "idlest" cpu
sched: Let the scheduler see CPU idle states
sched/deadline: Fix inter- exclusive cpusets migrations
sched/deadline: Clear dl_entity params when setscheduling to different class
sched/numa: Kill the wrong/dead TASK_DEAD check in task_numa_fault()
...
Pull core locking updates from Ingo Molnar:
"The main updates in this cycle were:
- mutex MCS refactoring finishing touches: improve comments, refactor
and clean up code, reduce debug data structure footprint, etc.
- qrwlock finishing touches: remove old code, self-test updates.
- small rwsem optimization
- various smaller fixes/cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/lockdep: Revert qrwlock recusive stuff
locking/rwsem: Avoid double checking before try acquiring write lock
locking/rwsem: Move EXPORT_SYMBOL() lines to follow function definition
locking/rwlock, x86: Delete unused asm/rwlock.h and rwlock.S
locking/rwlock, x86: Clean up asm/spinlock*.h to remove old rwlock code
locking/semaphore: Resolve some shadow warnings
locking/selftest: Support queued rwlock
locking/lockdep: Restrict the use of recursive read_lock() with qrwlock
locking/spinlocks: Always evaluate the second argument of spin_lock_nested()
locking/Documentation: Update locking/mutex-design.txt disadvantages
locking/Documentation: Move locking related docs into Documentation/locking/
locking/mutexes: Use MUTEX_SPIN_ON_OWNER when appropriate
locking/mutexes: Refactor optimistic spinning code
locking/mcs: Remove obsolete comment
locking/mutexes: Document quick lock release when unlocking
locking/mutexes: Standardize arguments in lock/unlock slowpaths
locking: Remove deprecated smp_mb__() barriers
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable fixes:
- fix an NFSv4.1 state renewal regression
- fix open/lock state recovery error handling
- fix lock recovery when CREATE_SESSION/SETCLIENTID_CONFIRM fails
- fix statd when reconnection fails
- don't wake tasks during connection abort
- don't start reboot recovery if lease check fails
- fix duplicate proc entries
Features:
- pNFS block driver fixes and clean ups from Christoph
- More code cleanups from Anna
- Improve mmap() writeback performance
- Replace use of PF_TRANS with a more generic mechanism for avoiding
deadlocks in nfs_release_page"
* tag 'nfs-for-3.18-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (66 commits)
NFSv4.1: Fix an NFSv4.1 state renewal regression
NFSv4: fix open/lock state recovery error handling
NFSv4: Fix lock recovery when CREATE_SESSION/SETCLIENTID_CONFIRM fails
NFS: Fabricate fscache server index key correctly
SUNRPC: Add missing support for RPC_CLNT_CREATE_NO_RETRANS_TIMEOUT
NFSv3: Fix missing includes of nfs3_fs.h
NFS/SUNRPC: Remove other deadlock-avoidance mechanisms in nfs_release_page()
NFS: avoid waiting at all in nfs_release_page when congested.
NFS: avoid deadlocks with loop-back mounted NFS filesystems.
MM: export page_wakeup functions
SCHED: add some "wait..on_bit...timeout()" interfaces.
NFS: don't use STABLE writes during writeback.
NFSv4: use exponential retry on NFS4ERR_DELAY for async requests.
rpc: Add -EPERM processing for xs_udp_send_request()
rpc: return sent and err from xs_sendpages()
lockd: Try to reconnect if statd has moved
SUNRPC: Don't wake tasks during connection abort
Fixing lease renewal
nfs: fix duplicate proc entries
pnfs/blocklayout: Fix a 64-bit division/remainder issue in bl_map_stripe
...
Since commit caeb178c60 ("sched/fair: Make update_sd_pick_busiest() ...")
sd_pick_busiest returns a group that can be neither imbalanced nor overloaded
but is only more loaded than others. This change has been introduced to ensure
a better load balance in system that are not overloaded but as a side effect,
it can also generate useless active migration between groups.
Let take the example of 3 tasks on a quad cores system. We will always have an
idle core so the load balance will find a busiest group (core) whenever an ILB
is triggered and it will force an active migration (once above
nr_balance_failed threshold) so the idle core becomes busy but another core
will become idle. With the next ILB, the freshly idle core will try to pull the
task of a busy CPU.
The number of spurious active migration is not so huge in quad core system
because the ILB is not triggered so much. But it becomes significant as soon as
you have more than one sched_domain level like on a dual cluster of quad cores
where the ILB is triggered every tick when you have more than 1 busy_cpu
We need to ensure that the migration generate a real improveùent and will not
only move the avg_load imbalance on another CPU.
Before caeb178c60, the filtering of such use
case was ensured by the following test in f_b_g:
if ((local->idle_cpus < busiest->idle_cpus) &&
busiest->sum_nr_running <= busiest->group_weight)
This patch modified the condition to take into account situation where busiest
group is not overloaded: If the diff between the number of idle cpus in 2
groups is less than or equal to 1 and the busiest group is not overloaded,
moving a task will not improve the load balance but just move it.
A test with sysbench on a dual clusters of quad cores gives the following
results:
command: sysbench --test=cpu --num-threads=5 --max-time=5 run
The HZ is 200 which means that 1000 ticks has fired during the test.
With Mainline, perf gives the following figures:
Samples: 727 of event 'sched:sched_migrate_task'
Event count (approx.): 727
Overhead Command Shared Object Symbol
........ ............... ............. ..............
12.52% migration/1 [unknown] [.] 00000000
12.52% migration/5 [unknown] [.] 00000000
12.52% migration/7 [unknown] [.] 00000000
12.10% migration/6 [unknown] [.] 00000000
11.83% migration/0 [unknown] [.] 00000000
11.83% migration/3 [unknown] [.] 00000000
11.14% migration/4 [unknown] [.] 00000000
10.87% migration/2 [unknown] [.] 00000000
2.75% sysbench [unknown] [.] 00000000
0.83% swapper [unknown] [.] 00000000
0.55% ktps65090charge [unknown] [.] 00000000
0.41% mmcqd/1 [unknown] [.] 00000000
0.14% perf [unknown] [.] 00000000
With this patch, perf gives the following figures
Samples: 20 of event 'sched:sched_migrate_task'
Event count (approx.): 20
Overhead Command Shared Object Symbol
........ ............... ............. ..............
80.00% sysbench [unknown] [.] 00000000
10.00% swapper [unknown] [.] 00000000
5.00% ktps65090charge [unknown] [.] 00000000
5.00% migration/1 [unknown] [.] 00000000
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1412170735-5356-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In commit c1221321b7
sched: Allow wait_on_bit_action() functions to support a timeout
I suggested that a "wait_on_bit_timeout()" interface would not meet my
need. This isn't true - I was just over-engineering.
Including a 'private' field in wait_bit_key instead of a focused
"timeout" field was just premature generalization. If some other
use is ever found, it can be generalized or added later.
So this patch renames "private" to "timeout" with a meaning "stop
waiting when "jiffies" reaches or passes "timeout",
and adds two of the many possible wait..bit..timeout() interfaces:
wait_on_page_bit_killable_timeout(), which is the one I want to use,
and out_of_line_wait_on_bit_timeout() which is a reasonably general
example. Others can be added as needed.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
The code in find_idlest_cpu() looks for the CPU with the smallest load.
However, if multiple CPUs are idle, the first idle CPU is selected
irrespective of the depth of its idle state.
Among the idle CPUs we should pick the one with with the shallowest idle
state, or the latest to have gone idle if all idle CPUs are in the same
state. The later applies even when cpuidle is configured out.
This patch doesn't cover the following issues:
- The idle exit latency of a CPU might be larger than the time needed
to migrate the waking task to an already running CPU with sufficient
capacity, and therefore performance would benefit from task packing
in such case (in most cases task packing is about power saving).
- Some idle states have a non negligible and non abortable entry latency
which needs to run to completion before the exit latency can start.
A concurrent patch series is making this info available to the cpuidle
core. Once available, the entry latency with the idle timestamp could
determine when the exit latency may be effective.
Those issues will be handled in due course. In the mean time, what
is implemented here should improve things already compared to the current
state of affairs.
Based on an initial patch from Daniel Lezcano.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-pm@vger.kernel.org
Cc: linaro-kernel@lists.linaro.org
Link: http://lkml.kernel.org/n/tip-@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When the cpu enters idle, it stores the cpuidle state pointer in its
struct rq instance which in turn could be used to make a better decision
when balancing tasks.
As soon as the cpu exits its idle state, the struct rq reference is
cleared.
There are a couple of situations where the idle state pointer could be changed
while it is being consulted:
1. For x86/acpi with dynamic c-states, when a laptop switches from battery
to AC that could result on removing the deeper idle state. The acpi driver
triggers:
'acpi_processor_cst_has_changed'
'cpuidle_pause_and_lock'
'cpuidle_uninstall_idle_handler'
'kick_all_cpus_sync'.
All cpus will exit their idle state and the pointed object will be set to
NULL.
2. The cpuidle driver is unloaded. Logically that could happen but not
in practice because the drivers are always compiled in and 95% of them are
not coded to unregister themselves. In any case, the unloading code must
call 'cpuidle_unregister_device', that calls 'cpuidle_pause_and_lock'
leading to 'kick_all_cpus_sync' as mentioned above.
A race can happen if we use the pointer and then one of these two scenarios
occurs at the same moment.
In order to be safe, the idle state pointer stored in the rq must be
used inside a rcu_read_lock section where we are protected with the
'rcu_barrier' in the 'cpuidle_uninstall_idle_handler' function. The
idle_get_state() and idle_put_state() accessors should be used to that
effect.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linaro-kernel@lists.linaro.org
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In wake_affine() I have tried to understand the meaning of the condition:
(this_load <= load &&
this_load + target_load(prev_cpu, idx) <= tl_per_task)
but I failed to find a use case that can take advantage of it and I haven't
found clear description in the previous commit's log.
Futhermore, the comment of the condition refers to the task_hot function that
was used before being replaced by the current condition:
/*
* This domain has SD_WAKE_AFFINE and
* p is cache cold in this domain, and
* there is no bad imbalance.
*/
If we look more deeply the below condition:
this_load + target_load(prev_cpu, idx) <= tl_per_task
When sync is clear, we have:
tl_per_task = runnable_load_avg / nr_running
this_load = max(runnable_load_avg, cpuload[idx])
target_load = max(runnable_load_avg', cpuload'[idx])
It implies that runnable_load_avg == 0 and nr_running <= 1 in order to match the
condition. This implies that runnable_load_avg == 0 too because of the
condition: this_load <= load.
but if this _load is null, 'balanced' is already set and the test is redundant.
If sync is set, it's not as straight forward as above (especially if cgroup
are involved) but the policy should be similar as we have removed a task that's
going to sleep in order to get a more accurate load and this_load values.
The current conclusion is that these additional condition don't give any benefit
so we can remove them.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Cc: Morten.Rasmussen@arm.com
Cc: efault@gmx.de
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409051215-16788-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The imbalance flag can stay set whereas there is no imbalance.
Let assume that we have 3 tasks that run on a dual cores /dual cluster system.
We will have some idle load balance which are triggered during tick.
Unfortunately, the tick is also used to queue background work so we can reach
the situation where short work has been queued on a CPU which already runs a
task. The load balance will detect this imbalance (2 tasks on 1 CPU and an idle
CPU) and will try to pull the waiting task on the idle CPU. The waiting task is
a worker thread that is pinned on a CPU so an imbalance due to pinned task is
detected and the imbalance flag is set.
Then, we will not be able to clear the flag because we have at most 1 task on
each CPU but the imbalance flag will trig to useless active load balance
between the idle CPU and the busy CPU.
We need to reset of the imbalance flag as soon as we have reached a balanced
state. If all tasks are pinned, we don't consider that as a balanced state and
let the imbalance flag set.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: riel@redhat.com
Cc: Morten.Rasmussen@arm.com
Cc: efault@gmx.de
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409051215-16788-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The code in task_numa_compare() will only examine at most one idle CPU per node,
because they all have the same score. However, some idle CPUs are better
candidates than others, due to busy or idle SMT siblings, etc...
The scheduler has logic to find the best CPU within an LLC to place a
task. The NUMA code should probably use it.
This seems to reduce the standard deviation for single instance SPECjbb2005
with a low warehouse count on my 4 node test system.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140904163530.189d410a@cuia.bos.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current code can fail to migrate a waking task (silently) when TTWU_QUEUE is
enabled.
When a task is waking, it is pending on the wake_list of the rq, but it is not
queued (task->on_rq == 0). In this case, set_cpus_allowed_ptr() and
__migrate_task() will not migrate it because its invisible to them.
This behavior is incorrect, because the task has been already woken, it will be
running on the wrong CPU without correct placement until the next wake-up or
update for cpus_allowed.
To fix this problem, we need to finish the wakeup (so they appear on
the runqueue) before we migrate them.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Jason J. Herne <jjherne@linux.vnet.ibm.com>
Tested-by: Jason J. Herne <jjherne@linux.vnet.ibm.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/538ED7EB.5050303@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
An overrun could happen in function start_hrtick_dl()
when a task with SCHED_DEADLINE runs in the microseconds
range.
For example, if a task with SCHED_DEADLINE has the following parameters:
Task runtime deadline period
P1 200us 500us 500us
The deadline and period from task P1 are less than 1ms.
In order to achieve microsecond precision, we need to enable HRTICK feature
by the next command:
PC#echo "HRTICK" > /sys/kernel/debug/sched_features
PC#trace-cmd record -e sched_switch &
PC#./schedtool -E -t 200000:500000:500000 -e ./test
The binary test is in an endless while(1) loop here.
Some pieces of trace.dat are as follows:
<idle>-0 157.603157: sched_switch: :R ==> 2481:4294967295: test
test-2481 157.603203: sched_switch: 2481:R ==> 0:120: swapper/2
<idle>-0 157.605657: sched_switch: :R ==> 2481:4294967295: test
test-2481 157.608183: sched_switch: 2481:R ==> 2483:120: trace-cmd
trace-cmd-2483 157.609656: sched_switch:2483:R==>2481:4294967295: test
We can get the runtime of P1 from the information above:
runtime = 157.608183 - 157.605657
runtime = 0.002526(2.526ms)
The correct runtime should be less than or equal to 200us at some point.
The problem is caused by a conditional judgment "delta > 10000"
in function start_hrtick_dl().
Because no hrtimer start up to control the rest of runtime
when the reset of runtime is less than 10us.
So the process will continue to run until tick-period is coming.
Move the code with the limit of the least time slice
from hrtick_start_fair() to hrtick_start() because the
EDF schedule class also needs this function in start_hrtick_dl().
To fix this problem, we call hrtimer_start() unconditionally in
start_hrtick_dl(), and make sure the scheduling slice won't be smaller
than 10us in hrtimer_start().
Signed-off-by: Xiaofeng Yan <xiaofeng.yan@huawei.com>
Reviewed-by: Li Zefan <lizefan@huawei.com>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409022941-5880-1-git-send-email-xiaofeng.yan@huawei.com
[ Massaged the changelog and the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The use of "rcu_assign_pointer()" is NULLing out the pointer.
According to RCU_INIT_POINTER()'s block comment:
"1. This use of RCU_INIT_POINTER() is NULLing out the pointer"
it is better to use it instead of rcu_assign_pointer() because it has a
smaller overhead.
The following Coccinelle semantic patch was used:
@@
@@
- rcu_assign_pointer
+ RCU_INIT_POINTER
(..., NULL)
Signed-off-by: Andreea-Cristina Bernat <bernat.ada@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: paulmck@linux.vnet.ibm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140822145043.GA580@ada
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__get_cpu_var can paper over differences in the definitions of
cpumask_var_t and either use the address of the cpumask variable
directly or perform a fetch of the address of the struct cpumask
allocated elsewhere. This is important particularly when using per cpu
cpumask_var_t declarations because in one case we have an offset into
a per cpu area to handle and in the other case we need to fetch a
pointer from the offset.
This patch introduces a new macro
this_cpu_cpumask_var_ptr()
that is defined where cpumask_var_t is defined and performs the proper
actions. All use cases where __get_cpu_var is used with cpumask_var_t
are converted to the use of this_cpu_cpumask_var_ptr().
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Convert all uses of __get_cpu_var for address calculation to use
this_cpu_ptr instead.
[Uses of __get_cpu_var with cpumask_var_t are no longer
handled by this patch]
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Convert uses of __get_cpu_var for creating a address from a percpu
offset to this_cpu_ptr.
The two cases where get_cpu_var is used to actually access a percpu
variable are changed to use this_cpu_read/raw_cpu_read.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
This function will help an async task processing batched jobs from
workqueue decide if it wants to keep processing on more chunks of batched
work that can be delayed, or to accumulate more work for more efficient
batched processing later.
If no other tasks are running on the cpu, the batching process can take
advantgae of the available cpu cycles to a make decision to continue
processing the existing accumulated work to minimize delay,
otherwise it will yield.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>