Some of the atomics return the result of a test applied after the atomic
operation, and almost all architectures implement these as trivial
wrappers around the underlying atomic. Specifically:
* <atomic>_inc_and_test(v) is (<atomic>_inc_return(v) == 0)
* <atomic>_dec_and_test(v) is (<atomic>_dec_return(v) == 0)
* <atomic>_sub_and_test(i, v) is (<atomic>_sub_return(i, v) == 0)
* <atomic>_add_negative(i, v) is (<atomic>_add_return(i, v) < 0)
Rather than have these definitions duplicated in all architectures, with
minor inconsistencies in formatting and documentation, let's make these
operations optional, with default fallbacks as above. Implementations
must now provide a preprocessor symbol.
The instrumented atomics are updated accordingly.
Both x86 and m68k have custom implementations, which are left as-is,
given preprocessor symbols to avoid being overridden.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-16-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Architectures with atomic64_fetch_add_unless() provide a preprocessor
symbol if they do so, and all other architectures have trivial C
implementations of atomic64_add_unless() which are near-identical.
Let's unify the trivial definitions of atomic64_fetch_add_unless() in
<linux/atomic.h>, so that we always have both
atomic64_fetch_add_unless() and atomic64_add_unless() with less
boilerplate code.
This means that atomic64_add_unless() is always implemented in core
code, and the instrumented atomics are updated accordingly.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-15-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Several architectures these have a near-identical implementation based
on atomic_read() and atomic_cmpxchg() which we can instead define in
<linux/atomic.h>, so let's do so, using something close to the existing
x86 implementation with try_cmpxchg().
Where an architecture provides its own atomic_fetch_add_unless(), it
must define a preprocessor symbol for it. The instrumented atomics are
updated accordingly.
Note that arch/arc's existing atomic_fetch_add_unless() had redundant
barriers, as these are already present in its atomic_cmpxchg()
implementation.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineet Gupta <vgupta@synopsys.com>
Link: https://lore.kernel.org/lkml/20180621121321.4761-7-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We define a trivial fallback for atomic_inc_not_zero(), but don't do
the same for atomic64_inc_not_zero(), leading most architectures to
define the same boilerplate.
Let's add a fallback in <linux/atomic.h>, and remove the redundant
implementations. Note that atomic64_add_unless() is always defined in
<linux/atomic.h>, and promotes its arguments to the requisite types, so
we need not do this explicitly.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-6-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While __atomic_add_unless() was originally intended as a building-block
for atomic_add_unless(), it's now used in a number of places around the
kernel. It's the only common atomic operation named __atomic*(), rather
than atomic_*(), and for consistency it would be better named
atomic_fetch_add_unless().
This lack of consistency is slightly confusing, and gets in the way of
scripting atomics. Given that, let's clean things up and promote it to
an official part of the atomics API, in the form of
atomic_fetch_add_unless().
This patch converts definitions and invocations over to the new name,
including the instrumented version, using the following script:
----
git grep -w __atomic_add_unless | while read line; do
sed -i '{s/\<__atomic_add_unless\>/atomic_fetch_add_unless/}' "${line%%:*}";
done
git grep -w __arch_atomic_add_unless | while read line; do
sed -i '{s/\<__arch_atomic_add_unless\>/arch_atomic_fetch_add_unless/}' "${line%%:*}";
done
----
Note that we do not have atomic{64,_long}_fetch_add_unless(), which will
be introduced by later patches.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20180621121321.4761-2-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The erratum and workaround are described by BCM5300X-ES300-RDS.pdf as
below.
R10: PCIe Transactions Periodically Fail
Description: The BCM5300X PCIe does not maintain transaction ordering.
This may cause PCIe transaction failure.
Fix Comment: Add a dummy PCIe configuration read after a PCIe
configuration write to ensure PCIe configuration access
ordering. Set ES bit of CP0 configu7 register to enable
sync function so that the sync instruction is functional.
Resolution: hndpci.c: extpci_write_config()
hndmips.c: si_mips_init()
mipsinc.h CONF7_ES
This is fixed by the CFE MIPS bcmsi chipset driver also for BCM47XX.
Also the dummy PCIe configuration read is already implemented in the
Linux BCMA driver.
Enable ExternalSync in Config7 when CONFIG_BCMA_DRIVER_PCI_HOSTMODE=y
too so that the sync instruction is externalised.
Signed-off-by: Tokunori Ikegami <ikegami@allied-telesis.co.jp>
Reviewed-by: Paul Burton <paul.burton@mips.com>
Acked-by: Hauke Mehrtens <hauke@hauke-m.de>
Cc: Chris Packham <chris.packham@alliedtelesis.co.nz>
Cc: Rafał Miłecki <zajec5@gmail.com>
Cc: linux-mips@linux-mips.org
Cc: stable@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/19461/
Signed-off-by: James Hogan <jhogan@kernel.org>
Pull MIPS updates from James Hogan:
"These are the main MIPS changes for 4.18.
Rough overview:
- MAINTAINERS: Add Paul Burton as MIPS co-maintainer
- Misc: Generic compiler intrinsics, Y2038 improvements, Perf+MT fixes
- Platform support: Netgear WNR1000 V3, Microsemi Ocelot integrated
switch, Ingenic watchdog cleanups
More detailed summary:
Maintainers:
- Add Paul Burton as MIPS co-maintainer, as I soon won't have access
to much MIPS hardware, nor enough time to properly maintain MIPS on
my own.
Miscellaneous:
- Use generic GCC library routines from lib/
- Add notrace to generic ucmpdi2 implementation
- Rename compiler intrinsic selects to GENERIC_LIB_*
- vmlinuz: Use generic ashldi3
- y2038: Convert update/read_persistent_clock() to *_clock64()
- sni: Remove read_persistent_clock()
- perf: Fix perf with MT counting other threads
- Probe for per-TC perf counters in cpu-probe.c
- Use correct VPE ID for VPE tracing
Minor cleanups:
- Avoid unneeded built-in.a in DTS dirs
- sc-debugfs: Re-use kstrtobool_from_user
- memset.S: Reinstate delay slot indentation
- VPE: Fix spelling "uneeded" -> "Unneeded"
Platform support:
BCM47xx:
- Add support for Netgear WNR1000 V3
- firmware: Support small NVRAM partitions
- Use __initdata for LEDs platform data
Ingenic:
- Watchdog driver & platform code improvements:
- Disable clock after stopping counter
- Use devm_* functions
- Drop module remove function
- Move platform reset code to restart handler in driver
- JZ4740: Convert watchdog instantiation to DT
- JZ4780: Fix watchdog DT node
- qi_lb60_defconfig: Enable watchdog driver
Microsemi:
- Ocelot: Add support for integrated switch
- pcb123: Connect phys to ports"
* tag 'mips_4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux: (30 commits)
MAINTAINERS: Add Paul Burton as MIPS co-maintainer
MIPS: ptrace: Make FPU context layout comments match reality
MIPS: memset.S: Reinstate delay slot indentation
MIPS: perf: Fix perf with MT counting other threads
MIPS: perf: Use correct VPE ID when setting up VPE tracing
MIPS: perf: More robustly probe for the presence of per-tc counters
MIPS: Probe for MIPS MT perf counters per TC
MIPS: mscc: Connect phys to ports on ocelot_pcb123
MIPS: mscc: Add switch to ocelot
MIPS: JZ4740: Drop old platform reset code
MIPS: qi_lb60: Enable the jz4740-wdt driver
MIPS: JZ4780: dts: Fix watchdog node
MIPS: JZ4740: dts: Add bindings for the jz4740-wdt driver
watchdog: JZ4740: Drop module remove function
watchdog: JZ4740: Register a restart handler
watchdog: JZ4740: Use devm_* functions
watchdog: JZ4740: Disable clock after stopping counter
MIPS: VPE: Fix spelling mistake: "uneeded" -> "unneeded"
MIPS: Re-use kstrtobool_from_user()
MIPS: Convert update_persistent_clock() to update_persistent_clock64()
...
Pull timers and timekeeping updates from Thomas Gleixner:
- Core infrastucture work for Y2038 to address the COMPAT interfaces:
+ Add a new Y2038 safe __kernel_timespec and use it in the core
code
+ Introduce config switches which allow to control the various
compat mechanisms
+ Use the new config switch in the posix timer code to control the
32bit compat syscall implementation.
- Prevent bogus selection of CPU local clocksources which causes an
endless reselection loop
- Remove the extra kthread in the clocksource code which has no value
and just adds another level of indirection
- The usual bunch of trivial updates, cleanups and fixlets all over the
place
- More SPDX conversions
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
clocksource/drivers/mxs_timer: Switch to SPDX identifier
clocksource/drivers/timer-imx-tpm: Switch to SPDX identifier
clocksource/drivers/timer-imx-gpt: Switch to SPDX identifier
clocksource/drivers/timer-imx-gpt: Remove outdated file path
clocksource/drivers/arc_timer: Add comments about locking while read GFRC
clocksource/drivers/mips-gic-timer: Add pr_fmt and reword pr_* messages
clocksource/drivers/sprd: Fix Kconfig dependency
clocksource: Move inline keyword to the beginning of function declarations
timer_list: Remove unused function pointer typedef
timers: Adjust a kernel-doc comment
tick: Prefer a lower rating device only if it's CPU local device
clocksource: Remove kthread
time: Change nanosleep to safe __kernel_* types
time: Change types to new y2038 safe __kernel_* types
time: Fix get_timespec64() for y2038 safe compat interfaces
time: Add new y2038 safe __kernel_timespec
posix-timers: Make compat syscalls depend on CONFIG_COMPAT_32BIT_TIME
time: Introduce CONFIG_COMPAT_32BIT_TIME
time: Introduce CONFIG_64BIT_TIME in architectures
compat: Enable compat_get/put_timespec64 always
...
Processors implementing the MIPS MT ASE may have performance counters
implemented per core or per TC. Processors implemented by MIPS
Technologies signify presence per TC through a bit in the implementation
specific Config7 register. Currently the code which probes for their
presence blindly reads a magic number corresponding to this bit, despite
it potentially having a different meaning in the CPU implementation.
Since CPU features are generally detected by cpu-probe.c, perform the
detection here instead. Introduce cpu_set_mt_per_tc_perf which checks
the bit in config7 and call it from MIPS CPUs known to implement this
bit and the MT ASE, specifically, the 34K, 1004K and interAptiv.
Once the presence of the per-tc counter is indicated in cpu_data, tests
for it can be updated to use this flag.
Suggested-by: James Hogan <jhogan@kernel.org>
Signed-off-by: Matt Redfearn <matt.redfearn@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Matt Redfearn <matt.redfearn@mips.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Maciej W. Rozycki <macro@mips.com>
Cc: linux-mips@linux-mips.org>
Patchwork: https://patchwork.linux-mips.org/patch/19136/
Signed-off-by: James Hogan <jhogan@kernel.org>
Since struct timespec is not y2038 safe on 32bit machines, this patch
converts update_persistent_clock() to update_persistent_clock64() using
struct timespec64.
The rtc_mips_set_time() and rtc_mips_set_mmss() interfaces were using
'unsigned long' type that is not y2038 safe on 32bit machines, moreover
there is only one platform implementing rtc_mips_set_time() and two
platforms implementing rtc_mips_set_mmss(), so we can just make them each
implement update_persistent_clock64() directly, to get that helper out
of the common mips code by removing rtc_mips_set_time() and
rtc_mips_set_mmss() interfaces.
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Huacai Chen <chenhc@lemote.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@linux-mips.org
Signed-off-by: James Hogan <jhogan@kernel.org>
This was used by the ide, scsi and networking code in the past to
determine if they should bounce payloads. Now that the dma mapping
always have to support dma to all physical memory (thanks to swiotlb
for non-iommu systems) there is no need to this crude hack any more.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Palmer Dabbelt <palmer@sifive.com> (for riscv)
Reviewed-by: Jens Axboe <axboe@kernel.dk>
This adds support for detecting this model board and registers some LEDs
and buttons.
There are two uncommon things regarding this device:
1) It can use two different "board_id" ID values.
Unit I have uses "U12H139T00_NETGEAR" value. This magic is also used
in firmware file header. There are two reports (one from an OpenWrt
user) of a different "U12H139T50_NETGEAR" magic though.
2) Power LEDs share GPIOs with buttons.
Amber one seems to share GPIO 2 with WPS button and green one seems
to share GPIO 3 with reset button. It remains unknown how to support
them and handle buttons at the same time. For that reason they aren't
added to the list of supported LEDs.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Hauke Mehrtens <hauke@hauke-m.de>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/19004/
Signed-off-by: James Hogan <jhogan@kernel.org>
Pull MIPS fixes from James Hogan:
- io: Add barriers to read*() & write*()
- dts: Fix boston PCI bus DTC warnings (4.17)
- memset: Several corner case fixes (one 3.10, others longer)
* tag 'mips_fixes_4.17_1' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan/mips:
MIPS: uaccess: Add micromips clobbers to bzero invocation
MIPS: memset.S: Fix clobber of v1 in last_fixup
MIPS: memset.S: Fix return of __clear_user from Lpartial_fixup
MIPS: memset.S: EVA & fault support for small_memset
MIPS: dts: Boston: Fix PCI bus dtc warnings:
MIPS: io: Add barrier after register read in readX()
MIPS: io: Prevent compiler reordering writeX()
MIPS is the weirdest case for sysvipc, because each of the
three data structures is done differently:
* msqid64_ds has padding in the right place so we could in theory
extend this one to just have 64-bit values instead of time_t.
As this does not work for most of the other combinations,
we just handle it in the common manner though.
* semid64_ds has no padding for 64-bit time_t, but has two reserved
'long' fields, which are sufficient to extend the sem_otime
and sem_ctime fields to 64 bit. In order to do this, the libc
implementation will have to copy the data into another structure
that has the fields in a different order. MIPS is the only
architecture with this problem, so this is best done in MIPS
specific libc code.
* shmid64_ds is slightly worse than that, because it has three
time_t fields but only two unused 32-bit words. As a workaround,
we extend each field only by 16 bits, ending up with 48-bit
timestamps that user space again has to work around by itself.
The compat versions of the data structures are changed in the
same way.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
While a barrier is present in the writeX() functions before the register
write, a similar barrier is missing in the readX() functions after the
register read. This could allow memory accesses following readX() to
observe stale data.
Signed-off-by: Sinan Kaya <okaya@codeaurora.org>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/19069/
[jhogan@kernel.org: Tidy commit message]
Signed-off-by: James Hogan <jhogan@kernel.org>
Patch series "mm: introduce MAP_FIXED_NOREPLACE", v2.
This has started as a follow up discussion [3][4] resulting in the
runtime failure caused by hardening patch [5] which removes MAP_FIXED
from the elf loader because MAP_FIXED is inherently dangerous as it
might silently clobber an existing underlying mapping (e.g. stack).
The reason for the failure is that some architectures enforce an
alignment for the given address hint without MAP_FIXED used (e.g. for
shared or file backed mappings).
One way around this would be excluding those archs which do alignment
tricks from the hardening [6]. The patch is really trivial but it has
been objected, rightfully so, that this screams for a more generic
solution. We basically want a non-destructive MAP_FIXED.
The first patch introduced MAP_FIXED_NOREPLACE which enforces the given
address but unlike MAP_FIXED it fails with EEXIST if the given range
conflicts with an existing one. The flag is introduced as a completely
new one rather than a MAP_FIXED extension because of the backward
compatibility. We really want a never-clobber semantic even on older
kernels which do not recognize the flag. Unfortunately mmap sucks
wrt flags evaluation because we do not EINVAL on unknown flags. On
those kernels we would simply use the traditional hint based semantic so
the caller can still get a different address (which sucks) but at least
not silently corrupt an existing mapping. I do not see a good way
around that. Except we won't export expose the new semantic to the
userspace at all.
It seems there are users who would like to have something like that.
Jemalloc has been mentioned by Michael Ellerman [7]
Florian Weimer has mentioned the following:
: glibc ld.so currently maps DSOs without hints. This means that the kernel
: will map right next to each other, and the offsets between them a completely
: predictable. We would like to change that and supply a random address in a
: window of the address space. If there is a conflict, we do not want the
: kernel to pick a non-random address. Instead, we would try again with a
: random address.
John Hubbard has mentioned CUDA example
: a) Searches /proc/<pid>/maps for a "suitable" region of available
: VA space. "Suitable" generally means it has to have a base address
: within a certain limited range (a particular device model might
: have odd limitations, for example), it has to be large enough, and
: alignment has to be large enough (again, various devices may have
: constraints that lead us to do this).
:
: This is of course subject to races with other threads in the process.
:
: Let's say it finds a region starting at va.
:
: b) Next it does:
: p = mmap(va, ...)
:
: *without* setting MAP_FIXED, of course (so va is just a hint), to
: attempt to safely reserve that region. If p != va, then in most cases,
: this is a failure (almost certainly due to another thread getting a
: mapping from that region before we did), and so this layer now has to
: call munmap(), before returning a "failure: retry" to upper layers.
:
: IMPROVEMENT: --> if instead, we could call this:
:
: p = mmap(va, ... MAP_FIXED_NOREPLACE ...)
:
: , then we could skip the munmap() call upon failure. This
: is a small thing, but it is useful here. (Thanks to Piotr
: Jaroszynski and Mark Hairgrove for helping me get that detail
: exactly right, btw.)
:
: c) After that, CUDA suballocates from p, via:
:
: q = mmap(sub_region_start, ... MAP_FIXED ...)
:
: Interestingly enough, "freeing" is also done via MAP_FIXED, and
: setting PROT_NONE to the subregion. Anyway, I just included (c) for
: general interest.
Atomic address range probing in the multithreaded programs in general
sounds like an interesting thing to me.
The second patch simply replaces MAP_FIXED use in elf loader by
MAP_FIXED_NOREPLACE. I believe other places which rely on MAP_FIXED
should follow. Actually real MAP_FIXED usages should be docummented
properly and they should be more of an exception.
[1] http://lkml.kernel.org/r/20171116101900.13621-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/20171129144219.22867-1-mhocko@kernel.org
[3] http://lkml.kernel.org/r/20171107162217.382cd754@canb.auug.org.au
[4] http://lkml.kernel.org/r/1510048229.12079.7.camel@abdul.in.ibm.com
[5] http://lkml.kernel.org/r/20171023082608.6167-1-mhocko@kernel.org
[6] http://lkml.kernel.org/r/20171113094203.aofz2e7kueitk55y@dhcp22.suse.cz
[7] http://lkml.kernel.org/r/87efp1w7vy.fsf@concordia.ellerman.id.au
This patch (of 2):
MAP_FIXED is used quite often to enforce mapping at the particular range.
The main problem of this flag is, however, that it is inherently dangerous
because it unmaps existing mappings covered by the requested range. This
can cause silent memory corruptions. Some of them even with serious
security implications. While the current semantic might be really
desiderable in many cases there are others which would want to enforce the
given range but rather see a failure than a silent memory corruption on a
clashing range. Please note that there is no guarantee that a given range
is obeyed by the mmap even when it is free - e.g. arch specific code is
allowed to apply an alignment.
Introduce a new MAP_FIXED_NOREPLACE flag for mmap to achieve this
behavior. It has the same semantic as MAP_FIXED wrt. the given address
request with a single exception that it fails with EEXIST if the requested
address is already covered by an existing mapping. We still do rely on
get_unmaped_area to handle all the arch specific MAP_FIXED treatment and
check for a conflicting vma after it returns.
The flag is introduced as a completely new one rather than a MAP_FIXED
extension because of the backward compatibility. We really want a
never-clobber semantic even on older kernels which do not recognize the
flag. Unfortunately mmap sucks wrt. flags evaluation because we do not
EINVAL on unknown flags. On those kernels we would simply use the
traditional hint based semantic so the caller can still get a different
address (which sucks) but at least not silently corrupt an existing
mapping. I do not see a good way around that.
[mpe@ellerman.id.au: fix whitespace]
[fail on clashing range with EEXIST as per Florian Weimer]
[set MAP_FIXED before round_hint_to_min as per Khalid Aziz]
Link: http://lkml.kernel.org/r/20171213092550.2774-2-mhocko@kernel.org
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Russell King - ARM Linux <linux@armlinux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: Joel Stanley <joel@jms.id.au>
Cc: Kees Cook <keescook@chromium.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Jason Evans <jasone@google.com>
Cc: David Goldblatt <davidtgoldblatt@gmail.com>
Cc: Edward Tomasz Napierała <trasz@FreeBSD.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull MIPS updates from James Hogan:
"These are the main MIPS changes for 4.17. Rough overview:
(1) generic platform: Add support for Microsemi Ocelot SoCs
(2) crypto: Add CRC32 and CRC32C HW acceleration module
(3) Various cleanups and misc improvements
More detailed summary:
Miscellaneous:
- hang more efficiently on halt/powerdown/restart
- pm-cps: Block system suspend when a JTAG probe is present
- expand make help text for generic defconfigs
- refactor handling of legacy defconfigs
- determine the entry point from the ELF file header to fix microMIPS
for certain toolchains
- introduce isa-rev.h for MIPS_ISA_REV and use to simplify other code
Minor cleanups:
- DTS: boston/ci20: Unit name cleanups and correction
- kdump: Make the default for PHYSICAL_START always 64-bit
- constify gpio_led in Alchemy, AR7, and TXX9
- silence a couple of W=1 warnings
- remove duplicate includes
Platform support:
Generic platform:
- add support for Microsemi Ocelot
- dt-bindings: Add vendor prefix for Microsemi Corporation
- dt-bindings: Add bindings for Microsemi SoCs
- add ocelot SoC & PCB123 board DTS files
- MAINTAINERS: Add entry for Microsemi MIPS SoCs
- enable crc32-mips on r6 configs
ath79:
- fix AR724X_PLL_REG_PCIE_CONFIG offset
BCM47xx:
- firmware: Use mac_pton() for MAC address parsing
- add Luxul XAP1500/XWR1750 WiFi LEDs
- use standard reset button for Luxul XWR-1750
BMIPS:
- enable CONFIG_BRCMSTB_PM in bmips_stb_defconfig for build coverage
- add STB PM, wake-up timer, watchdog DT nodes
Octeon:
- drop '.' after newlines in printk calls
ralink:
- pci-mt7621: Enable PCIe on MT7688"
* tag 'mips_4.17' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan/mips: (37 commits)
MIPS: BCM47XX: Use standard reset button for Luxul XWR-1750
MIPS: BCM47XX: Add Luxul XAP1500/XWR1750 WiFi LEDs
MIPS: Make the default for PHYSICAL_START always 64-bit
MIPS: Use the entry point from the ELF file header
MAINTAINERS: Add entry for Microsemi MIPS SoCs
MIPS: generic: Add support for Microsemi Ocelot
MIPS: mscc: Add ocelot PCB123 device tree
MIPS: mscc: Add ocelot dtsi
dt-bindings: mips: Add bindings for Microsemi SoCs
dt-bindings: Add vendor prefix for Microsemi Corporation
MIPS: ath79: Fix AR724X_PLL_REG_PCIE_CONFIG offset
MIPS: pci-mt7620: Enable PCIe on MT7688
MIPS: pm-cps: Block system suspend when a JTAG probe is present
MIPS: VDSO: Replace __mips_isa_rev with MIPS_ISA_REV
MIPS: BPF: Replace __mips_isa_rev with MIPS_ISA_REV
MIPS: cpu-features.h: Replace __mips_isa_rev with MIPS_ISA_REV
MIPS: Introduce isa-rev.h to define MIPS_ISA_REV
MIPS: Hang more efficiently on halt/powerdown/restart
FIRMWARE: bcm47xx_nvram: Replace mac address parsing
MIPS: BMIPS: Add Broadcom STB watchdog nodes
...
Pull kvm updates from Paolo Bonzini:
"ARM:
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past
invalid privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as
of now)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
kvm: x86: fix a prototype warning
kvm: selftests: add sync_regs_test
kvm: selftests: add API testing infrastructure
kvm: x86: fix a compile warning
KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
KVM: X86: Introduce handle_ud()
KVM: vmx: unify adjacent #ifdefs
x86: kvm: hide the unused 'cpu' variable
KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
kvm: Add emulation for movups/movupd
KVM: VMX: raise internal error for exception during invalid protected mode state
KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
KVM: x86: Fix misleading comments on handling pending exceptions
KVM: x86: Rename interrupt.pending to interrupt.injected
KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
x86/kvm: use Enlightened VMCS when running on Hyper-V
x86/hyper-v: detect nested features
x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
...