[ Upstream commit cc7130bf119add37f36238343a593b71ef6ecc1e ]
The IOMMU table is divided into pools for concurrent mappings and each
pool has a separate spinlock. When taking the ownership of an IOMMU group
to pass through a device to a VM, we lock these spinlocks which triggers
a false negative warning in lockdep (below).
This fixes it by annotating the large pool's spinlock as a nest lock
which makes lockdep not complaining when locking nested locks if
the nest lock is locked already.
===
WARNING: possible recursive locking detected
5.11.0-le_syzkaller_a+fstn1 #100 Not tainted
--------------------------------------------
qemu-system-ppc/4129 is trying to acquire lock:
c0000000119bddb0 (&(p->lock)/1){....}-{2:2}, at: iommu_take_ownership+0xac/0x1e0
but task is already holding lock:
c0000000119bdd30 (&(p->lock)/1){....}-{2:2}, at: iommu_take_ownership+0xac/0x1e0
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(p->lock)/1);
lock(&(p->lock)/1);
===
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210301063653.51003-1-aik@ozlabs.ru
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c47f892d7aa62765bf0689073f75990b4517a4cf ]
Daniel reported that with Commit 4ca234a9cb ("powerpc/smp: Stop
updating cpu_core_mask") QEMU was unable to set single NUMA node SMP
topologies such as:
-smp 8,maxcpus=8,cores=2,threads=2,sockets=2
i.e he expected 2 sockets in one NUMA node.
The above commit helped to reduce boot time on Large Systems for
example 4096 vCPU single socket QEMU instance. PAPR is silent on
having more than one socket within a NUMA node.
cpu_core_mask and cpu_cpu_mask for any CPU would be same unless the
number of sockets is different from the number of NUMA nodes.
One option is to reintroduce cpu_core_mask but use a slightly
different method to arrive at the cpu_core_mask. Previously each CPU's
chip-id would be compared with all other CPU's chip-id to verify if
both the CPUs were related at the chip level. Now if a CPU 'A' is
found related / (unrelated) to another CPU 'B', all the thread
siblings of 'A' and thread siblings of 'B' are automatically marked as
related / (unrelated).
Also if a platform doesn't support ibm,chip-id property, i.e its
cpu_to_chip_id returns -1, cpu_core_map holds a copy of
cpu_cpu_mask().
Fixes: 4ca234a9cb ("powerpc/smp: Stop updating cpu_core_mask")
Reported-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210415120934.232271-2-srikar@linux.vnet.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1ef1dd9c7ed27b080445e1576e8a05957e0e4dfc ]
If identical_pvr_fixup() is not inlined, there are two modpost warnings:
WARNING: modpost: vmlinux.o(.text+0x54e8): Section mismatch in reference
from the function identical_pvr_fixup() to the function
.init.text:of_get_flat_dt_prop()
The function identical_pvr_fixup() references
the function __init of_get_flat_dt_prop().
This is often because identical_pvr_fixup lacks a __init
annotation or the annotation of of_get_flat_dt_prop is wrong.
WARNING: modpost: vmlinux.o(.text+0x551c): Section mismatch in reference
from the function identical_pvr_fixup() to the function
.init.text:identify_cpu()
The function identical_pvr_fixup() references
the function __init identify_cpu().
This is often because identical_pvr_fixup lacks a __init
annotation or the annotation of identify_cpu is wrong.
identical_pvr_fixup() calls two functions marked as __init and is only
called by a function marked as __init so it should be marked as __init
as well. At the same time, remove the inline keywork as it is not
necessary to inline this function. The compiler is still free to do so
if it feels it is worthwhile since commit 889b3c1245 ("compiler:
remove CONFIG_OPTIMIZE_INLINING entirely").
Fixes: 14b3d926a2 ("[POWERPC] 4xx: update 440EP(x)/440GR(x) identical PVR issue workaround")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://github.com/ClangBuiltLinux/linux/issues/1316
Link: https://lore.kernel.org/r/20210302200829.2680663-1-nathan@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fbced1546eaaab57a32e56c974ea8acf10c6abd8 ]
If fadump_calculate_reserve_size() is not inlined, there is a modpost
warning:
WARNING: modpost: vmlinux.o(.text+0x5196c): Section mismatch in
reference from the function fadump_calculate_reserve_size() to the
function .init.text:parse_crashkernel()
The function fadump_calculate_reserve_size() references
the function __init parse_crashkernel().
This is often because fadump_calculate_reserve_size lacks a __init
annotation or the annotation of parse_crashkernel is wrong.
fadump_calculate_reserve_size() calls parse_crashkernel(), which is
marked as __init and fadump_calculate_reserve_size() is called from
within fadump_reserve_mem(), which is also marked as __init.
Mark fadump_calculate_reserve_size() as __init to fix the section
mismatch. Additionally, remove the inline keyword as it is not necessary
to inline this function; the compiler is still free to do so if it feels
it is worthwhile since commit 889b3c1245 ("compiler: remove
CONFIG_OPTIMIZE_INLINING entirely").
Fixes: 11550dc0a0 ("powerpc/fadump: reuse crashkernel parameter for fadump memory reservation")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://github.com/ClangBuiltLinux/linux/issues/1300
Link: https://lore.kernel.org/r/20210302195013.2626335-1-nathan@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 5ae5bc12d0728db60a0aa9b62160ffc038875f1a upstream.
During the EEH MMIO error checking, the current implementation fails to map
the (virtual) MMIO address back to the pci device on radix with hugepage
mappings for I/O. This results into failure to dispatch EEH event with no
recovery even when EEH capability has been enabled on the device.
eeh_check_failure(token) # token = virtual MMIO address
addr = eeh_token_to_phys(token);
edev = eeh_addr_cache_get_dev(addr);
if (!edev)
return 0;
eeh_dev_check_failure(edev); <= Dispatch the EEH event
In case of hugepage mappings, eeh_token_to_phys() has a bug in virt -> phys
translation that results in wrong physical address, which is then passed to
eeh_addr_cache_get_dev() to match it against cached pci I/O address ranges
to get to a PCI device. Hence, it fails to find a match and the EEH event
never gets dispatched leaving the device in failed state.
The commit 3343962068 ("powerpc/eeh: Handle hugepages in ioremap space")
introduced following logic to translate virt to phys for hugepage mappings:
eeh_token_to_phys():
+ pa = pte_pfn(*ptep);
+
+ /* On radix we can do hugepage mappings for io, so handle that */
+ if (hugepage_shift) {
+ pa <<= hugepage_shift; <= This is wrong
+ pa |= token & ((1ul << hugepage_shift) - 1);
+ }
This patch fixes the virt -> phys translation in eeh_token_to_phys()
function.
$ cat /sys/kernel/debug/powerpc/eeh_address_cache
mem addr range [0x0000040080000000-0x00000400807fffff]: 0030:01:00.1
mem addr range [0x0000040080800000-0x0000040080ffffff]: 0030:01:00.1
mem addr range [0x0000040081000000-0x00000400817fffff]: 0030:01:00.0
mem addr range [0x0000040081800000-0x0000040081ffffff]: 0030:01:00.0
mem addr range [0x0000040082000000-0x000004008207ffff]: 0030:01:00.1
mem addr range [0x0000040082080000-0x00000400820fffff]: 0030:01:00.0
mem addr range [0x0000040082100000-0x000004008210ffff]: 0030:01:00.1
mem addr range [0x0000040082110000-0x000004008211ffff]: 0030:01:00.0
Above is the list of cached io address ranges of pci 0030:01:00.<fn>.
Before this patch:
Tracing 'arg1' of function eeh_addr_cache_get_dev() during error injection
clearly shows that 'addr=' contains wrong physical address:
kworker/u16:0-7 [001] .... 108.883775: eeh_addr_cache_get_dev:
(eeh_addr_cache_get_dev+0xc/0xf0) addr=0x80103000a510
dmesg shows no EEH recovery messages:
[ 108.563768] bnx2x: [bnx2x_timer:5801(eth2)]MFW seems hanged: drv_pulse (0x9ae) != mcp_pulse (0x7fff)
[ 108.563788] bnx2x: [bnx2x_hw_stats_update:870(eth2)]NIG timer max (4294967295)
[ 108.883788] bnx2x: [bnx2x_acquire_hw_lock:2013(eth1)]lock_status 0xffffffff resource_bit 0x1
[ 108.884407] bnx2x 0030:01:00.0 eth1: MDC/MDIO access timeout
[ 108.884976] bnx2x 0030:01:00.0 eth1: MDC/MDIO access timeout
<..>
After this patch:
eeh_addr_cache_get_dev() trace shows correct physical address:
<idle>-0 [001] ..s. 1043.123828: eeh_addr_cache_get_dev:
(eeh_addr_cache_get_dev+0xc/0xf0) addr=0x40080bc7cd8
dmesg logs shows EEH recovery getting triggerred:
[ 964.323980] bnx2x: [bnx2x_timer:5801(eth2)]MFW seems hanged: drv_pulse (0x746f) != mcp_pulse (0x7fff)
[ 964.323991] EEH: Recovering PHB#30-PE#10000
[ 964.324002] EEH: PE location: N/A, PHB location: N/A
[ 964.324006] EEH: Frozen PHB#30-PE#10000 detected
<..>
Fixes: 3343962068 ("powerpc/eeh: Handle hugepages in ioremap space")
Cc: stable@vger.kernel.org # v5.3+
Reported-by: Dominic DeMarco <ddemarc@us.ibm.com>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/161821396263.48361.2796709239866588652.stgit@jupiter
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 49c1d07fd04f54eb588c4a1dfcedc8d22c5ffd50 upstream.
Starting with ISA v3.1, LPCR[AIL] no longer controls the interrupt
mode for HV=1 interrupts. Instead, a new LPCR[HAIL] bit is defined
which behaves like AIL=3 for HV interrupts when set.
Set HAIL on bare metal to give us mmu-on interrupts and improve
performance.
This also fixes an scv bug: we don't implement scv real mode (AIL=0)
vectors because they are at an inconvenient location, so we just
disable scv support when AIL can not be set. However powernv assumes
that LPCR[AIL] will enable AIL mode so it enables scv support despite
HV interrupts being AIL=0, which causes scv interrupts to go off into
the weeds.
Fixes: 7fa95f9ada ("powerpc/64s: system call support for scv/rfscv instructions")
Cc: stable@vger.kernel.org # v5.9+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210402024124.545826-1-npiggin@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e3de1e291fa58a1ab0f471a4b458eff2514e4b5f ]
In commit bf13718bc57a ("powerpc: show registers when unwinding
interrupt frames") we changed our stack dumping logic to show the full
registers whenever we find an interrupt frame on the stack.
However we didn't notice that on 64-bit this doesn't show the final
frame, ie. the interrupt that brought us in from userspace, whereas on
32-bit it does.
That is due to confusion about the size of that last frame. The code
in show_stack() calls validate_sp(), passing it STACK_INT_FRAME_SIZE
to check the sp is at least that far below the top of the stack.
However on 64-bit that size is too large for the final frame, because
it includes the red zone, but we don't allocate a red zone for the
first frame.
So add a new define that encodes the correct size for 32-bit and
64-bit, and use it in show_stack().
This results in the full trace being shown on 64-bit, eg:
sysrq: Trigger a crash
Kernel panic - not syncing: sysrq triggered crash
CPU: 0 PID: 83 Comm: sh Not tainted 5.11.0-rc2-gcc-8.2.0-00188-g571abcb96b10-dirty #649
Call Trace:
[c00000000a1c3ac0] [c000000000897b70] dump_stack+0xc4/0x114 (unreliable)
[c00000000a1c3b00] [c00000000014334c] panic+0x178/0x41c
[c00000000a1c3ba0] [c00000000094e600] sysrq_handle_crash+0x40/0x50
[c00000000a1c3c00] [c00000000094ef98] __handle_sysrq+0xd8/0x210
[c00000000a1c3ca0] [c00000000094f820] write_sysrq_trigger+0x100/0x188
[c00000000a1c3ce0] [c0000000005559dc] proc_reg_write+0x10c/0x1b0
[c00000000a1c3d10] [c000000000479950] vfs_write+0xf0/0x360
[c00000000a1c3d60] [c000000000479d9c] ksys_write+0x7c/0x140
[c00000000a1c3db0] [c00000000002bf5c] system_call_exception+0x19c/0x2c0
[c00000000a1c3e10] [c00000000000d35c] system_call_common+0xec/0x278
--- interrupt: c00 at 0x7fff9fbab428
NIP: 00007fff9fbab428 LR: 000000001000b724 CTR: 0000000000000000
REGS: c00000000a1c3e80 TRAP: 0c00 Not tainted (5.11.0-rc2-gcc-8.2.0-00188-g571abcb96b10-dirty)
MSR: 900000000280f033 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 22002884 XER: 00000000
IRQMASK: 0
GPR00: 0000000000000004 00007fffc3cb8960 00007fff9fc59900 0000000000000001
GPR04: 000000002a4b32d0 0000000000000002 0000000000000063 0000000000000063
GPR08: 000000002a4b32d0 0000000000000000 0000000000000000 0000000000000000
GPR12: 0000000000000000 00007fff9fcca9a0 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000000 00000000100b8fd0
GPR20: 000000002a4b3485 00000000100b8f90 0000000000000000 0000000000000000
GPR24: 000000002a4b0440 00000000100e77b8 0000000000000020 000000002a4b32d0
GPR28: 0000000000000001 0000000000000002 000000002a4b32d0 0000000000000001
NIP [00007fff9fbab428] 0x7fff9fbab428
LR [000000001000b724] 0x1000b724
--- interrupt: c00
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210209141627.2898485-1-mpe@ellerman.id.au
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 5537fcb319d016ce387f818dd774179bc03217f5 ]
On many powerpc platforms the discovery and initalisation of
pci_controllers (PHBs) happens inside of setup_arch(). This is very early
in boot (pre-initcalls) and means that we're initialising the PHB long
before many basic kernel services (slab allocator, debugfs, a real ioremap)
are available.
On PowerNV this causes an additional problem since we map the PHB registers
with ioremap(). As of commit d538aadc27 ("powerpc/ioremap: warn on early
use of ioremap()") a warning is printed because we're using the "incorrect"
API to setup and MMIO mapping in searly boot. The kernel does provide
early_ioremap(), but that is not intended to create long-lived MMIO
mappings and a seperate warning is printed by generic code if
early_ioremap() mappings are "leaked."
This is all fixable with dumb hacks like using early_ioremap() to setup
the initial mapping then replacing it with a real ioremap later on in
boot, but it does raise the question: Why the hell are we setting up the
PHB's this early in boot?
The old and wise claim it's due to "hysterical rasins." Aside from amused
grapes there doesn't appear to be any real reason to maintain the current
behaviour. Already most of the newer embedded platforms perform PHB
discovery in an arch_initcall and between the end of setup_arch() and the
start of initcalls none of the generic kernel code does anything PCI
related. On powerpc scanning PHBs occurs in a subsys_initcall so it should
be possible to move the PHB discovery to a core, postcore or arch initcall.
This patch adds the ppc_md.discover_phbs hook and a core_initcall stub that
calls it. The core_initcalls are the earliest to be called so this will
any possibly issues with dependency between initcalls. This isn't just an
academic issue either since on pseries and PowerNV EEH init occurs in an
arch_initcall and depends on the pci_controllers being available, similarly
the creation of pci_dns occurs at core_initcall_sync (i.e. between core and
postcore initcalls). These problems need to be addressed seperately.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
[mpe: Make discover_phbs() static]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201103043523.916109-1-oohall@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit c119565a15a628efdfa51352f9f6c5186e506a1c upstream.
On book3s/32, page protection is defined by the PP bits in the PTE
which provide the following protection depending on the access
keys defined in the matching segment register:
- PP 00 means RW with key 0 and N/A with key 1.
- PP 01 means RW with key 0 and RO with key 1.
- PP 10 means RW with both key 0 and key 1.
- PP 11 means RO with both key 0 and key 1.
Since the implementation of kernel userspace access protection,
PP bits have been set as follows:
- PP00 for pages without _PAGE_USER
- PP01 for pages with _PAGE_USER and _PAGE_RW
- PP11 for pages with _PAGE_USER and without _PAGE_RW
For kernelspace segments, kernel accesses are performed with key 0
and user accesses are performed with key 1. As PP00 is used for
non _PAGE_USER pages, user can't access kernel pages not flagged
_PAGE_USER while kernel can.
For userspace segments, both kernel and user accesses are performed
with key 0, therefore pages not flagged _PAGE_USER are still
accessible to the user.
This shouldn't be an issue, because userspace is expected to be
accessible to the user. But unlike most other architectures, powerpc
implements PROT_NONE protection by removing _PAGE_USER flag instead of
flagging the page as not valid. This means that pages in userspace
that are not flagged _PAGE_USER shall remain inaccessible.
To get the expected behaviour, just mimic other architectures in the
TLB miss handler by checking _PAGE_USER permission on userspace
accesses as if it was the _PAGE_PRESENT bit.
Note that this problem only is only for 603 cores. The 604+ have
an hash table, and hash_page() function already implement the
verification of _PAGE_USER permission on userspace pages.
Fixes: f342adca3a ("powerpc/32s: Prepare Kernel Userspace Access Protection")
Cc: stable@vger.kernel.org # v5.2+
Reported-by: Christoph Plattner <christoph.plattner@thalesgroup.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4a0c6e3bb8f0c162457bf54d9bc6fd8d7b55129f.1612160907.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3642eb21256a317ac14e9ed560242c6d20cf06d9 upstream.
THREAD_ALIGN_SHIFT = THREAD_SHIFT + 1 = PAGE_SHIFT + 1
Maximum PAGE_SHIFT is 18 for 256k pages so
THREAD_ALIGN_SHIFT is 19 at the maximum.
No need to clobber cr1, it can be preserved when moving r1
into CR when we check stack overflow.
This reduces the number of instructions in Machine Check Exception
prolog and fixes a build failure reported by the kernel test robot
on v5.10 stable when building with RTAS + VMAP_STACK + KVM. That
build failure is due to too many instructions in the prolog hence
not fitting between 0x200 and 0x300. Allthough the problem doesn't
show up in mainline, it is still worth the change.
Fixes: 98bf2d3f4970 ("powerpc/32s: Fix RTAS machine check with VMAP stack")
Cc: stable@vger.kernel.org
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/5ae4d545e3ac58e133d2599e0deb88843cb494fc.1612768623.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ed5b00a05c2ae95b59adc3442f45944ec632e794 upstream.
The "ibm,arch-vec-5-platform-support" property is a list of pairs of
bytes representing the options and values supported by the platform
firmware. At boot time, Linux scans this list and activates the
available features it recognizes : Radix and XIVE.
A recent change modified the number of entries to loop on and 8 bytes,
4 pairs of { options, values } entries are always scanned. This is
fine on KVM but not on PowerVM which can advertises less. As a
consequence on this platform, Linux reads extra entries pointing to
random data, interprets these as available features and tries to
activate them, leading to a firmware crash in
ibm,client-architecture-support.
Fix that by using the property length of "ibm,arch-vec-5-platform-support".
Fixes: ab91239942 ("powerpc/prom: Remove VLA in prom_check_platform_support()")
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210122075029.797013-1-clg@kaod.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 60a707d0c99aff4eadb7fd334c5fd21df386723e ]
Since de78a9c42a ("powerpc: Add a framework for Kernel Userspace
Access Protection"), user access helpers call user_{read|write}_access_{begin|end}
when user space access is allowed.
Commit 890274c2dc ("powerpc/64s: Implement KUAP for Radix MMU") made
the mentioned helpers program a AMR special register to allow such
access for a short period of time, most of the time AMR is expected to
block user memory access by the kernel.
Since the code accesses the user space memory, unsafe_get_user() calls
might_fault() which calls arch_local_irq_restore() if either
CONFIG_PROVE_LOCKING or CONFIG_DEBUG_ATOMIC_SLEEP is enabled.
arch_local_irq_restore() then attempts to replay pending soft
interrupts as KUAP regions have hardware interrupts enabled.
If a pending interrupt happens to do user access (performance
interrupts do that), it enables access for a short period of time so
after returning from the replay, the user access state remains blocked
and if a user page fault happens - "Bug: Read fault blocked by AMR!"
appears and SIGSEGV is sent.
An example trace:
Bug: Read fault blocked by AMR!
WARNING: CPU: 0 PID: 1603 at /home/aik/p/kernel/arch/powerpc/include/asm/book3s/64/kup-radix.h:145
CPU: 0 PID: 1603 Comm: amr Not tainted 5.10.0-rc6_v5.10-rc6_a+fstn1 #24
NIP: c00000000009ece8 LR: c00000000009ece4 CTR: 0000000000000000
REGS: c00000000dc63560 TRAP: 0700 Not tainted (5.10.0-rc6_v5.10-rc6_a+fstn1)
MSR: 8000000000021033 <SF,ME,IR,DR,RI,LE> CR: 28002888 XER: 20040000
CFAR: c0000000001fa928 IRQMASK: 1
GPR00: c00000000009ece4 c00000000dc637f0 c000000002397600 000000000000001f
GPR04: c0000000020eb318 0000000000000000 c00000000dc63494 0000000000000027
GPR08: c00000007fe4de68 c00000000dfe9180 0000000000000000 0000000000000001
GPR12: 0000000000002000 c0000000030a0000 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000000 bfffffffffffffff
GPR20: 0000000000000000 c0000000134a4020 c0000000019c2218 0000000000000fe0
GPR24: 0000000000000000 0000000000000000 c00000000d106200 0000000040000000
GPR28: 0000000000000000 0000000000000300 c00000000dc63910 c000000001946730
NIP __do_page_fault+0xb38/0xde0
LR __do_page_fault+0xb34/0xde0
Call Trace:
__do_page_fault+0xb34/0xde0 (unreliable)
handle_page_fault+0x10/0x2c
--- interrupt: 300 at strncpy_from_user+0x290/0x440
LR = strncpy_from_user+0x284/0x440
strncpy_from_user+0x2f0/0x440 (unreliable)
getname_flags+0x88/0x2c0
do_sys_openat2+0x2d4/0x5f0
do_sys_open+0xcc/0x140
system_call_exception+0x160/0x240
system_call_common+0xf0/0x27c
To fix it save/restore the AMR when replaying interrupts, and also
add a check if AMR was not blocked prior to replaying interrupts.
Originally found by syzkaller.
Fixes: 890274c2dc ("powerpc/64s: Implement KUAP for Radix MMU")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Use normal commit citation format and add full oops log to
change log, move kuap_check_amr() into the restore routine to
avoid warnings about unreconciled IRQ state]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210202091541.36499-1-aik@ozlabs.ru
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit b709e32ef570b8b91dfbcb63cffac4324c87799f ]
When CONFIG_IRQ_TIME_ACCOUNTING and CONFIG_VIRT_CPU_ACCOUNTING_GEN, powerpc
does not enable "sched_clock_irqtime" and can not utilize irq time
accounting.
Like x86, powerpc does not use the sched_clock_register() interface. So it
needs an dedicated call to enable_sched_clock_irqtime() to enable irq time
accounting.
Fixes: 518470fe96 ("powerpc: Add HAVE_IRQ_TIME_ACCOUNTING")
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
[mpe: Add fixes tag]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1603349479-26185-1-git-send-email-kernelfans@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 24321ac668e452a4942598533d267805f291fdc9 upstream.
Commit 0138ba5783 ("powerpc/64/signal: Balance return predictor
stack in signal trampoline") changed __kernel_sigtramp_rt64() VDSO and
trampoline code, and introduced a regression in the way glibc's
backtrace()[1] detects the signal-handler stack frame. Apart from the
practical implications, __kernel_sigtramp_rt64() was a VDSO function
with the semantics that it is a function you can call from userspace
to end a signal handling. Now this semantics are no longer valid.
I believe the aforementioned change affects all releases since 5.9.
This patch tries to fix both the semantics and practical aspect of
__kernel_sigtramp_rt64() returning it to the previous code, whilst
keeping the intended behaviour of 0138ba5783 by adding a new symbol
to serve as the jump target from the kernel to the trampoline. Now the
trampoline has two parts, a new entry point and the old return point.
[1] https://lists.ozlabs.org/pipermail/linuxppc-dev/2021-January/223194.html
Fixes: 0138ba5783 ("powerpc/64/signal: Balance return predictor stack in signal trampoline")
Cc: stable@vger.kernel.org # v5.9+
Signed-off-by: Raoni Fassina Firmino <raoni@linux.ibm.com>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Minor tweaks to change log formatting, add stable tag]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210201200505.iz46ubcizipnkcxe@work-tp
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 4025c784c573cab7e3f84746cc82b8033923ec62 ]
When an asynchronous interrupt calls irq_exit, it checks for softirqs
that may have been created, and runs them. Running softirqs enables
local irqs, which can replay pending interrupts causing recursion in
replay_soft_interrupts. This abridged trace shows how this can occur:
! NIP replay_soft_interrupts
LR interrupt_exit_kernel_prepare
Call Trace:
interrupt_exit_kernel_prepare (unreliable)
interrupt_return
--- interrupt: ea0 at __rb_reserve_next
NIP __rb_reserve_next
LR __rb_reserve_next
Call Trace:
ring_buffer_lock_reserve
trace_function
function_trace_call
ftrace_call
__do_softirq
irq_exit
timer_interrupt
! replay_soft_interrupts
interrupt_exit_kernel_prepare
interrupt_return
--- interrupt: ea0 at arch_local_irq_restore
This can not be prevented easily, because softirqs must not block hard
irqs, so it has to be dealt with.
The recursion is bounded by design in the softirq code because softirq
replay disables softirqs and loops around again to check for new
softirqs created while it ran, so that's not a problem.
However it does mess up interrupt replay state, causing superfluous
interrupts when the second replay_soft_interrupts clears a pending
interrupt, leaving it still set in the first call in the 'happened'
local variable.
Fix this by not caching a copy of irqs_happened across interrupt
handler calls.
Fixes: 3282a3da25 ("powerpc/64: Implement soft interrupt replay in C")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210123061244.2076145-1-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 08685be7761d69914f08c3d6211c543a385a5b9c upstream.
The L1D flush fallback functions are not recoverable vs interrupts,
yet the scv entry flush runs with MSR[EE]=1. This can result in a
timer (soft-NMI) or MCE or SRESET interrupt hitting here and overwriting
the EXRFI save area, which ends up corrupting userspace registers for
scv return.
Fix this by disabling RI and EE for the scv entry fallback flush.
Fixes: f79643787e ("powerpc/64s: flush L1D on kernel entry")
Cc: stable@vger.kernel.org # 5.9+ which also have flush L1D patch backport
Reported-by: Tulio Magno Quites Machado Filho <tuliom@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210111062408.287092-1-npiggin@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2225a8dda263edc35a0e8b858fe2945cf6240fde ]
This is a bug that causes early crashes in builds with an .exit.text
section smaller than a page and an .init.text section that ends in the
beginning of a physical page (this is kinda random, which might
explain why this wasn't really encountered before).
The init sections are ordered like this:
.init.text
.exit.text
.init.data
Currently, these sections aren't page aligned.
Because the init code might become read-only at runtime and because
the .init.text section can potentially reside on the same physical
page as .init.data, the beginning of .init.data might be mapped
read-only along with .init.text.
Then when the kernel tries to modify a variable in .init.data (like
kthreadd_done, used in kernel_init()) the kernel panics.
To avoid this, make _einittext page aligned and also align .exit.text
to make sure .init.data is always seperated from the text segments.
Fixes: 060ef9d89d ("powerpc32: PAGE_EXEC required for inittext")
Signed-off-by: Ariel Marcovitch <ariel.marcovitch@gmail.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210102201156.10805-1-ariel.marcovitch@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 3ce47d95b7346dcafd9bed3556a8d072cb2b8571 upstream.
Commit eff8728fe6 ("vmlinux.lds.h: Add PGO and AutoFDO input
sections") added ".text.unlikely.*" and ".text.hot.*" due to an LLVM
change [1].
After another LLVM change [2], these sections are seen in some PowerPC
builds, where there is a orphan section warning then build failure:
$ make -skj"$(nproc)" \
ARCH=powerpc CROSS_COMPILE=powerpc64le-linux-gnu- LLVM=1 O=out \
distclean powernv_defconfig zImage.epapr
ld.lld: warning: kernel/built-in.a(panic.o):(.text.unlikely.) is being placed in '.text.unlikely.'
...
ld.lld: warning: address (0xc000000000009314) of section .text is not a multiple of alignment (256)
...
ERROR: start_text address is c000000000009400, should be c000000000008000
ERROR: try to enable LD_HEAD_STUB_CATCH config option
ERROR: see comments in arch/powerpc/tools/head_check.sh
...
Explicitly handle these sections like in the main linker script so
there is no more build failure.
[1]: https://reviews.llvm.org/D79600
[2]: https://reviews.llvm.org/D92493
Fixes: 83a092cf95 ("powerpc: Link warning for orphan sections")
Cc: stable@vger.kernel.org
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://github.com/ClangBuiltLinux/linux/issues/1218
Link: https://lore.kernel.org/r/20210104205952.1399409-1-natechancellor@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 59d512e4374b2d8a6ad341475dc94c4a4bdec7d3 ]
This is way to catch some cases of decrementer overflow, when the
decrementer has underflowed an odd number of times, while MSR[EE] was
disabled.
With a typical small decrementer, a timer that fires when MSR[EE] is
disabled will be "lost" if MSR[EE] remains disabled for between 4.3 and
8.6 seconds after the timer expires. In any case, the decrementer
interrupt would be taken at 8.6 seconds and the timer would be found at
that point.
So this check is for catching extreme latency events, and it prevents
those latencies from being a further few seconds long. It's not obvious
this is a good tradeoff. This is already a watchdog magnitude event and
that situation is not improved a significantly with this check. For
large decrementers, it's useless.
Therefore remove this check, which avoids a mftb when enabling hard
disabled interrupts (e.g., when enabling after coming from hardware
interrupt handlers). Perhaps more importantly, it also removes the
clunky MSR[EE] vs PACA_IRQ_HARD_DIS incoherency in soft-interrupt replay
which simplifies the code.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201107014336.2337337-1-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit f10881a46f8914428110d110140a455c66bdf27b upstream.
Commit bd59380c5b ("powerpc/rtas: Restrict RTAS requests from userspace")
introduced the following error when invoking the errinjct userspace
tool:
[root@ltcalpine2-lp5 librtas]# errinjct open
[327884.071171] sys_rtas: RTAS call blocked - exploit attempt?
[327884.071186] sys_rtas: token=0x26, nargs=0 (called by errinjct)
errinjct: Could not open RTAS error injection facility
errinjct: librtas: open: Unexpected I/O error
The entry for ibm,open-errinjct in rtas_filter array has a typo where
the "j" is omitted in the rtas call name. After fixing this typo the
errinjct tool functions again as expected.
[root@ltcalpine2-lp5 linux]# errinjct open
RTAS error injection facility open, token = 1
Fixes: bd59380c5b ("powerpc/rtas: Restrict RTAS requests from userspace")
Cc: stable@vger.kernel.org
Signed-off-by: Tyrel Datwyler <tyreld@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201208195434.8289-1-tyreld@linux.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d5c243989fb0cb03c74d7340daca3b819f706ee7 upstream.
We need r1 to be properly set before activating MMU, otherwise any new
exception taken while saving registers into the stack in syscall
prologs will use the user stack, which is wrong and will even lockup
or crash when KUAP is selected.
Do that by switching the meaning of r11 and r1 until we have saved r1
to the stack: copy r1 into r11 and setup the new stack pointer in r1.
To avoid complicating and impacting all generic and specific prolog
code (and more), copy back r1 into r11 once r11 is save onto
the stack.
We could get rid of copying r1 back and forth at the cost of rewriting
everything to use r1 instead of r11 all the way when CONFIG_VMAP_STACK
is set, but the effort is probably not worth it for now.
Fixes: da7bb43ab9 ("powerpc/32: Fix vmap stack - Properly set r1 before activating MMU")
Cc: stable@vger.kernel.org # v5.10+
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/a3d819d5c348cee9783a311d5d3f3ba9b48fd219.1608531452.git.christophe.leroy@csgroup.eu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 9014eab6a38c60fd185bc92ed60f46cf99a462ab ]
It fixes this link warning:
WARNING: modpost: vmlinux.o(.text.unlikely+0x2d98): Section mismatch in reference from the function init_big_cores.isra.0() to the function .init.text:init_thread_group_cache_map()
The function init_big_cores.isra.0() references
the function __init init_thread_group_cache_map().
This is often because init_big_cores.isra.0 lacks a __init
annotation or the annotation of init_thread_group_cache_map is wrong.
Fixes: 425752c63b ("powerpc: Detect the presence of big-cores via "ibm, thread-groups"")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201221074154.403779-1-clg@kaod.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fe18a35e685c9bdabc8b11b3e19deb85a068b75d ]
Commit 63ce271b5e ("powerpc/prom: convert PROM_BUG() to standard
trap") added an EMIT_BUG_ENTRY for the trap after the branch to
start_kernel(). The EMIT_BUG_ENTRY was for the address "0b", however the
trap was not labeled with "0". Hence the address used for bug is in
relative_toc() where the previous "0" label is. Label the trap as "0" so
the correct address is used.
Fixes: 63ce271b5e ("powerpc/prom: convert PROM_BUG() to standard trap")
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201130004404.30953-1-jniethe5@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a7223f5bfcaeade4a86d35263493bcda6c940891 ]
Commit 7053f80d96 ("powerpc/64: Prevent stack protection in early
boot") introduced a couple of uses of __attribute__((optimize)) with
function scope, to disable the stack protector in some early boot
code.
Unfortunately, and this is documented in the GCC man pages [0],
overriding function attributes for optimization is broken, and is only
supported for debug scenarios, not for production: the problem appears
to be that setting GCC -f flags using this method will cause it to
forget about some or all other optimization settings that have been
applied.
So the only safe way to disable the stack protector is to disable it
for the entire source file.
[0] https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html
Fixes: 7053f80d96 ("powerpc/64: Prevent stack protection in early boot")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
[mpe: Drop one remaining use of __nostackprotector, reported by snowpatch]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201028080433.26799-1-ardb@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3c0b976bf20d236c57adcefa80f86a0a1d737727 ]
Currently in generic_secondary_smp_init(), cur_cpu_spec->cpu_restore()
is called before a stack has been set up in r1. This was previously fine
as the cpu_restore() functions were implemented in assembly and did not
use a stack. However commit 5a61ef74f2 ("powerpc/64s: Support new
device tree binding for discovering CPU features") used
__restore_cpu_cpufeatures() as the cpu_restore() function for a
device-tree features based cputable entry. This is a C function and
hence uses a stack in r1.
generic_secondary_smp_init() is entered on the secondary cpus via the
primary cpu using the OPAL call opal_start_cpu(). In OPAL, each hardware
thread has its own stack. The OPAL call is ran in the primary's hardware
thread. During the call, a job is scheduled on a secondary cpu that will
start executing at the address of generic_secondary_smp_init(). Hence
the value that will be left in r1 when the secondary cpu enters the
kernel is part of that secondary cpu's individual OPAL stack. This means
that __restore_cpu_cpufeatures() will write to that OPAL stack. This is
not horribly bad as each hardware thread has its own stack and the call
that enters the kernel from OPAL never returns, but it is still wrong
and should be corrected.
Create the temp kernel stack before calling cpu_restore().
As noted by mpe, for a kexec boot, the secondary CPUs are released from
the spin loop at address 0x60 by smp_release_cpus() and then jump to
generic_secondary_smp_init(). The call to smp_release_cpus() is in
setup_arch(), and it comes before the call to emergency_stack_init().
emergency_stack_init() allocates an emergency stack in the PACA for each
CPU. This address in the PACA is what is used to set up the temp kernel
stack in generic_secondary_smp_init(). Move releasing the secondary CPUs
to after the PACAs have been allocated an emergency stack, otherwise the
PACA stack pointer will contain garbage and hence the temp kernel stack
created from it will be broken.
Fixes: 5a61ef74f2 ("powerpc/64s: Support new device tree binding for discovering CPU features")
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201014072837.24539-1-jniethe5@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
Pull locking fixes from Thomas Gleixner:
"Two more places which invoke tracing from RCU disabled regions in the
idle path.
Similar to the entry path the low level idle functions have to be
non-instrumentable"
* tag 'locking-urgent-2020-11-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
intel_idle: Fix intel_idle() vs tracing
sched/idle: Fix arch_cpu_idle() vs tracing
We call arch_cpu_idle() with RCU disabled, but then use
local_irq_{en,dis}able(), which invokes tracing, which relies on RCU.
Switch all arch_cpu_idle() implementations to use
raw_local_irq_{en,dis}able() and carefully manage the
lockdep,rcu,tracing state like we do in entry.
(XXX: we really should change arch_cpu_idle() to not return with
interrupts enabled)
Reported-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/20201120114925.594122626@infradead.org
From Daniel's cover letter:
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern.
This patch series flushes the L1 cache on kernel entry (patch 2) and after the
kernel performs any user accesses (patch 3). It also adds a self-test and
performs some related cleanups.
In kup.h we currently include kup-radix.h for all 64-bit builds, which
includes Book3S and Book3E. The latter doesn't make sense, Book3E
never uses the Radix MMU.
This has worked up until now, but almost by accident, and the recent
uaccess flush changes introduced a build breakage on Book3E because of
the bad structure of the code.
So disentangle things so that we only use kup-radix.h for Book3S. This
requires some more stubs in kup.h and fixing an include in
syscall_64.c.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern. This patch flushes the L1 cache after user accesses.
This is part of the fix for CVE-2020-4788.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern. This patch flushes the L1 cache on kernel entry.
This is part of the fix for CVE-2020-4788.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit 2284ffea8f ("powerpc/64s/exception: Only test KVM in SRR
interrupts when PR KVM is supported") removed KVM guest tests from
interrupts that do not set HV=1, when PR-KVM is not configured.
This is wrong for HV-KVM HPT guest MMIO emulation case which attempts
to load the faulting instruction word with MSR[DR]=1 and MSR[HV]=1 with
the guest MMU context loaded. This can cause host DSI, DSLB interrupts
which must test for KVM guest. Restore this and add a comment.
Fixes: 2284ffea8f ("powerpc/64s/exception: Only test KVM in SRR interrupts when PR KVM is supported")
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201117135617.3521127-1-npiggin@gmail.com
pseries guest kernels have a FWNMI handler for SRESET and MCE NMIs,
which is basically the same as the regular handlers for those
interrupts.
The system reset FWNMI handler did not have a KVM guest test in it,
although it probably should have because the guest can itself run
guests.
Commit 4f50541f67 ("powerpc/64s/exception: Move all interrupt
handlers to new style code gen macros") convert the handler faithfully
to avoid a KVM test with a "clever" trick to modify the IKVM_REAL
setting to 0 when the fwnmi handler is to be generated (PPC_PSERIES=y).
This worked when the KVM test was generated in the interrupt entry
handlers, but a later patch moved the KVM test to the common handler,
and the common handler macro is expanded below the fwnmi entry. This
prevents the KVM test from being generated even for the 0x100 entry
point as well.
The result is NMI IPIs in the host kernel when a guest is running will
use gest registers. This goes particularly badly when an HPT guest is
running and the MMU is set to guest mode.
Remove this trickery and just generate the test always.
Fixes: 9600f261ac ("powerpc/64s/exception: Move KVM test to common code")
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201114114743.3306283-1-npiggin@gmail.com
When _PAGE_ACCESSED is not set, a minor fault is expected.
To do this, TLB miss exception ANDs _PAGE_PRESENT and _PAGE_ACCESSED
into the L2 entry valid bit.
To simplify the processing and reduce the number of instructions in
TLB miss exceptions, manage it as an APG bit and get it next to
_PAGE_GUARDED bit to allow a copy in one go. Then declare the
corresponding groups as handling all accesses as user accesses.
As the PP bits always define user as No Access, it will generate
a fault.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/80f488db230c6b0e7b3b990d72bd94a8a069e93e.1602492856.git.christophe.leroy@csgroup.eu
The kernel expects pte_young() to work regardless of CONFIG_SWAP.
Make sure a minor fault is taken to set _PAGE_ACCESSED when it
is not already set, regardless of the selection of CONFIG_SWAP.
This adds at least 3 instructions to the TLB miss exception
handlers fast path. Following patch will reduce this overhead.
Also update the rotation instruction to the correct number of bits
to reflect all changes done to _PAGE_ACCESSED over time.
Fixes: d069cb4373 ("powerpc/8xx: Don't touch ACCESSED when no SWAP.")
Fixes: 5f356497c3 ("powerpc/8xx: remove unused _PAGE_WRITETHRU")
Fixes: e0a8e0d90a ("powerpc/8xx: Handle PAGE_USER via APG bits")
Fixes: 5b2753fc3e ("powerpc/8xx: Implementation of PAGE_EXEC")
Fixes: a891c43b97 ("powerpc/8xx: Prepare handlers for _PAGE_HUGE for 512k pages.")
Cc: stable@vger.kernel.org
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/af834e8a0f1fa97bfae65664950f0984a70c4750.1602492856.git.christophe.leroy@csgroup.eu
The call to rcu_cpu_starting() in start_secondary() is not early
enough in the CPU-hotplug onlining process, which results in lockdep
splats as follows (with CONFIG_PROVE_RCU_LIST=y):
WARNING: suspicious RCU usage
-----------------------------
kernel/locking/lockdep.c:3497 RCU-list traversed in non-reader section!!
other info that might help us debug this:
RCU used illegally from offline CPU!
rcu_scheduler_active = 1, debug_locks = 1
no locks held by swapper/1/0.
Call Trace:
dump_stack+0xec/0x144 (unreliable)
lockdep_rcu_suspicious+0x128/0x14c
__lock_acquire+0x1060/0x1c60
lock_acquire+0x140/0x5f0
_raw_spin_lock_irqsave+0x64/0xb0
clockevents_register_device+0x74/0x270
register_decrementer_clockevent+0x94/0x110
start_secondary+0x134/0x800
start_secondary_prolog+0x10/0x14
This is avoided by adding a call to rcu_cpu_starting() near the
beginning of the start_secondary() function. Note that the
raw_smp_processor_id() is required in order to avoid calling into
lockdep before RCU has declared the CPU to be watched for readers.
It's safe to call rcu_cpu_starting() in the arch code as well as later
in generic code, as explained by Paul:
It uses a per-CPU variable so that RCU pays attention only to the
first call to rcu_cpu_starting() if there is more than one of them.
This is even intentional, due to there being a generic
arch-independent call to rcu_cpu_starting() in
notify_cpu_starting().
So multiple calls to rcu_cpu_starting() are fine by design.
Fixes: 4d004099a6 ("lockdep: Fix lockdep recursion")
Signed-off-by: Qian Cai <cai@redhat.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
[mpe: Add Fixes tag, reword slightly & expand change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201028182334.13466-1-cai@redhat.com
Lockdep complains that a possible deadlock below in
eeh_addr_cache_show() because it is acquiring a lock with IRQ enabled,
but eeh_addr_cache_insert_dev() needs to acquire the same lock with IRQ
disabled. Let's just make eeh_addr_cache_show() acquire the lock with
IRQ disabled as well.
CPU0 CPU1
---- ----
lock(&pci_io_addr_cache_root.piar_lock);
local_irq_disable();
lock(&tp->lock);
lock(&pci_io_addr_cache_root.piar_lock);
<Interrupt>
lock(&tp->lock);
*** DEADLOCK ***
lock_acquire+0x140/0x5f0
_raw_spin_lock_irqsave+0x64/0xb0
eeh_addr_cache_insert_dev+0x48/0x390
eeh_probe_device+0xb8/0x1a0
pnv_pcibios_bus_add_device+0x3c/0x80
pcibios_bus_add_device+0x118/0x290
pci_bus_add_device+0x28/0xe0
pci_bus_add_devices+0x54/0xb0
pcibios_init+0xc4/0x124
do_one_initcall+0xac/0x528
kernel_init_freeable+0x35c/0x3fc
kernel_init+0x24/0x148
ret_from_kernel_thread+0x5c/0x80
lock_acquire+0x140/0x5f0
_raw_spin_lock+0x4c/0x70
eeh_addr_cache_show+0x38/0x110
seq_read+0x1a0/0x660
vfs_read+0xc8/0x1f0
ksys_read+0x74/0x130
system_call_exception+0xf8/0x1d0
system_call_common+0xe8/0x218
Fixes: 5ca85ae631 ("powerpc/eeh_cache: Add a way to dump the EEH address cache")
Signed-off-by: Qian Cai <cai@redhat.com>
Reviewed-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201028152717.8967-1-cai@redhat.com
Pull powerpc fixes from Michael Ellerman:
- A fix for undetected data corruption on Power9 Nimbus <= DD2.1 in the
emulation of VSX loads. The affected CPUs were not widely available.
- Two fixes for machine check handling in guests under PowerVM.
- A fix for our recent changes to SMP setup, when
CONFIG_CPUMASK_OFFSTACK=y.
- Three fixes for races in the handling of some of our powernv sysfs
attributes.
- One change to remove TM from the set of Power10 CPU features.
- A couple of other minor fixes.
Thanks to: Aneesh Kumar K.V, Christophe Leroy, Ganesh Goudar, Jordan
Niethe, Mahesh Salgaonkar, Michael Neuling, Oliver O'Halloran, Qian Cai,
Srikar Dronamraju, Vasant Hegde.
* tag 'powerpc-5.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/pseries: Avoid using addr_to_pfn in real mode
powerpc/uaccess: Don't use "m<>" constraint with GCC 4.9
powerpc/eeh: Fix eeh_dev_check_failure() for PE#0
powerpc/64s: Remove TM from Power10 features
selftests/powerpc: Make alignment handler test P9N DD2.1 vector CI load workaround
powerpc: Fix undetected data corruption with P9N DD2.1 VSX CI load emulation
powerpc/powernv/dump: Handle multiple writes to ack attribute
powerpc/powernv/dump: Fix race while processing OPAL dump
powerpc/smp: Use GFP_ATOMIC while allocating tmp mask
powerpc/smp: Remove unnecessary variable
powerpc/mce: Avoid nmi_enter/exit in real mode on pseries hash
powerpc/opal_elog: Handle multiple writes to ack attribute