The root directory, ctrl_mon and monitor groups are populated
with a read/write file named "tasks". When read, it shows all the task
IDs assigned to the resource group.
Tasks can be added to groups by writing the PID to the file. A task can
be present in one "ctrl_mon" group "and" one "monitor" group. IOW a
PID_x can be seen in a ctrl_mon group and a monitor group at the same
time. When a task is added to a ctrl_mon group, it is automatically
removed from the previous ctrl_mon group where it belonged. Similarly if
a task is moved to a monitor group it is removed from the previous
monitor group . Also since the monitor groups can only have subset of
tasks of parent ctrl_mon group, a task can be moved to a monitor group
only if its already present in the parent ctrl_mon group.
Task membership is indicated by a new field in the task_struct "u32
rmid" which holds the RMID for the task. RMID=0 is reserved for the
default root group where the tasks belong to at mount.
[tony: zero the rmid if rdtgroup was deleted when task was being moved]
Signed-off-by: Tony Luck <tony.luck@linux.intel.com>
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-16-git-send-email-vikas.shivappa@linux.intel.com
Resource control groups can be created using mkdir in resctrl
fs(rdtgroup). In order to extend the resctrl interface to support
monitoring the control groups, extend the current mkdir to support
resource monitoring also.
This allows the rdtgroup created under the root directory to be able to
both control and monitor resources (ctrl_mon group). The ctrl_mon groups
are associated with one CLOSID like the legacy rdtgroups and one
RMID(Resource monitoring ID) as well. Hardware uses RMID to track the
resource usage. Once either of the CLOSID or RMID are exhausted, the
mkdir fails with -ENOSPC. If there are RMIDs in limbo list but not free
an -EBUSY is returned. User can also monitor a subset of the ctrl_mon
rdtgroup's tasks/cpus using the monitor groups. The monitor groups are
created using mkdir under the "mon_groups" directory in every ctrl_mon
group.
[Merged Tony's code: Removed a lot of common mkdir code, a fix to handling
of the list of the child rdtgroups and some cleanups in list
traversal. Also the changes to have similar alloc and free for CLOS/RMID
and return -EBUSY when RMIDs are in limbo and not free]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-14-git-send-email-vikas.shivappa@linux.intel.com
Hardware uses RMID(Resource monitoring ID) to keep track of each of the
RDT events associated with tasks. The number of RMIDs is dependent on
the SKU and is enumerated via CPUID. We add support to manage the RMIDs
which include managing the RMID allocation and reading LLC occupancy
for an RMID.
RMID allocation is managed by keeping a free list which is initialized
to all available RMIDs except for RMID 0 which is always reserved for
root group. RMIDs goto a limbo list once they are
freed since the RMIDs are still tagged to cache lines of the tasks which
were using them - thereby still having some occupancy. They continue to
be in limbo list until the occupancy < threshold_occupancy. The
threshold_occupancy is a user configurable value.
OS uses IA32_QM_CTR MSR to read the occupancy associated with an RMID
after programming the IA32_EVENTSEL MSR with the RMID.
[Tony: Improved limbo search]
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-10-git-send-email-vikas.shivappa@linux.intel.com
'perf cqm' never worked due to the incompatibility between perf
infrastructure and cqm hardware support. The hardware uses RMIDs to
track the llc occupancy of tasks and these RMIDs are per package. This
makes monitoring a hierarchy like cgroup along with monitoring of tasks
separately difficult and several patches sent to lkml to fix them were
NACKed. Further more, the following issues in the current perf cqm make
it almost unusable:
1. No support to monitor the same group of tasks for which we do
allocation using resctrl.
2. It gives random and inaccurate data (mostly 0s) once we run out
of RMIDs due to issues in Recycling.
3. Recycling results in inaccuracy of data because we cannot
guarantee that the RMID was stolen from a task when it was not
pulling data into cache or even when it pulled the least data. Also
for monitoring llc_occupancy, if we stop using an RMID_x and then
start using an RMID_y after we reclaim an RMID from an other event,
we miss accounting all the occupancy that was tagged to RMID_x at a
later perf_count.
2. Recycling code makes the monitoring code complex including
scheduling because the event can lose RMID any time. Since MBM
counters count bandwidth for a period of time by taking snap shot of
total bytes at two different times, recycling complicates the way we
count MBM in a hierarchy. Also we need a spin lock while we do the
processing to account for MBM counter overflow. We also currently
use a spin lock in scheduling to prevent the RMID from being taken
away.
4. Lack of support when we run different kind of event like task,
system-wide and cgroup events together. Data mostly prints 0s. This
is also because we can have only one RMID tied to a cpu as defined
by the cqm hardware but a perf can at the same time tie multiple
events during one sched_in.
5. No support of monitoring a group of tasks. There is partial support
for cgroup but it does not work once there is a hierarchy of cgroups
or if we want to monitor a task in a cgroup and the cgroup itself.
6. No support for monitoring tasks for the lifetime without perf
overhead.
7. It reported the aggregate cache occupancy or memory bandwidth over
all sockets. But most cloud and VMM based use cases want to know the
individual per-socket usage.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-2-git-send-email-vikas.shivappa@linux.intel.com
WARNING: CPU: 5 PID: 1242 at kernel/rcu/tree_plugin.h:323 rcu_note_context_switch+0x207/0x6b0
CPU: 5 PID: 1242 Comm: unity-settings- Not tainted 4.13.0-rc2+ #1
RIP: 0010:rcu_note_context_switch+0x207/0x6b0
Call Trace:
__schedule+0xda/0xba0
? kvm_async_pf_task_wait+0x1b2/0x270
schedule+0x40/0x90
kvm_async_pf_task_wait+0x1cc/0x270
? prepare_to_swait+0x22/0x70
do_async_page_fault+0x77/0xb0
? do_async_page_fault+0x77/0xb0
async_page_fault+0x28/0x30
RIP: 0010:__d_lookup_rcu+0x90/0x1e0
I encounter this when trying to stress the async page fault in L1 guest w/
L2 guests running.
Commit 9b132fbe54 (Add rcu user eqs exception hooks for async page
fault) adds rcu_irq_enter/exit() to kvm_async_pf_task_wait() to exit cpu
idle eqs when needed, to protect the code that needs use rcu. However,
we need to call the pair even if the function calls schedule(), as seen
from the above backtrace.
This patch fixes it by informing the RCU subsystem exit/enter the irq
towards/away from idle for both n.halted and !n.halted.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The HPET resume path abuses irq_domain_[de]activate_irq() to restore the
MSI message in the HPET chip for the boot CPU on resume and it relies on an
implementation detail of the interrupt core code, which magically makes the
HPET unmask call invoked via a irq_disable/enable pair. This worked as long
as the irq code did unconditionally invoke the unmask() callback. With the
recent changes which keep track of the masked state to avoid expensive
hardware access, this does not longer work. As a consequence the HPET timer
interrupts are not unmasked which breaks resume as the boot CPU waits
forever that a timer interrupt arrives.
Make the restore of the MSI message explicit and invoke the unmask()
function directly. While at it get rid of the pointless affinity setting as
nothing can change the affinity of the interrupt and the vector across
suspend/resume. The restore of the MSI message reestablishes the previous
affinity setting which is the correct one.
Fixes: bf22ff45be ("genirq: Avoid unnecessary low level irq function calls")
Reported-and-tested-by: Tomi Sarvela <tomi.p.sarvela@intel.com>
Reported-by: Martin Peres <martin.peres@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: jeffy.chen@rock-chips.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1707312158590.2287@nanos
Pull x86 fixes from Thomas Gleixner:
"A small set of x86 fixes:
- prevent the kernel from using the EFI reboot method when EFI is
disabled.
- two patches addressing clang issues"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Disable the address-of-packed-member compiler warning
x86/efi: Fix reboot_mode when EFI runtime services are disabled
x86/boot: #undef memcpy() et al in string.c
Pull perf fixes from Thomas Gleixner:
"A couple of fixes for performance counters and kprobes:
- a series of small patches which make the uncore performance
counters on Skylake server systems work correctly
- add a missing instruction slot release to the failure path of
kprobes"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kprobes/x86: Release insn_slot in failure path
perf/x86/intel/uncore: Fix missing marker for skx_uncore_cha_extra_regs
perf/x86/intel/uncore: Fix SKX CHA event extra regs
perf/x86/intel/uncore: Remove invalid Skylake server CHA filter field
perf/x86/intel/uncore: Fix Skylake server CHA LLC_LOOKUP event umask
perf/x86/intel/uncore: Fix Skylake server PCU PMU event format
perf/x86/intel/uncore: Fix Skylake UPI PMU event masks
After commit f8475cef90 "x86: use common aperfmperf_khz_on_cpu() to
calculate KHz using APERF/MPERF" the scaling_cur_freq policy attribute
in sysfs only behaves as expected on x86 with APERF/MPERF registers
available when it is read from at least twice in a row. The value
returned by the first read may not be meaningful, because the
computations in there use cached values from the previous iteration
of aperfmperf_snapshot_khz() which may be stale.
To prevent that from happening, modify arch_freq_get_on_cpu() to
call aperfmperf_snapshot_khz() twice, with a short delay between
these calls, if the previous invocation of aperfmperf_snapshot_khz()
was too far back in the past (specifically, more that 1s ago).
Also, as pointed out by Doug Smythies, aperf_delta is limited now
and the multiplication of it by cpu_khz won't overflow, so simplify
the s->khz computations too.
Fixes: f8475cef90 "x86: use common aperfmperf_khz_on_cpu() to calculate KHz using APERF/MPERF"
Reported-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On x86_32, modify_ldt() implicitly refreshes the cached DS and ES
segments because they are refreshed on return to usermode.
On x86_64, they're not refreshed on return to usermode. To improve
determinism and match x86_32's behavior, refresh them when we update
the LDT.
This avoids a situation in which the DS points to a descriptor that is
changed but the old cached segment persists until the next reschedule.
If this happens, then the user-visible state will change
nondeterministically some time after modify_ldt() returns, which is
unfortunate.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Chang Seok <chang.seok.bae@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are using the same vector for nested/non-nested posted
interrupts delivery, this may cause interrupts latency in
L1 since we can't kick the L2 vcpu out of vmx-nonroot mode.
This patch introduces a new vector which is only for nested
posted interrupts to solve the problems above.
Signed-off-by: Wincy Van <fanwenyi0529@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the new ORC unwinder which is enabled by CONFIG_ORC_UNWINDER=y.
It plugs into the existing x86 unwinder framework.
It relies on objtool to generate the needed .orc_unwind and
.orc_unwind_ip sections.
For more details on why ORC is used instead of DWARF, see
Documentation/x86/orc-unwinder.txt - but the short version is
that it's a simplified, fundamentally more robust debugninfo
data structure, which also allows up to two orders of magnitude
faster lookups than the DWARF unwinder - which matters to
profiling workloads like perf.
Thanks to Andy Lutomirski for the performance improvement ideas:
splitting the ORC unwind table into two parallel arrays and creating a
fast lookup table to search a subset of the unwind table.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/0a6cbfb40f8da99b7a45a1a8302dc6aef16ec812.1500938583.git.jpoimboe@redhat.com
[ Extended the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current SMCA implementations have the same banks on each CPU with the
non-core banks only visible to a "master thread" on each die. Practically,
this means the smca_banks array, which describes the banks, only needs to
be populated once by a single master thread.
CPU 0 seemed like a good candidate to do the populating. However, it's
possible that CPU 0 is not enabled in which case the smca_banks array won't
be populated.
Rather than try to figure out another master thread to do the populating,
we should just allow any CPU to populate the array.
Drop the CPU 0 check and return early if the bank was already initialized.
Also, drop the WARNing about an already initialized bank, since this will
be a common, expected occurrence.
The smca_banks array is only populated at boot time and CPUs are brought
online sequentially. So there's no need for locking around the array.
If the first CPU up is a master thread, then it will populate the array
with all banks, core and non-core. Every CPU afterwards will return
early. If the first CPU up is not a master thread, then it will populate
the array with all core banks. The first CPU afterwards that is a master
thread will skip populating the core banks and continue populating the
non-core banks.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jack Miller <jack@codezen.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170724101228.17326-4-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
verify_and_add_patch() allocates memory for a microcode patch and hands
it down to be added to the cache of patches. However, if the cache
already has the latest patch, the newly allocated one needs to be freed
before returning. Do that.
This issue has been found by kmemleak:
unreferenced object 0xffff88010e780b40 (size 32):
comm "bash", pid 860, jiffies 4294690939 (age 29.297s)
backtrace:
kmemleak_alloc
kmem_cache_alloc_trace
load_microcode_amd.isra.0
request_microcode_amd
reload_store
dev_attr_store
sysfs_kf_write
kernfs_fop_write
__vfs_write
vfs_write
SyS_write
do_syscall_64
return_from_SYSCALL_64
0xffffffffffffffff
(gdb) list *0xffffffff81050d60
0xffffffff81050d60 is in load_microcode_amd
(arch/x86/kernel/cpu/microcode/amd.c:616).
which is this:
patch = kzalloc(sizeof(*patch), GFP_KERNEL);
--> if (!patch) {
pr_err("Patch allocation failure.\n");
return -EINVAL;
}
Signed-off-by: Shu Wang <shuwang@redhat.com>
[ Rewrite commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: chuhu@redhat.com
Cc: liwang@redhat.com
Link: http://lkml.kernel.org/r/20170724101228.17326-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sparse complains about wrong address space used in __acpi_map_table()
and in __acpi_unmap_table().
arch/x86/kernel/acpi/boot.c:127:29: warning: incorrect type in return expression (different address spaces)
arch/x86/kernel/acpi/boot.c:127:29: expected char *
arch/x86/kernel/acpi/boot.c:127:29: got void [noderef] <asn:2>*
arch/x86/kernel/acpi/boot.c:135:23: warning: incorrect type in argument 1 (different address spaces)
arch/x86/kernel/acpi/boot.c:135:23: expected void [noderef] <asn:2>*addr
arch/x86/kernel/acpi/boot.c:135:23: got char *map
Correct address space to be in align of type of returned and passed
parameter.
Reviewed-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Some code in acpi_parse_x2apic() conditionally compiled, though parts of
it are being used in any case. This annoys gcc.
arch/x86/kernel/acpi/boot.c: In function ‘acpi_parse_x2apic’:
arch/x86/kernel/acpi/boot.c:203:5: warning: variable ‘enabled’ set but not used [-Wunused-but-set-variable]
u8 enabled;
^~~~~~~
arch/x86/kernel/acpi/boot.c:202:6: warning: variable ‘apic_id’ set but not used [-Wunused-but-set-variable]
int apic_id;
^~~~~~~
Re-arrange the code to avoid compiling unused variables.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
struct siginfo is a union and the kernel since 2.4 has been hiding a union
tag in the high 16bits of si_code using the values:
__SI_KILL
__SI_TIMER
__SI_POLL
__SI_FAULT
__SI_CHLD
__SI_RT
__SI_MESGQ
__SI_SYS
While this looks plausible on the surface, in practice this situation has
not worked well.
- Injected positive signals are not copied to user space properly
unless they have these magic high bits set.
- Injected positive signals are not reported properly by signalfd
unless they have these magic high bits set.
- These kernel internal values leaked to userspace via ptrace_peek_siginfo
- It was possible to inject these kernel internal values and cause the
the kernel to misbehave.
- Kernel developers got confused and expected these kernel internal values
in userspace in kernel self tests.
- Kernel developers got confused and set si_code to __SI_FAULT which
is SI_USER in userspace which causes userspace to think an ordinary user
sent the signal and that it was not kernel generated.
- The values make it impossible to reorganize the code to transform
siginfo_copy_to_user into a plain copy_to_user. As si_code must
be massaged before being passed to userspace.
So remove these kernel internal si codes and make the kernel code simpler
and more maintainable.
To replace these kernel internal magic si_codes introduce the helper
function siginfo_layout, that takes a signal number and an si_code and
computes which union member of siginfo is being used. Have
siginfo_layout return an enumeration so that gcc will have enough
information to warn if a switch statement does not handle all of union
members.
A couple of architectures have a messed up ABI that defines signal
specific duplications of SI_USER which causes more special cases in
siginfo_layout than I would like. The good news is only problem
architectures pay the cost.
Update all of the code that used the previous magic __SI_ values to
use the new SIL_ values and to call siginfo_layout to get those
values. Escept where not all of the cases are handled remove the
defaults in the switch statements so that if a new case is missed in
the future the lack will show up at compile time.
Modify the code that copies siginfo si_code to userspace to just copy
the value and not cast si_code to a short first. The high bits are no
longer used to hold a magic union member.
Fixup the siginfo header files to stop including the __SI_ values in
their constants and for the headers that were missing it to properly
update the number of si_codes for each signal type.
The fixes to copy_siginfo_from_user32 implementations has the
interesting property that several of them perviously should never have
worked as the __SI_ values they depended up where kernel internal.
With that dependency gone those implementations should work much
better.
The idea of not passing the __SI_ values out to userspace and then
not reinserting them has been tested with criu and criu worked without
changes.
Ref: 2.4.0-test1
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
On x86, 5-level paging enables 56-bit userspace virtual address space.
Not all user space is ready to handle wide addresses. It's known that
at least some JIT compilers use higher bits in pointers to encode their
information. It collides with valid pointers with 5-level paging and
leads to crashes.
To mitigate this, we are not going to allocate virtual address space
above 47-bit by default.
But userspace can ask for allocation from full address space by
specifying hint address (with or without MAP_FIXED) above 47-bits.
If hint address set above 47-bit, but MAP_FIXED is not specified, we try
to look for unmapped area by specified address. If it's already
occupied, we look for unmapped area in *full* address space, rather than
from 47-bit window.
A high hint address would only affect the allocation in question, but not
any future mmap()s.
Specifying high hint address on older kernel or on machine without 5-level
paging support is safe. The hint will be ignored and kernel will fall back
to allocation from 47-bit address space.
This approach helps to easily make application's memory allocator aware
about large address space without manually tracking allocated virtual
address space.
The patch puts all machinery in place, but not yet allows userspace to have
mappings above 47-bit -- TASK_SIZE_MAX has to be raised to get the effect.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170716225954.74185-7-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
One of the rarely executed code pathes in check_timer() calls
unmask_ioapic_irq() passing irq_get_chip_data(0) as argument.
That's wrong as unmask_ioapic_irq() expects a pointer to the irq data of
interrupt 0. irq_get_chip_data(0) returns NULL, so the following
dereference in unmask_ioapic_irq() causes a kernel panic.
The issue went unnoticed in the first place because irq_get_chip_data()
returns a void pointer so the compiler cannot do a type check on the
argument. The code path was added for machines with broken configuration,
but it seems that those machines are either not running current kernels or
simply do not longer exist.
Hand in irq_get_irq_data(0) as argument which provides the correct data.
[ tglx: Rewrote changelog ]
Fixes: 4467715a44 ("x86/irq: Move irq_cfg.irq_2_pin into io_apic.c")
Signed-off-by: Seunghun Han <kkamagui@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1500369644-45767-1-git-send-email-kkamagui@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The bus_irq argument of mp_override_legacy_irq() is used as the index into
the isa_irq_to_gsi[] array. The bus_irq argument originates from
ACPI_MADT_TYPE_IO_APIC and ACPI_MADT_TYPE_INTERRUPT items in the ACPI
tables, but is nowhere sanity checked.
That allows broken or malicious ACPI tables to overwrite memory, which
might cause malfunction, panic or arbitrary code execution.
Add a sanity check and emit a warning when that triggers.
[ tglx: Added warning and rewrote changelog ]
Signed-off-by: Seunghun Han <kkamagui@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: security@kernel.org
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: stable@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2nd round of 4.14 features:
- prep for deferred fbdev setup
- refactor fixed 16.16 computations and skl+ wm code (Mahesh Kumar)
- more cnl paches (Rodrigo, Imre et al)
- tighten context cleanup and handling (Chris Wilson)
- fix interlaced handling on skl+ (Mahesh Kumar)
- small bits as usual
* tag 'drm-intel-next-2017-07-17' of git://anongit.freedesktop.org/git/drm-intel: (84 commits)
drm/i915: Update DRIVER_DATE to 20170717
drm/i915: Protect against deferred fbdev setup
drm/i915/fbdev: Always forward hotplug events
drm/i915/skl+: unify cpp value in WM calculation
drm/i915/skl+: WM calculation don't require height
drm/i915: Addition wrapper for fixed16.16 operation
drm/i915: cleanup fixed-point wrappers naming
drm/i915: Always perform internal fixed16 division in 64 bits
drm/i915: take-out common clamping code of fixed16 wrappers
drm/i915/cnl: Add missing type case.
drm/i915/cnl: Add max allowed Cannonlake DC.
drm/i915: Make DP-MST connector info work
drm/i915/cnl: Get DDI clock based on PLLs.
drm/i915/cnl: Inherit RPS stuff from previous platforms.
drm/i915/cnl: Gen10 render context size.
drm/i915/cnl: Don't trust VBT's alternate pin for port D for now.
drm/i915: Fix the kernel panic when using aliasing ppgtt
drm/i915/cnl: Cannonlake color init.
drm/i915/cnl: Add force wake for gen10+.
x86/gpu: CNL uses the same GMS values as SKL
...
Changes to the existing page table macros will allow the SME support to
be enabled in a simple fashion with minimal changes to files that use these
macros. Since the memory encryption mask will now be part of the regular
pagetable macros, we introduce two new macros (_PAGE_TABLE_NOENC and
_KERNPG_TABLE_NOENC) to allow for early pagetable creation/initialization
without the encryption mask before SME becomes active. Two new pgprot()
macros are defined to allow setting or clearing the page encryption mask.
The FIXMAP_PAGE_NOCACHE define is introduced for use with MMIO. SME does
not support encryption for MMIO areas so this define removes the encryption
mask from the page attribute.
Two new macros are introduced (__sme_pa() / __sme_pa_nodebug()) to allow
creating a physical address with the encryption mask. These are used when
working with the cr3 register so that the PGD can be encrypted. The current
__va() macro is updated so that the virtual address is generated based off
of the physical address without the encryption mask thus allowing the same
virtual address to be generated regardless of whether encryption is enabled
for that physical location or not.
Also, an early initialization function is added for SME. If SME is active,
this function:
- Updates the early_pmd_flags so that early page faults create mappings
with the encryption mask.
- Updates the __supported_pte_mask to include the encryption mask.
- Updates the protection_map entries to include the encryption mask so
that user-space allocations will automatically have the encryption mask
applied.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/b36e952c4c39767ae7f0a41cf5345adf27438480.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>