Add helper functions that allow regulator consumers to obtain low-level
details about the regulator hardware, like the voltage selector register
address and such. These details can be useful when configuring hardware
or firmware that want to do low-level access to regulators, with no
involvement from the kernel.
The use-case for Tegra is a voltage-controlled oscillator clocksource
which has control logic to change the supply voltage via I2C to achieve
a desired output clock rate.
Signed-off-by: Tuomas Tynkkynen <ttynkkynen@nvidia.com>
Signed-off-by: Mark Brown <broonie@linaro.org>
Add a new function regmap_get_device to obtain the underlying struct
device from a regmap.
Signed-off-by: Tuomas Tynkkynen <ttynkkynen@nvidia.com>
Signed-off-by: Mark Brown <broonie@linaro.org>
Extinguishes:
../drivers/mfd/max77686.c: In function ‘max77686_i2c_probe’:
../drivers/mfd/max77686.c:254:20:
warning: cast from pointer to integer of different size
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Maxim MAX77802 is a power management chip that contains 10 high
efficiency Buck regulators, 32 Low-dropout (LDO) regulators used
to power up application processors and peripherals, a 2-channel
32kHz clock outputs, a Real-Time-Clock (RTC) and a I2C interface
to program the individual regulators, clocks outputs and the RTC.
This patch adds support for MAX77802 to the MAX77686 driver and is
based on a driver added to the Chrome OS kernel 3.8 by Simon Glass.
Signed-off-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk>
Reviewed-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
GICv3 introduces new system registers accessible with the full msr/mrs
syntax (e.g. mrs x0, Sop0_op1_CRm_CRn_op2). However, only recent
binutils understand the new syntax. This patch introduces msr_s/mrs_s
assembly macros which generate the equivalent instructions above and
converts the existing GICv3 code (both drivers/irqchip/ and
arch/arm64/kernel/).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Olof Johansson <olof@lixom.net>
Tested-by: Olof Johansson <olof@lixom.net>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Jason Cooper <jason@lakedaemon.net>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
* tag 'deps-irqchip-gic-3.17' of git://git.infradead.org/users/jcooper/linux:
irqchip: gic-v3: Initial support for GICv3
irqchip: gic: Move some bits of GICv2 to a library-type file
Conflicts:
arch/arm64/Kconfig
As of commit commit f04cd40701 ("fsldma: fix
controller lockups"), its last (and only ever) user is gone.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Shared Peripheral ASRC, running on SPBA, needs to use shp sciprts for
DMA transfer. So this patch just adds a new DMATYPE for it.
Signed-off-by: Nicolin Chen <nicoleotsuka@gmail.com>
Acked-by: Shawn Guo <shawn.guo@linaro.org>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
eBPF is used by socket filtering, seccomp and soon by tracing and
exposed to userspace, therefore 'sock_filter_int' name is not accurate.
Rename it to 'bpf_insn'
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Jonathan writes:
Fourth round of IIO new drivers, functionality and cleanups for the 3.17 cycle
New functionality
* A new modifier to indicate that a rotation is relative to either
true or magnetic north. This is to be used by some magnetometers
that provide data in this way.
* hid magnetometer now supports output rotations from various variants on
North
* HMC5843 driver converted to regmap and reworked to allow easy support
of other similar devices. Support for HMC5983 added via both i2c and SPI.
* Rework of Exynos driver to simplify extension to support more devices.
* Addition of support for the Exynos3250 ADC (which requires an additional
clock) Support for quite a few more devices on its way.
Cleanups
* ad7997 - a number of cleanups and tweaks to how the events are controlled
to make it more intuitive.
* kxcjk - cleanups and minor fixes for this new driver.
This is effectively a revert of 7b9a7ec565
plus fixing it a different way...
We found, when trying to run an application from an application which
had dropped privs that the kernel does security checks on undefined
capability bits. This was ESPECIALLY difficult to debug as those
undefined bits are hidden from /proc/$PID/status.
Consider a root application which drops all capabilities from ALL 4
capability sets. We assume, since the application is going to set
eff/perm/inh from an array that it will clear not only the defined caps
less than CAP_LAST_CAP, but also the higher 28ish bits which are
undefined future capabilities.
The BSET gets cleared differently. Instead it is cleared one bit at a
time. The problem here is that in security/commoncap.c::cap_task_prctl()
we actually check the validity of a capability being read. So any task
which attempts to 'read all things set in bset' followed by 'unset all
things set in bset' will not even attempt to unset the undefined bits
higher than CAP_LAST_CAP.
So the 'parent' will look something like:
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: ffffffc000000000
All of this 'should' be fine. Given that these are undefined bits that
aren't supposed to have anything to do with permissions. But they do...
So lets now consider a task which cleared the eff/perm/inh completely
and cleared all of the valid caps in the bset (but not the invalid caps
it couldn't read out of the kernel). We know that this is exactly what
the libcap-ng library does and what the go capabilities library does.
They both leave you in that above situation if you try to clear all of
you capapabilities from all 4 sets. If that root task calls execve()
the child task will pick up all caps not blocked by the bset. The bset
however does not block bits higher than CAP_LAST_CAP. So now the child
task has bits in eff which are not in the parent. These are
'meaningless' undefined bits, but still bits which the parent doesn't
have.
The problem is now in cred_cap_issubset() (or any operation which does a
subset test) as the child, while a subset for valid cap bits, is not a
subset for invalid cap bits! So now we set durring commit creds that
the child is not dumpable. Given it is 'more priv' than its parent. It
also means the parent cannot ptrace the child and other stupidity.
The solution here:
1) stop hiding capability bits in status
This makes debugging easier!
2) stop giving any task undefined capability bits. it's simple, it you
don't put those invalid bits in CAP_FULL_SET you won't get them in init
and you won't get them in any other task either.
This fixes the cap_issubset() tests and resulting fallout (which
made the init task in a docker container untraceable among other
things)
3) mask out undefined bits when sys_capset() is called as it might use
~0, ~0 to denote 'all capabilities' for backward/forward compatibility.
This lets 'capsh --caps="all=eip" -- -c /bin/bash' run.
4) mask out undefined bit when we read a file capability off of disk as
again likely all bits are set in the xattr for forward/backward
compatibility.
This lets 'setcap all+pe /bin/bash; /bin/bash' run
Signed-off-by: Eric Paris <eparis@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Vagin <avagin@openvz.org>
Cc: Andrew G. Morgan <morgan@kernel.org>
Cc: Serge E. Hallyn <serge.hallyn@canonical.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Steve Grubb <sgrubb@redhat.com>
Cc: Dan Walsh <dwalsh@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: James Morris <james.l.morris@oracle.com>
Both functions were introduced to let gpio drivers request their own
gpio pins. Without exporting the functions, this can however only be
used by gpio drivers built into the kernel.
Secondary impact is that the functions can not currently be used by
platform initialization code associated with the gpio-pca953x driver.
This code permits auto-export of gpio pins through platform data, but
if this functionality is used, the module can no longer be unloaded due
to the problem solved with the introduction of gpiochip_request_own_desc
and gpiochip_free_own_desc.
Export both function so they can be used from modules and from
platform initialization code.
Reviewed-by: Alexandre Courbot <acourbot@nvidia.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Following patch enables all available tunnel GSO features for OVS
bridge device so that ovs can use hardware offloads available to
underling device.
Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Acked-by: Andy Zhou <azhou@nicira.com>
Pull libata regression fix from Tejun Heo:
"The last libata/for-3.16-fixes pull contained a regression introduced
by 1871ee134b ("libata: support the ata host which implements a
queue depth less than 32") which in turn was a fix for a regression
introduced earlier while changing queue tag order to accomodate hard
drives which perform poorly if tags are not allocated in circular
order (ugh...).
The regression happens only for SAS controllers making use of libata
to serve ATA devices. They don't fill an ata_host field which is used
by the new tag allocation function leading to NULL dereference.
This patch adds a new intermediate field ata_host->n_tags which is
initialized for both SAS and !SAS cases to fix the issue"
* 'for-3.16-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata:
libata: introduce ata_host->n_tags to avoid oops on SAS controllers
Introducing DT transactional support.
A DT transaction is a method which allows one to apply changes
in the live tree, in such a way that either the full set of changes
take effect, or the state of the tree can be rolled-back to the
state it was before it was attempted. An applied transaction
can be rolled-back at any time.
Documentation is in
Documentation/devicetree/changesets.txt
Signed-off-by: Pantelis Antoniou <pantelis.antoniou@konsulko.com>
[glikely: Removed device notifiers and reworked to be more consistent]
Signed-off-by: Grant Likely <grant.likely@linaro.org>
Currently, devicetree reconfig notifiers get emitted before the change
is applied to the tree, but that behaviour is problematic if the
receiver wants the determine the new state of the tree. The current
users don't care, but the changeset code to follow will be making
multiple changes at once. Reorder notifiers to get emitted after the
change has been applied to the tree so that callbacks see the new tree
state.
At the same time, fixup the existing callbacks to expect the new order.
There are a few callbacks that compare the old and new values of a
changed property. Put both property pointers into the of_prop_reconfig
structure.
The current notifiers also allow the notifier callback to fail and
cancel the change to the tree, but that feature isn't actually used.
It really isn't valid to ignore a tree modification provided by firmware
anyway, so remove the ability to cancel a change to the tree.
Signed-off-by: Grant Likely <grant.likely@linaro.org>
Cc: Nathan Fontenot <nfont@austin.ibm.com>
All of the DT modification functions are split into two parts, the first
part manipulates the DT data structure, and the second part updates
sysfs, but the code isn't very consistent about how the second half is
called. They don't all enforce the same rules about when it is valid to
update sysfs, and there isn't any clarity on locking.
The transactional DT modification feature that is coming also needs
access to these functions so that it can perform all the structure
changes together, and then all the sysfs updates as a second stage
instead of doing each one at a time.
Fix up the second have by creating a separate __of_*_sysfs() function
for each of the helpers. The new functions have consistent naming (ie.
of_node_add() becomes __of_attach_node_sysfs()) and all of them now
defer if of_init hasn't been called yet.
Callers of the new functions must hold the of_mutex to ensure there are
no race conditions with of_init(). The mutex ensures that there will
only ever be one writer to the tree at any given time. There can still
be any number of readers and the raw_spin_lock is still used to make
sure access to the data structure is still consistent.
Finally, put the function prototypes into of_private.h so they are
accessible to the transaction code.
Signed-off-by: Pantelis Antoniou <pantelis.antoniou@konsulko.com>
[grant.likely: Changed suffix from _post to _sysfs to match existing code]
[grant.likely: Reorganized to eliminate trivial wrappers]
Signed-off-by: Grant Likely <grant.likely@linaro.org>
I triggered VM_BUG_ON() in vma_address() when I tried to migrate an
anonymous hugepage with mbind() in the kernel v3.16-rc3. This is
because pgoff's calculation in rmap_walk_anon() fails to consider
compound_order() only to have an incorrect value.
This patch introduces page_to_pgoff(), which gets the page's offset in
PAGE_CACHE_SIZE.
Kirill pointed out that page cache tree should natively handle
hugepages, and in order to make hugetlbfs fit it, page->index of
hugetlbfs page should be in PAGE_CACHE_SIZE. This is beyond this patch,
but page_to_pgoff() contains the point to be fixed in a single function.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By caching the ntp_tick_length() when we correct the frequency error,
and then using that cached value to accumulate error, we avoid large
initial errors when the tick length is changed.
This makes convergence happen much faster in the simulator, since the
initial error doesn't have to be slowly whittled away.
This initially seems like an accounting error, but Miroslav pointed out
that ntp_tick_length() can change mid-tick, so when we apply it in the
error accumulation, we are applying any recent change to the entire tick.
This approach chooses to apply changes in the ntp_tick_length() only to
the next tick, which allows us to calculate the freq correction before
using the new tick length, which avoids accummulating error.
Credit to Miroslav for pointing this out and providing the original patch
this functionality has been pulled out from, along with the rational.
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Reported-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The existing timekeeping_adjust logic has always been complicated
to understand. Further, since it was developed prior to NOHZ becoming
common, its not surprising it performs poorly when NOHZ is enabled.
Since Miroslav pointed out the problematic nature of the existing code
in the NOHZ case, I've tried to refactor the code to perform better.
The problem with the previous approach was that it tried to adjust
for the total cumulative error using a scaled dampening factor. This
resulted in large errors to be corrected slowly, while small errors
were corrected quickly. With NOHZ the timekeeping code doesn't know
how far out the next tick will be, so this results in bad
over-correction to small errors, and insufficient correction to large
errors.
Inspired by Miroslav's patch, I've refactored the code to try to
address the correction in two steps.
1) Check the future freq error for the next tick, and if the frequency
error is large, try to make sure we correct it so it doesn't cause
much accumulated error.
2) Then make a small single unit adjustment to correct any cumulative
error that has collected over time.
This method performs fairly well in the simulator Miroslav created.
Major credit to Miroslav for pointing out the issue, providing the
original patch to resolve this, a simulator for testing, as well as
helping debug and resolve issues in my implementation so that it
performed closer to his original implementation.
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Reported-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Tracers want a correlated time between the kernel instrumentation and
user space. We really do not want to export sched_clock() to user
space, so we need to provide something sensible for this.
Using separate data structures with an non blocking sequence count
based update mechanism allows us to do that. The data structure
required for the readout has a sequence counter and two copies of the
timekeeping data.
On the update side:
smp_wmb();
tkf->seq++;
smp_wmb();
update(tkf->base[0], tk);
smp_wmb();
tkf->seq++;
smp_wmb();
update(tkf->base[1], tk);
On the reader side:
do {
seq = tkf->seq;
smp_rmb();
idx = seq & 0x01;
now = now(tkf->base[idx]);
smp_rmb();
} while (seq != tkf->seq)
So if a NMI hits the update of base[0] it will use base[1] which is
still consistent, but this timestamp is not guaranteed to be monotonic
across an update.
The timestamp is calculated by:
now = base_mono + clock_delta * slope
So if the update lowers the slope, readers who are forced to the
not yet updated second array are still using the old steeper slope.
tmono
^
| o n
| o n
| u
| o
|o
|12345678---> reader order
o = old slope
u = update
n = new slope
So reader 6 will observe time going backwards versus reader 5.
While other CPUs are likely to be able observe that, the only way
for a CPU local observation is when an NMI hits in the middle of
the update. Timestamps taken from that NMI context might be ahead
of the following timestamps. Callers need to be aware of that and
deal with it.
V2: Got rid of clock monotonic raw and reorganized the data
structures. Folded in the barrier fix from Mathieu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
For NMI safe access to clock monotonic we use the seqcount LSB as
index of a timekeeper array. The update sequence looks like this:
smp_wmb(); <- prior stores to a[1]
seq++;
smp_wmb(); <- seq increment before update of a[0]
update(a[0]);
smp_wmb(); <- update of a[0]
seq++;
smp_wmb(); <- seq increment before update of a[1]
update(a[1]);
To avoid open coded barriers, provide a helper function.
[ tglx: Split out of a combo patch against the first implementation of
the NMI safe accessor ]
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
raw_read_seqcount opens a read critical section of the given seqcount
without any lockdep checking and without checking or masking the
LSB. Calling code is responsible for handling that.
Preparatory patch to provide a NMI safe clock monotonic accessor
function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The members of the new struct are the required ones for the new NMI
safe accessor to clcok monotonic. In order to reuse the existing
timekeeping code and to make the update of the fast NMI safe
timekeepers a simple memcpy use the struct for the timekeeper as well
and convert all users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Access to time requires to touch two cachelines at minimum
1) The timekeeper data structure
2) The clocksource data structure
The access to the clocksource data structure can be avoided as almost
all clocksource implementations ignore the argument to the read
callback, which is a pointer to the clocksource.
But the core needs to touch it to access the members @read and @mask.
So we are better off by copying the @read function pointer and the
@mask from the clocksource to the core data structure itself.
For the most used ktime_get() access all required data including the
@read and @mask copies fits together with the sequence counter into a
single 64 byte cacheline.
For the other time access functions we touch in the current code three
cache lines in the worst case. But with the clocksource data copies we
can reduce that to two adjacent cachelines, which is more efficient
than disjunct cache lines.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
cycle_last was added to the clocksource to support the TSC
validation. We moved that to the core code, so we can get rid of the
extra copy.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Provide a ktime_t based interface for raw monotonic time.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
timekeeping_clocktai() is not used in fast pathes, so the extra
timespec conversion is not problematic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
get_monotonic_boottime() is not used in fast pathes, so the extra
timespec conversion is not problematic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
No idea why iio needs wall clock based time stamps, but we can avoid
the timespec conversion dance by using the new interfaces.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Jonathan Cameron <jic23@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This code is beyond silly:
struct timespec ts = ktime_get_ts();
ktime_t ktime = timespec_to_ktime(ts);
Further down the code builds the delta of two ktime_t values and
converts the result to nanoseconds.
Use ktime_get_ns() and replace all the nonsense.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Eli Cohen <eli@mellanox.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The existing implementation which encodes the configuration as a binary
blob in platform data is unsatisfactory since it requires a kernel
recompile for the configuration to be changed, and it doesn't deal well
with firmware changes that move values around on the chip.
Atmel define an ASCII format for the configuration which can be exported
from their tools. This patch implements a parser for that format which
loads the configuration via the firmware loader and sends it to the MXT
chip.
Signed-off-by: Nick Dyer <nick.dyer@itdev.co.uk>
Acked-by: Benson Leung <bleung@chromium.org>
Acked-by: Yufeng Shen <miletus@chromium.org>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Having two fields within the same struct that is off by one character
can be confusing and error prone. Rename the counter "trampolines"
to "nr_trampolines" to explicitly show it is a counter and not to
be confused by the "trampoline" field.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The RDMA credit limit controls how many concurrent RPCs are allowed
per connection.
An NFS/RDMA client and server exchange their credit limits in the
RPC/RDMA headers. The Linux client and the Solaris client and server
allow 32 credits. The Linux server allows only 16, which limits its
performance.
Set the server's default credit limit to 32, like the other well-
known implementations, so the out-of-the-shrinkwrap performance of
the Linux server is better.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Kill the timespec juggling and calculate with plain nanoseconds.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Simplify the only user of this data by removing the timespec
conversion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
A lot of code converts either timespecs or ktime_t to
nanoseconds. Provide helper functions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
ktime based conversion function to map a monotonic time stamp to a
different CLOCK.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Provide a helper function which lets us implement ktime_t based
interfaces for real, boot and tai clocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The ktime_t based interfaces are used a lot in performance critical
code pathes. Add ktime_t based data so the interfaces don't have to
convert from the xtime/timespec based data.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
struct timekeeper is quite badly sorted for the hot readout path. Most
time access functions need to load two cache lines.
Rearrange it so ktime_get() and getnstimeofday() are happy with a
single cache line.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>