Commit Graph

7970 Commits

Author SHA1 Message Date
Yinghai Lu
a31bc32760 x86, x2apic: Allow "nox2apic" to disable x2apic mode setup by BIOS
Currently "nox2apic" boot parameter was not enabling x2apic mode if the cpu,
kernel are all capable of enabling x2apic mode and the OS handover
happened in xapic mode.

However If the bios enabled x2apic prior to OS handover, using "nox2apic"
boot parameter had no effect.

If the boot cpu's apicid is < 255, enable "nox2apic" boot parameter to
disable the x2apic mode setup by the bios. This will enable the kernel to
fallback to xapic mode and bringup only the cpu's which has apic-id < 255.

-v2: fix patch error and two compiling warning
	make disable_x2apic to be __init

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/CAE9FiQUeB-3uxJAMiHsz=uPWoFv5Hg1pVepz7aU6YtqOxMC-=Q@mail.gmail.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-12-23 11:01:43 -08:00
Yinghai Lu
fb209bd891 x86, x2apic: Fallback to xapic when BIOS doesn't setup interrupt-remapping
On some of the recent Intel SNB platforms, by default bios is pre-enabling
x2apic mode in the cpu with out setting up interrupt-remapping.
This case was resulting in the kernel to panic as the cpu is already in
x2apic mode but the OS was not able to enable interrupt-remapping (which
is a pre-req for using x2apic capability).

On these platforms all the apic-ids are < 255 and the kernel can fallback to
xapic mode if the bios has not enabled interrupt-remapping (which is
mostly the case if the bios has not exported interrupt-remapping tables to the
OS).

Reported-by: Berck E. Nash <flyboy@gmail.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20111222014632.600418637@sbsiddha-desk.sc.intel.com
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-12-23 11:01:01 -08:00
Yinghai Lu
a35fd28256 x86, acpi: Skip acpi x2apic entries if the x2apic feature is not present
If the x2apic feature is not present (either the cpu is not capable of it
or the user has disabled the feature using boot-parameter etc), ignore the
x2apic MADT and SRAT entries provided by the ACPI tables.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20111222014632.540896503@sbsiddha-desk.sc.intel.com
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-12-23 11:00:50 -08:00
Yinghai Lu
e8524b2f43 x86, apic: Add probe() for apic_flat
Currently we start with the default apic_flat mode and switch to some other
apic model depending on the apic drivers acpi_madt_oem_check() routines and
later followed by the apic drivers probe() routines.

Once we selected non flat mode there was no case where we fall back to
flat mode again.

Upcoming changes allow bios-enabled x2apic mode to be disabled by the OS
if interrupt-remapping etc is not setup properly by the bios.

We now has a case for the apic to fall back to legacy flat mode during
apic driver probe() seqeuence. Add a simple flat_probe() which allows
the apic_flat mode to be the last fallback option.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20111222014632.484984298@sbsiddha-desk.sc.intel.com
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-12-23 11:00:45 -08:00
Robert Richter
2e64694de2 perf/x86: Fix raw_spin_unlock_irqrestore() usage
Use raw_spin_unlock_irqrestore() as equivalent to
raw_spin_lock_irqsave().

Signed-off-by: Robert Richter <robert.richter@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1324646665-13334-1-git-send-email-robert.richter@amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-23 17:57:01 +01:00
Kay Sievers
edbaa603eb driver-core: remove sysdev.h usage.
The sysdev.h file should not be needed by any in-kernel code, so remove
the .h file from these random files that seem to still want to include
it.

The sysdev code will be going away soon, so this include needs to be
removed no matter what.

Cc: Jiandong Zheng <jdzheng@broadcom.com>
Cc: Scott Branden <sbranden@broadcom.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Kukjin Kim <kgene.kim@samsung.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: Daniel Walker <dwalker@fifo99.com>
Cc: Bryan Huntsman <bryanh@codeaurora.org>
Cc: Ben Dooks <ben-linux@fluff.org>
Cc: Wan ZongShun <mcuos.com@gmail.com>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: "Venkatesh Pallipadi
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: Richard Purdie <rpurdie@rpsys.net>
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
2011-12-21 16:26:03 -08:00
Kay Sievers
8a25a2fd12 cpu: convert 'cpu' and 'machinecheck' sysdev_class to a regular subsystem
This moves the 'cpu sysdev_class' over to a regular 'cpu' subsystem
and converts the devices to regular devices. The sysdev drivers are
implemented as subsystem interfaces now.

After all sysdev classes are ported to regular driver core entities, the
sysdev implementation will be entirely removed from the kernel.

Userspace relies on events and generic sysfs subsystem infrastructure
from sysdev devices, which are made available with this conversion.

Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@amd64.org>
Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
Cc: Len Brown <lenb@kernel.org>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-21 14:29:42 -08:00
Steven Rostedt
42181186ad x86: Add counter when debug stack is used with interrupts enabled
Mathieu Desnoyers pointed out a case that can cause issues with
NMIs running on the debug stack:

  int3 -> interrupt -> NMI -> int3

Because the interrupt changes the stack, the NMI will not see that
it preempted the debug stack. Looking deeper at this case,
interrupts only happen when the int3 is from userspace or in
an a location in the exception table (fixup).

  userspace -> int3 -> interurpt -> NMI -> int3

All other int3s that happen in the kernel should be processed
without ever enabling interrupts, as the do_trap() call will
panic the kernel if it is called to process any other location
within the kernel.

Adding a counter around the sections that enable interrupts while
using the debug stack allows the NMI to also check that case.
If the NMI sees that it either interrupted a task using the debug
stack or the debug counter is non-zero, then it will have to
change the IDT table to make the int3 not change stacks (which will
corrupt the stack if it does).

Note, I had to move the debug_usage functions out of processor.h
and into debugreg.h because of the static inlined functions to
inc and dec the debug_usage counter. __get_cpu_var() requires
smp.h which includes processor.h, and would fail to build.

Link: http://lkml.kernel.org/r/1323976535.23971.112.camel@gandalf.stny.rr.com

Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul Turner <pjt@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-21 15:38:56 -05:00
Steven Rostedt
ccd49c2391 x86: Allow NMIs to hit breakpoints in i386
With i386, NMIs and breakpoints use the current stack and they
do not reset the stack pointer to a fix point that might corrupt
a previous NMI or breakpoint (as it does in x86_64). But NMIs are
still not made to be re-entrant, and need to prevent the case that
an NMI hitting a breakpoint (which does an iret), doesn't allow
another NMI to run.

The fix is to let the NMI be in 3 different states:

1) not running
2) executing
3) latched

When no NMI is executing on a given CPU, the state is "not running".
When the first NMI comes in, the state is switched to "executing".
On exit of that NMI, a cmpxchg is performed to switch the state
back to "not running" and if that fails, the NMI is restarted.

If a breakpoint is hit and does an iret, which re-enables NMIs,
and another NMI comes in before the first NMI finished, it will
detect that the state is not in the "not running" state and the
current NMI is nested. In this case, the state is switched to "latched"
to let the interrupted NMI know to restart the NMI handler, and
the nested NMI exits without doing anything.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul Turner <pjt@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-21 15:38:55 -05:00
Steven Rostedt
228bdaa95f x86: Keep current stack in NMI breakpoints
We want to allow NMI handlers to have breakpoints to be able to
remove stop_machine from ftrace, kprobes and jump_labels. But if
an NMI interrupts a current breakpoint, and then it triggers a
breakpoint itself, it will switch to the breakpoint stack and
corrupt the data on it for the breakpoint processing that it
interrupted.

Instead, have the NMI check if it interrupted breakpoint processing
by checking if the stack that is currently used is a breakpoint
stack. If it is, then load a special IDT that changes the IST
for the debug exception to keep the same stack in kernel context.
When the NMI is done, it puts it back.

This way, if the NMI does trigger a breakpoint, it will keep
using the same stack and not stomp on the breakpoint data for
the breakpoint it interrupted.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-21 15:38:55 -05:00
Steven Rostedt
3f3c8b8c4b x86: Add workaround to NMI iret woes
In x86, when an NMI goes off, the CPU goes into an NMI context that
prevents other NMIs to trigger on that CPU. If an NMI is suppose to
trigger, it has to wait till the previous NMI leaves NMI context.
At that time, the next NMI can trigger (note, only one more NMI will
trigger, as only one can be latched at a time).

The way x86 gets out of NMI context is by calling iret. The problem
with this is that this causes problems if the NMI handle either
triggers an exception, or a breakpoint. Both the exception and the
breakpoint handlers will finish with an iret. If this happens while
in NMI context, the CPU will leave NMI context and a new NMI may come
in. As NMI handlers are not made to be re-entrant, this can cause
havoc with the system, not to mention, the nested NMI will write
all over the previous NMI's stack.

Linus Torvalds proposed the following workaround to this problem:

https://lkml.org/lkml/2010/7/14/264

"In fact, I wonder if we couldn't just do a software NMI disable
instead? Hav ea per-cpu variable (in the _core_ percpu areas that get
allocated statically) that points to the NMI stack frame, and just
make the NMI code itself do something like

 NMI entry:
 - load percpu NMI stack frame pointer
 - if non-zero we know we're nested, and should ignore this NMI:
    - we're returning to kernel mode, so return immediately by using
"popf/ret", which also keeps NMI's disabled in the hardware until the
"real" NMI iret happens.
    - before the popf/iret, use the NMI stack pointer to make the NMI
return stack be invalid and cause a fault
  - set the NMI stack pointer to the current stack pointer

 NMI exit (not the above "immediate exit because we nested"):
   clear the percpu NMI stack pointer
   Just do the iret.

Now, the thing is, now the "iret" is atomic. If we had a nested NMI,
we'll take a fault, and that re-does our "delayed" NMI - and NMI's
will stay masked.

And if we didn't have a nested NMI, that iret will now unmask NMI's,
and everything is happy."

I first tried to follow this advice but as I started implementing this
code, a few gotchas showed up.

One, is accessing per-cpu variables in the NMI handler.

The problem is that per-cpu variables use the %gs register to get the
variable for the given CPU. But as the NMI may happen in userspace,
we must first perform a SWAPGS to get to it. The NMI handler already
does this later in the code, but its too late as we have saved off
all the registers and we don't want to do that for a disabled NMI.

Peter Zijlstra suggested to keep all variables on the stack. This
simplifies things greatly and it has the added benefit of cache locality.

Two, faulting on the iret.

I really wanted to make this work, but it was becoming very hacky, and
I never got it to be stable. The iret already had a fault handler for
userspace faulting with bad segment registers, and getting NMI to trigger
a fault and detect it was very tricky. But for strange reasons, the system
would usually take a double fault and crash. I never figured out why
and decided to go with a simple "jmp" approach. The new approach I took
also simplified things.

Finally, the last problem with Linus's approach was to have the nested
NMI handler do a ret instead of an iret to give the first NMI NMI-context
again.

The problem is that ret is much more limited than an iret. I couldn't figure
out how to get the stack back where it belonged. I could have copied the
current stack, pushed the return onto it, but my fear here is that there
may be some place that writes data below the stack pointer. I know that
is not something code should depend on, but I don't want to chance it.
I may add this feature later, but for now, an NMI handler that loses NMI
context will not get it back.

Here's what is done:

When an NMI comes in, the HW pushes the interrupt stack frame onto the
per cpu NMI stack that is selected by the IST.

A special location on the NMI stack holds a variable that is set when
the first NMI handler runs. If this variable is set then we know that
this is a nested NMI and we process the nested NMI code.

There is still a race when this variable is cleared and an NMI comes
in just before the first NMI does the return. For this case, if the
variable is cleared, we also check if the interrupted stack is the
NMI stack. If it is, then we process the nested NMI code.

Why the two tests and not just test the interrupted stack?

If the first NMI hits a breakpoint and loses NMI context, and then it
hits another breakpoint and while processing that breakpoint we get a
nested NMI. When processing a breakpoint, the stack changes to the
breakpoint stack. If another NMI comes in here we can't rely on the
interrupted stack to be the NMI stack.

If the variable is not set and the interrupted task's stack is not the
NMI stack, then we know this is the first NMI and we can process things
normally. But in order to do so, we need to do a few things first.

1) Set the stack variable that tells us that we are in an NMI handler

2) Make two copies of the interrupt stack frame.
   One copy is used to return on iret
   The other is used to restore the first one if we have a nested NMI.

This is what the stack will look like:

	  +-------------------------+
	  | original SS             |
	  | original Return RSP     |
	  | original RFLAGS         |
	  | original CS             |
	  | original RIP            |
	  +-------------------------+
	  | temp storage for rdx    |
	  +-------------------------+
	  | NMI executing variable  |
	  +-------------------------+
	  | Saved SS                |
	  | Saved Return RSP        |
	  | Saved RFLAGS            |
	  | Saved CS                |
	  | Saved RIP               |
	  +-------------------------+
	  | copied SS               |
	  | copied Return RSP       |
	  | copied RFLAGS           |
	  | copied CS               |
	  | copied RIP              |
	  +-------------------------+
	  | pt_regs                 |
	  +-------------------------+

The original stack frame contains what the HW put in when we entered
the NMI.

We store %rdx as a temp variable to use. Both the original HW stack
frame and this %rdx storage will be clobbered by nested NMIs so we
can not rely on them later in the first NMI handler.

The next item is the special stack variable that is set when we execute
the rest of the NMI handler.

Then we have two copies of the interrupt stack. The second copy is
modified by any nested NMIs to let the first NMI know that we triggered
a second NMI (latched) and that we should repeat the NMI handler.

If the first NMI hits an exception or breakpoint that takes it out of
NMI context, if a second NMI comes in before the first one finishes,
it will update the copied interrupt stack to point to a fix up location
to trigger another NMI.

When the first NMI calls iret, it will instead jump to the fix up
location. This fix up location will copy the saved interrupt stack back
to the copy and execute the nmi handler again.

Note, the nested NMI knows enough to check if it preempted a previous
NMI handler while it is in the fixup location. If it has, it will not
modify the copied interrupt stack and will just leave as if nothing
happened. As the NMI handle is about to execute again, there's no reason
to latch now.

To test all this, I forced the NMI handler to call iret and take itself
out of NMI context. I also added assemble code to write to the serial to
make sure that it hits the nested path as well as the fix up path.
Everything seems to be working fine.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul Turner <pjt@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-21 15:38:54 -05:00
Steven Rostedt
1fd466efc8 x86: Document the NMI handler about not using paranoid_exit
Linus cleaned up the NMI handler but it still needs some comments to
explain why it uses save_paranoid but not paranoid_exit. Just to keep
others from adding that in the future, document why it's not used.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-21 15:38:53 -05:00
Linus Torvalds
549c89b98c x86: Do not schedule while still in NMI context
The NMI handler uses the paranoid_exit routine that checks the
NEED_RESCHED flag, and if it is set and the return is for userspace,
then interrupts are enabled, the stack is swapped to the thread's stack,
and schedule is called. The problem with this is that we are still in an
NMI context until an iret is executed. This means that any new NMIs are
now starved until an interrupt or exception occurs and does the iret.

As NMIs can not be masked and can interrupt any location, they are
treated as a special case. NEED_RESCHED should not be set in an NMI
handler. The interruption by the NMI should not disturb the work flow
for scheduling. Any IPI sent to a processor after sending the
NEED_RESCHED would have to wait for the NMI anyway, and after the IPI
finishes the schedule would be called as required.

There is no reason to do anything special leaving an NMI. Remove the
call to paranoid_exit and do a simple return. This not only fixes the
bug of starved NMIs, but it also cleans up the code.

Link: http://lkml.kernel.org/r/CA+55aFzgM55hXTs4griX5e9=v_O+=ue+7Rj0PTD=M7hFYpyULQ@mail.gmail.com

Acked-by: Andi Kleen <ak@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "H. Peter Anvin" <hpa@linux.intel.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul Turner <pjt@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-21 15:38:52 -05:00
Stephane Eranian
9c1497ea59 perf events: Add Intel x86 mapping for PERF_COUNT_HW_REF_CPU_CYCLES
Add event maps for Intel x86 processors (with architected PMU v2 or later).

On AMD, there is frequency scaling but no Turbo. There is no core
cycle event not subject to frequency scaling, therefore we do not
provide a mapping.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1323559734-3488-4-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-21 10:26:39 +01:00
Stephane Eranian
cd09c0c40a perf events: Enable raw event support for Intel unhalted_reference_cycles event
This patch adds the encoding and definitions necessary for the
unhalted_reference_cycles event avaialble since Intel Core 2 processors.

Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1323559734-3488-2-git-send-email-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-21 10:26:32 +01:00
Kevin Winchester
141168c36c x86: Simplify code by removing a !SMP #ifdefs from 'struct cpuinfo_x86'
Several fields in struct cpuinfo_x86 were not defined for the
!SMP case, likely to save space.  However, those fields still
have some meaning for UP, and keeping them allows some #ifdef
removal from other files.  The additional size of the UP kernel
from this change is not significant enough to worry about
keeping up the distinction:

	   text    data     bss     dec     hex filename
	4737168	 506459	 972040	6215667	 5ed7f3	vmlinux.o.before
	4737444	 506459	 972040	6215943	 5ed907	vmlinux.o.after

for a difference of 276 bytes for an example UP config.

If someone wants those 276 bytes back badly then it should
be implemented in a cleaner way.

Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Cc: Steffen Persvold <sp@numascale.com>
Link: http://lkml.kernel.org/r/1324428742-12498-1-git-send-email-kjwinchester@gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-21 09:25:09 +01:00
Ingo Molnar
d87f69a16e Merge commit 'v3.2-rc6' into perf/core
Merge reason: Update with the latest fixes.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-20 20:32:11 +01:00
Ingo Molnar
45aa0663cc Merge branch 'memblock-kill-early_node_map' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc into core/memblock 2011-12-20 12:14:26 +01:00
Clemens Ladisch
13f541c10b x86, dumpstack: Fix code bytes breakage due to missing KERN_CONT
When printing the code bytes in show_registers(), the markers around the
byte at the fault address could make the printk() format string look
like a valid log level and facility code.  This would prevent this byte
from being printed and result in a spurious newline:

[ 7555.765589] Code: 8b 32 e9 94 00 00 00 81 7d 00 ff 00 00 00 0f 87 96 00 00 00 48 8b 83 c0 00 00 00 44 89 e2 44 89 e6 48 89 df 48 8b 80 d8 02 00 00
[ 7555.765683]  8b 48 28 48 89 d0 81 e2 ff 0f 00 00 48 c1 e8 0c 48 c1 e0 04

Add KERN_CONT where needed, and elsewhere in show_registers() for
consistency.

Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Link: http://lkml.kernel.org/r/4EEFA7AE.9020407@ladisch.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-12-19 13:09:56 -08:00
Fernando Luis Vazquez Cao
b49d7d877f x86: Convert per-cpu counter icr_read_retry_count into a member of irq_stat
LAPIC related statistics are grouped inside the per-cpu
structure irq_stat, so there is no need for icr_read_retry_count
to be a standalone per-cpu variable.

This patch moves icr_read_retry_count to where it belongs.

Suggested-y: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Cc: Jörn Engel <joern@logfs.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-18 10:46:48 +01:00
Ingo Molnar
6e5ed27637 Merge commit 'v3.2-rc6' into x86/platform 2011-12-18 10:35:16 +01:00
Ingo Molnar
a228b5892b Merge branch 'mce-inject' of git://git.kernel.org/pub/scm/linux/kernel/git/ras/ras into x86/mce 2011-12-18 09:18:45 +01:00
Chen Gong
2c29d9dd57 x86: add IRQ context simulation in module mce-inject
mce-inject provides a mechanism to simulate errors so that test
scripts can check for correct operation of the kernel without
requiring any specialized hardware to create rare events.

The existing code can simulate events in normal process context
and also in NMI context - but not in IRQ context. This patch
fills that gap.

Link: https://lkml.org/lkml/2011/12/7/537
Signed-off-by: Chen Gong <gong.chen@linux.intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2011-12-16 11:20:02 -08:00
Timo Teräs
cb3f718de8 x86, centaur: Enable cx8 for VIA Eden too
My box with following cpuinfo needs the cx8 enabling still:

vendor_id	: CentaurHauls
cpu family	: 6
model		: 13
model name	: VIA Eden Processor 1200MHz
stepping	: 0
cpu MHz		: 1199.940
cache size	: 128 KB

This fixes valgrind to work on my box (it requires and checks
cx8 from cpuinfo).

Signed-off-by: Timo Teräs <timo.teras@iki.fi>
Link: http://lkml.kernel.org/r/1323961888-10223-1-git-send-email-timo.teras@iki.fi
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2011-12-15 08:04:42 -08:00
Joerg Roedel
969df4b829 x86: Report cpb and eff_freq_ro flags correctly
Add the flags to get rid of the [9] and [10] feature names
in cpuinfo's 'power management' fields and replace them with
meaningful names.

Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Link: http://lkml.kernel.org/r/1323875574-17881-1-git-send-email-joerg.roedel@amd.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-15 08:14:49 +01:00
Ingo Molnar
715a43182a Merge branch 'early-mce-decode' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp into x86/mce 2011-12-15 08:13:40 +01:00
Ingo Molnar
304fb45374 Merge branch 'ucode-verify-size' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp into x86/microcode 2011-12-15 08:12:15 +01:00
Fenghua Yu
29e9bf1841 x86, mce, therm_throt: Don't report power limit and package level thermal throttle events in mcelog
Thermal throttle and power limit events are not defined as MCE errors in x86
architecture and should not generate MCE errors in mcelog.

Current kernel generates fake software defined MCE errors for these events.
This may confuse users because they may think the machine has real MCE errors
while actually only thermal throttle or power limit events happen.

To make it worse, buggy firmware on some platforms may falsely generate
the events. Therefore, kernel reports MCE errors which users think as real
hardware errors. Although the firmware bugs should be fixed, on the other hand,
kernel should not report MCE errors either.

So mcelog is not a good mechanism to report these events. To report the events, we count them in respective counters (core_power_limit_count,
package_power_limit_count, core_throttle_count, and package_throttle_count) in
/sys/devices/system/cpu/cpu#/thermal_throttle/. Users can check the counters
for each event on each CPU. Please note that all CPU's on one package report
duplicate counters. It's user application's responsibity to retrieve a package
level counter for one package.

This patch doesn't report package level power limit, core level power limit, and
package level thermal throttle events in mcelog. When the events happen, only
report them in respective counters in sysfs.

Since core level thermal throttle has been legacy code in kernel for a while and
users accepted it as MCE error in mcelog, core level thermal throttle is still
reported in mcelog. In the mean time, the event is counted in a counter in sysfs
as well.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: Borislav Petkov <bp@amd64.org>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20111215001945.GA21009@linux-os.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-12-14 16:25:26 -08:00
Borislav Petkov
0937195715 x86, MCE: Drain mcelog buffer
Add a function which drains whatever MCEs were logged in already during
boot and before the decoder chains were registered.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-14 12:50:13 +01:00
Borislav Petkov
3653ada5d3 x86, mce: Add wrappers for registering on the decode chain
No functionality change, this is done so that in a follow-on patch all
queued-up MCEs can be decoded after registering on the chain.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-14 12:50:12 +01:00
Borislav Petkov
597e11a367 x86, microcode, AMD: Update copyrights
Add Andreas and me as current maintainers.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-14 12:46:52 +01:00
Borislav Petkov
d733689ad5 x86, microcode, AMD: Exit early on success
Once we've found and validated the ucode patch for the current CPU,
there's no need to iterate over the remaining patches in the binary
image. Exit then and save us a bunch of cycles.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-14 12:46:52 +01:00
Borislav Petkov
be62adb492 x86, microcode, AMD: Simplify ucode verification
Basically, what we did until now is take out a chunk of the firmware
image, vmalloc space for it and inspect it before application. And
repeat.

This patch changes all that so that we look at each ucode patch from
the firmware image, check it for sanity and copy it to local buffer for
application only once and if it passes all checks. Thus, vmalloc-ing for
each piece is gone, we can do proper size checking only of the patch
which is destined for the CPU of the current machine instead of each
single patch, which is clearly wrong.

Oh yeah, simplify and cleanup the code while at it, along with adding
comments as to what actually happens.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-14 12:46:51 +01:00
Borislav Petkov
96b0ee4588 x86, microcode, AMD: Add a reusable buffer
Add a simple 4K page which gets allocated on driver init and freed on
driver exit instead of vmalloc'ing small buffers for each ucode patch.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-14 12:46:50 +01:00
Borislav Petkov
f72c1a5765 x86, microcode, AMD: Add a vendor-specific exit function
This will be used to do cleanup work before the driver exits.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
2011-12-14 12:46:47 +01:00
Fernando Luis Vázquez Cao
346b46be5f x86: Add per-cpu stat counter for APIC ICR read tries
In the IPI delivery slow path (NMI delivery) we retry the ICR
read to check for delivery completion a limited number of times.

[ The reason for the limited retries is that some of the places
  where it is used (cpu boot, kdump, etc) IPI delivery might not
  succeed (due to a firmware bug or system crash, for example)
  and in such a case it is better to give up and resume
  execution of other code. ]

This patch adds a new entry to /proc/interrupts, RTR, which
tells user space the number of times we retried the ICR read in
the IPI delivery slow path.

This should give some insight into how well the APIC
message delivery hardware is working - if the counts are way
too large then we are hitting a (very-) slow path way too
often.

Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Cc: Jörn Engel <joern@logfs.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/n/tip-vzsp20lo2xdzh5f70g0eis2s@git.kernel.org
[ extended the changelog ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-14 09:32:05 +01:00
Ingo Molnar
919b83452b Merge branch 'rcu/next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu 2011-12-14 08:16:43 +01:00
Matt Fleming
291f36325f x86, efi: EFI boot stub support
There is currently a large divide between kernel development and the
development of EFI boot loaders. The idea behind this patch is to give
the kernel developers full control over the EFI boot process. As
H. Peter Anvin put it,

"The 'kernel carries its own stub' approach been very successful in
dealing with BIOS, and would make a lot of sense to me for EFI as
well."

This patch introduces an EFI boot stub that allows an x86 bzImage to
be loaded and executed by EFI firmware. The bzImage appears to the
firmware as an EFI application. Luckily there are enough free bits
within the bzImage header so that it can masquerade as an EFI
application, thereby coercing the EFI firmware into loading it and
jumping to its entry point. The beauty of this masquerading approach
is that both BIOS and EFI boot loaders can still load and run the same
bzImage, thereby allowing a single kernel image to work in any boot
environment.

The EFI boot stub supports multiple initrds, but they must exist on
the same partition as the bzImage. Command-line arguments for the
kernel can be appended after the bzImage name when run from the EFI
shell, e.g.

Shell> bzImage console=ttyS0 root=/dev/sdb initrd=initrd.img

v7:
 - Fix checkpatch warnings.

v6:

 - Try to allocate initrd memory just below hdr->inird_addr_max.

v5:

 - load_options_size is UTF-16, which needs dividing by 2 to convert
   to the corresponding ASCII size.

v4:

 - Don't read more than image->load_options_size

v3:

 - Fix following warnings when compiling CONFIG_EFI_STUB=n

   arch/x86/boot/tools/build.c: In function ‘main’:
   arch/x86/boot/tools/build.c:138:24: warning: unused variable ‘pe_header’
   arch/x86/boot/tools/build.c:138:15: warning: unused variable ‘file_sz’

 - As reported by Matthew Garrett, some Apple machines have GOPs that
   don't have hardware attached. We need to weed these out by
   searching for ones that handle the PCIIO protocol.

 - Don't allocate memory if no initrds are on cmdline
 - Don't trust image->load_options_size

Maarten Lankhorst noted:
 - Don't strip first argument when booted from efibootmgr
 - Don't allocate too much memory for cmdline
 - Don't update cmdline_size, the kernel considers it read-only
 - Don't accept '\n' for initrd names

v2:

 - File alignment was too large, was 8192 should be 512. Reported by
   Maarten Lankhorst on LKML.
 - Added UGA support for graphics
 - Use VIDEO_TYPE_EFI instead of hard-coded number.
 - Move linelength assignment until after we've assigned depth
 - Dynamically fill out AddressOfEntryPoint in tools/build.c
 - Don't use magic number for GDT/TSS stuff. Requested by Andi Kleen
 - The bzImage may need to be relocated as it may have been loaded at
   a high address address by the firmware. This was required to get my
   macbook booting because the firmware loaded it at 0x7cxxxxxx, which
   triggers this error in decompress_kernel(),

	if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff))
		error("Destination address too large");

Cc: Mike Waychison <mikew@google.com>
Cc: Matthew Garrett <mjg@redhat.com>
Tested-by: Henrik Rydberg <rydberg@euromail.se>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1321383097.2657.9.camel@mfleming-mobl1.ger.corp.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-12-12 14:26:10 -08:00
Keith Packard
e1ad783b12 Revert "x86, efi: Calling __pa() with an ioremap()ed address is invalid"
This hangs my MacBook Air at boot time; I get no console
messages at all. I reverted this on top of -rc5 and my machine
boots again.

This reverts commit e8c7106280.

Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Keith Packard <keithp@keithp.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg@redhat.com>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Huang Ying <huang.ying.caritas@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1321621751-3650-1-git-send-email-matt@console
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-12 18:25:56 +01:00
Frederic Weisbecker
1268fbc746 nohz: Remove tick_nohz_idle_enter_norcu() / tick_nohz_idle_exit_norcu()
Those two APIs were provided to optimize the calls of
tick_nohz_idle_enter() and rcu_idle_enter() into a single
irq disabled section. This way no interrupt happening in-between would
needlessly process any RCU job.

Now we are talking about an optimization for which benefits
have yet to be measured. Let's start simple and completely decouple
idle rcu and dyntick idle logics to simplify.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-12-11 10:31:57 -08:00
Frederic Weisbecker
98ad1cc14a x86: Call idle notifier after irq_enter()
Interrupts notify the idle exit state before calling irq_enter().
But the notifier code calls rcu_read_lock() and this is not
allowed while rcu is in an extended quiescent state. We need
to wait for irq_enter() -> rcu_idle_exit() to be called before
doing so otherwise this results in a grumpy RCU:

[    0.099991] WARNING: at include/linux/rcupdate.h:194 __atomic_notifier_call_chain+0xd2/0x110()
[    0.099991] Hardware name: AMD690VM-FMH
[    0.099991] Modules linked in:
[    0.099991] Pid: 0, comm: swapper Not tainted 3.0.0-rc6+ #255
[    0.099991] Call Trace:
[    0.099991]  <IRQ>  [<ffffffff81051c8a>] warn_slowpath_common+0x7a/0xb0
[    0.099991]  [<ffffffff81051cd5>] warn_slowpath_null+0x15/0x20
[    0.099991]  [<ffffffff817d6fa2>] __atomic_notifier_call_chain+0xd2/0x110
[    0.099991]  [<ffffffff817d6ff1>] atomic_notifier_call_chain+0x11/0x20
[    0.099991]  [<ffffffff81001873>] exit_idle+0x43/0x50
[    0.099991]  [<ffffffff81020439>] smp_apic_timer_interrupt+0x39/0xa0
[    0.099991]  [<ffffffff817da253>] apic_timer_interrupt+0x13/0x20
[    0.099991]  <EOI>  [<ffffffff8100ae67>] ? default_idle+0xa7/0x350
[    0.099991]  [<ffffffff8100ae65>] ? default_idle+0xa5/0x350
[    0.099991]  [<ffffffff8100b19b>] amd_e400_idle+0x8b/0x110
[    0.099991]  [<ffffffff810cb01f>] ? rcu_enter_nohz+0x8f/0x160
[    0.099991]  [<ffffffff810019a0>] cpu_idle+0xb0/0x110
[    0.099991]  [<ffffffff817a7505>] rest_init+0xe5/0x140
[    0.099991]  [<ffffffff817a7468>] ? rest_init+0x48/0x140
[    0.099991]  [<ffffffff81cc5ca3>] start_kernel+0x3d1/0x3dc
[    0.099991]  [<ffffffff81cc5321>] x86_64_start_reservations+0x131/0x135
[    0.099991]  [<ffffffff81cc5412>] x86_64_start_kernel+0xed/0xf4

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Henroid <andrew.d.henroid@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-12-11 10:31:38 -08:00
Frederic Weisbecker
e37e112de3 x86: Enter rcu extended qs after idle notifier call
The idle notifier, called by enter_idle(), enters into rcu read
side critical section but at that time we already switched into
the RCU-idle window (rcu_idle_enter() has been called). And it's
illegal to use rcu_read_lock() in that state.

This results in rcu reporting its bad mood:

[    1.275635] WARNING: at include/linux/rcupdate.h:194 __atomic_notifier_call_chain+0xd2/0x110()
[    1.275635] Hardware name: AMD690VM-FMH
[    1.275635] Modules linked in:
[    1.275635] Pid: 0, comm: swapper Not tainted 3.0.0-rc6+ #252
[    1.275635] Call Trace:
[    1.275635]  [<ffffffff81051c8a>] warn_slowpath_common+0x7a/0xb0
[    1.275635]  [<ffffffff81051cd5>] warn_slowpath_null+0x15/0x20
[    1.275635]  [<ffffffff817d6f22>] __atomic_notifier_call_chain+0xd2/0x110
[    1.275635]  [<ffffffff817d6f71>] atomic_notifier_call_chain+0x11/0x20
[    1.275635]  [<ffffffff810018a0>] enter_idle+0x20/0x30
[    1.275635]  [<ffffffff81001995>] cpu_idle+0xa5/0x110
[    1.275635]  [<ffffffff817a7465>] rest_init+0xe5/0x140
[    1.275635]  [<ffffffff817a73c8>] ? rest_init+0x48/0x140
[    1.275635]  [<ffffffff81cc5ca3>] start_kernel+0x3d1/0x3dc
[    1.275635]  [<ffffffff81cc5321>] x86_64_start_reservations+0x131/0x135
[    1.275635]  [<ffffffff81cc5412>] x86_64_start_kernel+0xed/0xf4
[    1.275635] ---[ end trace a22d306b065d4a66 ]---

Fix this by entering rcu extended quiescent state later, just before
the CPU goes to sleep.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-12-11 10:31:37 -08:00
Frederic Weisbecker
2bbb6817c0 nohz: Allow rcu extended quiescent state handling seperately from tick stop
It is assumed that rcu won't be used once we switch to tickless
mode and until we restart the tick. However this is not always
true, as in x86-64 where we dereference the idle notifiers after
the tick is stopped.

To prepare for fixing this, add two new APIs:
tick_nohz_idle_enter_norcu() and tick_nohz_idle_exit_norcu().

If no use of RCU is made in the idle loop between
tick_nohz_enter_idle() and tick_nohz_exit_idle() calls, the arch
must instead call the new *_norcu() version such that the arch doesn't
need to call rcu_idle_enter() and rcu_idle_exit().

Otherwise the arch must call tick_nohz_enter_idle() and
tick_nohz_exit_idle() and also call explicitly:

- rcu_idle_enter() after its last use of RCU before the CPU is put
to sleep.
- rcu_idle_exit() before the first use of RCU after the CPU is woken
up.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: David Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-12-11 10:31:36 -08:00
Frederic Weisbecker
280f06774a nohz: Separate out irq exit and idle loop dyntick logic
The tick_nohz_stop_sched_tick() function, which tries to delay
the next timer tick as long as possible, can be called from two
places:

- From the idle loop to start the dytick idle mode
- From interrupt exit if we have interrupted the dyntick
idle mode, so that we reprogram the next tick event in
case the irq changed some internal state that requires this
action.

There are only few minor differences between both that
are handled by that function, driven by the ts->inidle
cpu variable and the inidle parameter. The whole guarantees
that we only update the dyntick mode on irq exit if we actually
interrupted the dyntick idle mode, and that we enter in RCU extended
quiescent state from idle loop entry only.

Split this function into:

- tick_nohz_idle_enter(), which sets ts->inidle to 1, enters
dynticks idle mode unconditionally if it can, and enters into RCU
extended quiescent state.

- tick_nohz_irq_exit() which only updates the dynticks idle mode
when ts->inidle is set (ie: if tick_nohz_idle_enter() has been called).

To maintain symmetry, tick_nohz_restart_sched_tick() has been renamed
into tick_nohz_idle_exit().

This simplifies the code and micro-optimize the irq exit path (no need
for local_irq_save there). This also prepares for the split between
dynticks and rcu extended quiescent state logics. We'll need this split to
further fix illegal uses of RCU in extended quiescent states in the idle
loop.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: David Miller <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-12-11 10:31:35 -08:00
Matt Fleming
f7d7d01be5 x86: Don't use magic strings for EFI loader signature
Introduce a symbol, EFI_LOADER_SIGNATURE instead of using the magic
strings, which also helps to reduce the amount of ifdeffery.

Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1318848017-12301-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-12-09 17:35:38 -08:00
Matt Fleming
e8c7106280 x86, efi: Calling __pa() with an ioremap()ed address is invalid
If we encounter an efi_memory_desc_t without EFI_MEMORY_WB set
in ->attribute we currently call set_memory_uc(), which in turn
calls __pa() on a potentially ioremap'd address.

On CONFIG_X86_32 this is invalid, resulting in the following
oops on some machines:

  BUG: unable to handle kernel paging request at f7f22280
  IP: [<c10257b9>] reserve_ram_pages_type+0x89/0x210
  [...]

  Call Trace:
   [<c104f8ca>] ? page_is_ram+0x1a/0x40
   [<c1025aff>] reserve_memtype+0xdf/0x2f0
   [<c1024dc9>] set_memory_uc+0x49/0xa0
   [<c19334d0>] efi_enter_virtual_mode+0x1c2/0x3aa
   [<c19216d4>] start_kernel+0x291/0x2f2
   [<c19211c7>] ? loglevel+0x1b/0x1b
   [<c19210bf>] i386_start_kernel+0xbf/0xc8

A better approach to this problem is to map the memory region
with the correct attributes from the start, instead of modifying
it after the fact. The uncached case can be handled by
ioremap_nocache() and the cached by ioremap_cache().

Despite first impressions, it's not possible to use
ioremap_cache() to map all cached memory regions on
CONFIG_X86_64 because EFI_RUNTIME_SERVICES_DATA regions really
don't like being mapped into the vmalloc space, as detailed in
the following bug report,

	https://bugzilla.redhat.com/show_bug.cgi?id=748516

Therefore, we need to ensure that any EFI_RUNTIME_SERVICES_DATA
regions are covered by the direct kernel mapping table on
CONFIG_X86_64. To accomplish this we now map E820_RESERVED_EFI
regions via the direct kernel mapping with the initial call to
init_memory_mapping() in setup_arch(), whereas previously these
regions wouldn't be mapped if they were after the last E820_RAM
region until efi_ioremap() was called. Doing it this way allows
us to delete efi_ioremap() completely.

Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg@redhat.com>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Huang Ying <huang.ying.caritas@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1321621751-3650-1-git-send-email-matt@console-pimps.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-09 08:32:26 +01:00
Borislav Petkov
d059f24a96 x86, CPU: Drop superfluous get_cpu_cap() prototype
The get_cpu_cap() external function prototype was declared twice
so lose one of them.

Clean up the header guard while at it.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1322594083-14507-1-git-send-email-bp@amd64.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-12-09 08:00:53 +01:00
Mark Langsdorf
2ded6e6a94 x86, hpet: Immediately disable HPET timer 1 if rtc irq is masked
When HPET is operating in RTC mode, the TN_ENABLE bit on timer1
controls whether the HPET or the RTC delivers interrupts to irq8. When
the system goes into suspend, the RTC driver sends a signal to the
HPET driver so that the HPET releases control of irq8, allowing the
RTC to wake the system from suspend. The switchover is accomplished by
a write to the HPET configuration registers which currently only
occurs while servicing the HPET interrupt.

On some systems, I have seen the system suspend before an HPET
interrupt occurs, preventing the write to the HPET configuration
register and leaving the HPET in control of the irq8. As the HPET is
not active during suspend, it does not generate a wake signal and RTC
alarms do not work.

This patch forces the HPET driver to immediately transfer control of
the irq8 channel to the RTC instead of waiting until the next
interrupt event.

Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>
Link: http://lkml.kernel.org/r/20111118153306.GB16319@alberich.amd.com
Tested-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
2011-12-08 21:47:22 +01:00
Tejun Heo
1aadc0560f memblock: s/memblock_analyze()/memblock_allow_resize()/ and update users
The only function of memblock_analyze() is now allowing resize of
memblock region arrays.  Rename it to memblock_allow_resize() and
update its users.

* The following users remain the same other than renaming.

  arm/mm/init.c::arm_memblock_init()
  microblaze/kernel/prom.c::early_init_devtree()
  powerpc/kernel/prom.c::early_init_devtree()
  openrisc/kernel/prom.c::early_init_devtree()
  sh/mm/init.c::paging_init()
  sparc/mm/init_64.c::paging_init()
  unicore32/mm/init.c::uc32_memblock_init()

* In the following users, analyze was used to update total size which
  is no longer necessary.

  powerpc/kernel/machine_kexec.c::reserve_crashkernel()
  powerpc/kernel/prom.c::early_init_devtree()
  powerpc/mm/init_32.c::MMU_init()
  powerpc/mm/tlb_nohash.c::__early_init_mmu()  
  powerpc/platforms/ps3/mm.c::ps3_mm_add_memory()
  powerpc/platforms/embedded6xx/wii.c::wii_memory_fixups()
  sh/kernel/machine_kexec.c::reserve_crashkernel()

* x86/kernel/e820.c::memblock_x86_fill() was directly setting
  memblock_can_resize before populating memblock and calling analyze
  afterwards.  Call memblock_allow_resize() before start populating.

memblock_can_resize is now static inside memblock.c.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: "H. Peter Anvin" <hpa@zytor.com>
2011-12-08 10:22:08 -08:00
Tejun Heo
fe091c208a memblock: Kill memblock_init()
memblock_init() initializes arrays for regions and memblock itself;
however, all these can be done with struct initializers and
memblock_init() can be removed.  This patch kills memblock_init() and
initializes memblock with struct initializer.

The only difference is that the first dummy entries don't have .nid
set to MAX_NUMNODES initially.  This doesn't cause any behavior
difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: "H. Peter Anvin" <hpa@zytor.com>
2011-12-08 10:22:07 -08:00