Since the xtime lock was split into the timekeeping lock and
the jiffies lock, we no longer need to call update_wall_time()
while holding the jiffies lock.
Thus, this patch splits update_wall_time() out from do_timer().
This allows us to get away from calling clock_was_set_delayed()
in update_wall_time() and instead use the standard clock_was_set()
call that previously would deadlock, as it causes the jiffies lock
to be acquired.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
A few functions use remote per CPU access APIs when they
deal with local values.
Just do the right conversion to improve performance, code
readability and debug checks.
While at it, lets extend some of these function names with *_this_cpu()
suffix in order to display their purpose more clearly.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
If CONFIG_NO_HZ=n tick_nohz_get_sleep_length() returns NSEC_PER_SEC/HZ.
If CONFIG_NO_HZ=y and the nohz functionality is disabled via the
command line option "nohz=off" or not enabled due to missing hardware
support, then tick_nohz_get_sleep_length() returns 0. That happens
because ts->sleep_length is never set in that case.
Set it to NSEC_PER_SEC/HZ when the NOHZ mode is inactive.
Reported-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
RCU and the fine grained idle time accounting functions check
tick_nohz_enabled. But that variable is merily telling that NOHZ has
been enabled in the config and not been disabled on the command line.
But it does not tell anything about nohz being active. That's what all
this should check for.
Matthew reported, that the idle accounting on his old P1 machine
showed bogus values, when he enabled NOHZ in the config and did not
disable it on the kernel command line. The reason is that his machine
uses (refined) jiffies as a clocksource which explains why the "fine"
grained accounting went into lala land, because it depends on when the
system goes and leaves idle relative to the jiffies increment.
Provide a tick_nohz_active indicator and let RCU and the accounting
code use this instead of tick_nohz_enable.
Reported-and-tested-by: Matthew Whitehead <tedheadster@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: john.stultz@linaro.org
Cc: mwhitehe@redhat.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1311132052240.30673@ionos.tec.linutronix.de
tick_nohz_full_kick_all() is useful to notify all full dynticks
CPUs that there is a system state change to checkout before
re-evaluating the need for the tick.
Unfortunately this is implemented using smp_call_function_many()
that ignores the local CPU. This CPU also needs to re-evaluate
the tick.
on_each_cpu_mask() is not useful either because we don't want to
re-evaluate the tick state in place but asynchronously from an IPI
to avoid messing up with any random locking scenario.
So lets call tick_nohz_full_kick() from tick_nohz_full_kick_all()
so that the usual irq work takes care of it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1375460996-16329-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull nohz improvements from Frederic Weisbecker:
" It mostly contains fixes and full dynticks off-case optimizations. I believe that
distros want to enable this feature so it seems important to optimize the case
where the "nohz_full=" parameter is empty. ie: I'm trying to remove any performance
regression that comes with NO_HZ_FULL=y when the feature is not used.
This patchset improves the current situation a lot (off-case appears to be around 11% faster
with hackbench, although I guess it may vary depending on the configuration but it should be
significantly faster in any case) now there is still some work to do: I can still observe a
remaining loss of 1.6% throughput seen with hackbench compared to CONFIG_NO_HZ_FULL=n. "
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The context tracking subsystem has the ability to selectively
enable the tracking on any defined subset of CPU. This means that
we can define a CPU range that doesn't run the context tracking
and another range that does.
Now what we want in practice is to enable the tracking on full
dynticks CPUs only. In order to perform this, we just need to pass
our full dynticks CPU range selection from the full dynticks
subsystem to the context tracking.
This way we can spare the overhead of RCU user extended quiescent
state and vtime maintainance on the CPUs that are outside the
full dynticks range. Just keep in mind the raw context tracking
itself is still necessary everywhere.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
If the user enables CONFIG_NO_HZ_FULL and runs the kernel on a machine
with an unstable TSC, it will produce a WARN_ON dump as well as taint
the kernel. This is a bit extreme for a kernel that just enables a
feature but doesn't use it.
The warning should only happen if the user tries to use the feature by
either adding nohz_full to the kernel command line, or by enabling
CONFIG_NO_HZ_FULL_ALL that makes nohz used on all CPUs at boot up. Note,
this second feature should not (yet) be used by distros or anyone that
doesn't care if NO_HZ is used or not.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.
[1] https://lkml.org/lkml/2013/5/20/589
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Pull nohz updates/fixes from Frederic Weisbecker:
' Note that "watchdog: Boot-disable by default on full dynticks" is a temporary
solution to solve the issue with the watchdog that prevents the tick from
stopping. This is to make sure that 3.11 doesn't have that problem as several
people complained about it.
A proper and longer term solution has been proposed by Peterz:
http://lkml.kernel.org/r/20130618103632.GO3204@twins.programming.kicks-ass.net
'
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In tick_nohz_cpu_down_callback() if the cpu is the one handling
timekeeping, we must return something that stops the CPU_DOWN_PREPARE
notifiers and then start notify CPU_DOWN_FAILED on the already called
notifier call backs.
However traditional errno values are not handled by the notifier unless
these are encapsulated using errno_to_notifier().
Hence the current -EINVAL is misinterpreted and converted to junk after
notifier_to_errno(), leaving the notifier subsystem to random behaviour
such as eventually allowing the cpu to go down.
Fix this by using the standard NOTIFY_BAD instead.
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull timer fixes from Thomas Gleixner:
- Cure for not using zalloc in the first place, which leads to random
crashes with CPUMASK_OFF_STACK.
- Revert a user space visible change which broke udev
- Add a missing cpu_online early return introduced by the new full
dyntick conversions
- Plug a long standing race in the timer wheel cpu hotplug code.
Sigh...
- Cleanup NOHZ per cpu data on cpu down to prevent stale data on cpu
up.
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Revert ALWAYS_USE_PERSISTENT_CLOCK compile time optimizaitons
timer: Don't reinitialize the cpu base lock during CPU_UP_PREPARE
tick: Don't invoke tick_nohz_stop_sched_tick() if the cpu is offline
tick: Cleanup NOHZ per cpu data on cpu down
tick: Use zalloc_cpumask_var for allocating offstack cpumasks
Prarit reported a crash on CPU offline/online. The reason is that on
CPU down the NOHZ related per cpu data of the dead cpu is not cleaned
up. If at cpu online an interrupt happens before the per cpu tick
device is registered the irq_enter() check potentially sees stale data
and dereferences a NULL pointer.
Cleanup the data after the cpu is dead.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Cc: Mike Galbraith <bitbucket@online.de>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305031451561.2886@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull 'full dynticks' support from Ingo Molnar:
"This tree from Frederic Weisbecker adds a new, (exciting! :-) core
kernel feature to the timer and scheduler subsystems: 'full dynticks',
or CONFIG_NO_HZ_FULL=y.
This feature extends the nohz variable-size timer tick feature from
idle to busy CPUs (running at most one task) as well, potentially
reducing the number of timer interrupts significantly.
This feature got motivated by real-time folks and the -rt tree, but
the general utility and motivation of full-dynticks runs wider than
that:
- HPC workloads get faster: CPUs running a single task should be able
to utilize a maximum amount of CPU power. A periodic timer tick at
HZ=1000 can cause a constant overhead of up to 1.0%. This feature
removes that overhead - and speeds up the system by 0.5%-1.0% on
typical distro configs even on modern systems.
- Real-time workload latency reduction: CPUs running critical tasks
should experience as little jitter as possible. The last remaining
source of kernel-related jitter was the periodic timer tick.
- A single task executing on a CPU is a pretty common situation,
especially with an increasing number of cores/CPUs, so this feature
helps desktop and mobile workloads as well.
The cost of the feature is mainly related to increased timer
reprogramming overhead when a CPU switches its tick period, and thus
slightly longer to-idle and from-idle latency.
Configuration-wise a third mode of operation is added to the existing
two NOHZ kconfig modes:
- CONFIG_HZ_PERIODIC: [formerly !CONFIG_NO_HZ], now explicitly named
as a config option. This is the traditional Linux periodic tick
design: there's a HZ tick going on all the time, regardless of
whether a CPU is idle or not.
- CONFIG_NO_HZ_IDLE: [formerly CONFIG_NO_HZ=y], this turns off the
periodic tick when a CPU enters idle mode.
- CONFIG_NO_HZ_FULL: this new mode, in addition to turning off the
tick when a CPU is idle, also slows the tick down to 1 Hz (one
timer interrupt per second) when only a single task is running on a
CPU.
The .config behavior is compatible: existing !CONFIG_NO_HZ and
CONFIG_NO_HZ=y settings get translated to the new values, without the
user having to configure anything. CONFIG_NO_HZ_FULL is turned off by
default.
This feature is based on a lot of infrastructure work that has been
steadily going upstream in the last 2-3 cycles: related RCU support
and non-periodic cputime support in particular is upstream already.
This tree adds the final pieces and activates the feature. The pull
request is marked RFC because:
- it's marked 64-bit only at the moment - the 32-bit support patch is
small but did not get ready in time.
- it has a number of fresh commits that came in after the merge
window. The overwhelming majority of commits are from before the
merge window, but still some aspects of the tree are fresh and so I
marked it RFC.
- it's a pretty wide-reaching feature with lots of effects - and
while the components have been in testing for some time, the full
combination is still not very widely used. That it's default-off
should reduce its regression abilities and obviously there are no
known regressions with CONFIG_NO_HZ_FULL=y enabled either.
- the feature is not completely idempotent: there is no 100%
equivalent replacement for a periodic scheduler/timer tick. In
particular there's ongoing work to map out and reduce its effects
on scheduler load-balancing and statistics. This should not impact
correctness though, there are no known regressions related to this
feature at this point.
- it's a pretty ambitious feature that with time will likely be
enabled by most Linux distros, and we'd like you to make input on
its design/implementation, if you dislike some aspect we missed.
Without flaming us to crisp! :-)
Future plans:
- there's ongoing work to reduce 1Hz to 0Hz, to essentially shut off
the periodic tick altogether when there's a single busy task on a
CPU. We'd first like 1 Hz to be exposed more widely before we go
for the 0 Hz target though.
- once we reach 0 Hz we can remove the periodic tick assumption from
nr_running>=2 as well, by essentially interrupting busy tasks only
as frequently as the sched_latency constraints require us to do -
once every 4-40 msecs, depending on nr_running.
I am personally leaning towards biting the bullet and doing this in
v3.10, like the -rt tree this effort has been going on for too long -
but the final word is up to you as usual.
More technical details can be found in Documentation/timers/NO_HZ.txt"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits)
sched: Keep at least 1 tick per second for active dynticks tasks
rcu: Fix full dynticks' dependency on wide RCU nocb mode
nohz: Protect smp_processor_id() in tick_nohz_task_switch()
nohz_full: Add documentation.
cputime_nsecs: use math64.h for nsec resolution conversion helpers
nohz: Select VIRT_CPU_ACCOUNTING_GEN from full dynticks config
nohz: Reduce overhead under high-freq idling patterns
nohz: Remove full dynticks' superfluous dependency on RCU tree
nohz: Fix unavailable tick_stop tracepoint in dynticks idle
nohz: Add basic tracing
nohz: Select wide RCU nocb for full dynticks
nohz: Disable the tick when irq resume in full dynticks CPU
nohz: Re-evaluate the tick for the new task after a context switch
nohz: Prepare to stop the tick on irq exit
nohz: Implement full dynticks kick
nohz: Re-evaluate the tick from the scheduler IPI
sched: New helper to prevent from stopping the tick in full dynticks
sched: Kick full dynticks CPU that have more than one task enqueued.
perf: New helper to prevent full dynticks CPUs from stopping tick
perf: Kick full dynticks CPU if events rotation is needed
...
The scheduler doesn't yet fully support environments
with a single task running without a periodic tick.
In order to ensure we still maintain the duties of scheduler_tick(),
keep at least 1 tick per second.
This makes sure that we keep the progression of various scheduler
accounting and background maintainance even with a very low granularity.
Examples include cpu load, sched average, CFS entity vruntime,
avenrun and events such as load balancing, amongst other details
handled in sched_class::task_tick().
This limitation will be removed in the future once we get
these individual items to work in full dynticks CPUs.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
One testbox of mine (Intel Nehalem, 16-way) uses MWAIT for its idle routine,
which apparently can break out of its idle loop rather frequently, with
high frequency.
In that case NO_HZ_FULL=y kernels show high ksoftirqd overhead and constant
context switching, because tick_nohz_stop_sched_tick() will, if
delta_jiffies == 0, mis-identify this as a timer event - activating the
TIMER_SOFTIRQ, which wakes up ksoftirqd.
Fix this by treating delta_jiffies == 0 the same way we treat other short
wakeups, delta_jiffies == 1.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The timekeeping job must be able to run early on boot
because there may be some pre-SMP (and thus pre-initcalls )
components that rely on it. The IO-APIC is one such users
as it tests the timer health by watching jiffies progression.
Given that it happens before we know the initial online
set, we can't rely on it to select a timekeeper. We need
one before SMP time otherwise we simply crash on boot.
To fix this and keep things simple for now, force the boot CPU
outside of the full dynticks range in any case and do this early
on kernel parameter parsing time.
We might want a trickier solution later, expecially for aSMP
architectures that need to assign housekeeping tasks to arbitrary
low power CPUs.
But it's still first pass KISS time for now.
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
We are planning to convert the dynticks Kconfig options layout
into a choice menu. The user must be able to easily pick
any of the following implementations: constant periodic tick,
idle dynticks, full dynticks.
As this implies a mutual exclusion, the two dynticks implementions
need to converge on the selection of a common Kconfig option in order
to ease the sharing of a common infrastructure.
It would thus seem pretty natural to reuse CONFIG_NO_HZ to
that end. It already implements all the idle dynticks code
and the full dynticks depends on all that code for now.
So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ.
On the other hand we want to stay backward compatible: if
CONFIG_NO_HZ is set in an older config file, we want to
enable CONFIG_NO_HZ_IDLE by default.
But we can't afford both at the same time or we run into
a circular dependency:
1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select
CONFIG_NO_HZ
2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE
We might be able to support that from Kconfig/Kbuild but it
may not be wise to introduce such a confusing behaviour.
So to solve this, create a new CONFIG_NO_HZ_COMMON option
which gathers the common code between idle and full dynticks
(that common code for now is simply the idle dynticks code)
and select it from their referring Kconfig.
Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ
to it for backward compatibility.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>