Tips of Loongson's CPU hotplug:
1, To fully shutdown a core in Loongson 3, the target core should go to
CKSEG1 and flush all L1 cache entries at first. Then, another core
(usually Core 0) can safely disable the clock of the target core. So
play_dead() call loongson3_play_dead() via CKSEG1 (both uncached and
unmmaped).
2, The default clocksource of Loongson is MIPS. Since clock source is a
global device, timekeeping need the CP0' Count registers of each core
be synchronous. Thus, when a core is up, we use a SMP_ASK_C0COUNT IPI
to ask Core-0's Count.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6639
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
IPI registers of Loongson-3 include IPI_SET, IPI_CLEAR, IPI_STATUS,
IPI_EN and IPI_MAILBOX_BUF. Each bit of IPI_STATUS indicate a type of
IPI and IPI_EN indicate whether the IPI is enabled. The sender write 1
to IPI_SET bits generate IPIs in IPI_STATUS, and receiver write 1 to
bits of IPI_CLEAR to clear IPIs. IPI_MAILBOX_BUF are used to deliver
more information about IPIs.
Why we change code in arch/mips/loongson/common/setup.c?
If without this change, when SMP configured, system cannot boot since
it hang at printk() in cgroup_init_early(). The root cause is:
console_trylock()
\-->down_trylock(&console_sem)
\-->raw_spin_unlock_irqrestore(&sem->lock, flags)
\-->_raw_spin_unlock_irqrestore()(SMP/UP have different versions)
\-->__raw_spin_unlock_irqrestore() (following is the SMP case)
\-->do_raw_spin_unlock()
\-->arch_spin_unlock()
\-->nudge_writes()
\-->mb()
\-->wbflush()
\-->__wbflush()
In previous code __wbflush() is initialized in plat_mem_setup(), but
cgroup_init_early() is called before plat_mem_setup(). Therefore, In
this patch we make changes to avoid boot failure.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6638
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Loongson doesn't support DMA address above 4GB traditionally. If memory
is more than 4GB, CONFIG_SWIOTLB and ZONE_DMA32 should be selected. In
this way, DMA pages are allocated below 4GB preferably. However, if low
memory is not enough, high pages are allocated and swiotlb is used for
bouncing.
Moreover, we provide a platform-specific dma_map_ops::set_dma_mask() to
set a device's dma_mask and coherent_dma_mask. We use these masks to
distinguishes an allocated page can be used for DMA directly, or need
swiotlb to bounce.
Recently, we found that 32-bit DMA isn't a hardware bug, but a hardware
configuration issue. So, latest firmware has enable the DMA support as
high as 40-bit. To support all-memory DMA for all devices (besides the
Loongson platform limit, there are still some devices have their own
DMA32 limit), and also to be compatible with old firmware, we keep use
swiotlb.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6636
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The new UEFI-like firmware interface (LEFI, i.e. Loongson Unified
Firmware Interface) has 3 advantages:
1, Firmware export a physical memory map which is similar to X86's
E820 map, so prom_init_memory() will be more elegant that #ifdef
clauses can be removed.
2, Firmware export a pci irq routing table, we no longer need pci
irq routing fixup in kernel's code.
3, Firmware has a built-in vga bios, and its address is exported,
the linux kernel no longer need an embedded blob.
With the LEFI interface, Loongson-3A/2G and all their successors can use
a unified kernel. All Loongson-based machines support this new interface
except 2E/2F series.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6632
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Loongson-3 is a multi-core MIPS family CPU, it support MIPS64R2 fully.
Loongson-3 has the same IMP field (0x6300) as Loongson-2.
Loongson-3 has a hardware-maintained cache, system software doesn't
need to maintain coherency.
Loongson-3A is the first revision of Loongson-3, and it is the quad-
core version of Loongson-2G. Loongson-3A has a simplified version named
Loongson-2Gq, the main difference between Loongson-3A/2Gq is 3A has two
HyperTransport controller but 2Gq has only one. HT0 is used for cross-
chip interconnection and HT1 is used to link PCI bus. Therefore, 2Gq
cannot support NUMA but 3A can. For software, Loongson-2Gq is simply
identified as Loongson-3A.
Exsisting Loongson family CPUs:
Loongson-1: Loongson-1A, Loongson-1B, they are 32-bit MIPS CPUs.
Loongson-2: Loongson-2E, Loongson-2F, Loongson-2G, they are 64-bit
single-core MIPS CPUs.
Loongson-3: Loongson-3A(including so-called Loongson-2Gq), they are
64-bit multi-core MIPS CPUs.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6629/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
This and the next patch resolve memory corruption problems while CPU
hotplug. Without these patches, memory corruption can triggered easily
as below:
On a quad-core MIPS platform, use "spawn" of UnixBench-5.1.3 (http://
code.google.com/p/byte-unixbench/) and a CPU hotplug script like this
(hotplug.sh):
while true; do
echo 0 >/sys/devices/system/cpu/cpu1/online
echo 0 >/sys/devices/system/cpu/cpu2/online
echo 0 >/sys/devices/system/cpu/cpu3/online
sleep 1
echo 1 >/sys/devices/system/cpu/cpu1/online
echo 1 >/sys/devices/system/cpu/cpu2/online
echo 1 >/sys/devices/system/cpu/cpu3/online
sleep 1
done
Run "hotplug.sh" and then run "spawn 10000", spawn will get segfault
after a few minutes.
This patch:
Currently, clear_page()/copy_page() are generated by Micro-assembler
dynamically. But they are unavailable until uasm_resolve_relocs() has
finished because jump labels are illegal before that. Since these
functions are shared by every CPU, we only call build_clear_page()/
build_copy_page() only once at boot time. Without this patch, programs
will get random memory corruption (segmentation fault, bus error, etc.)
while CPU Hotplug (e.g. one CPU is using clear_page() while another is
generating it in cpu_cache_init()).
For similar reasons we modify build_tlb_refill_handler()'s invocation.
V2:
1, Rework the code to make CPU#0 can be online/offline.
2, Introduce cpu_has_local_ebase feature since some types of MIPS CPU
need a per-CPU tlb_refill_handler().
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongbing Hu <huhb@lemote.com>
Acked-by: David Daney <david.daney@cavium.com>
Patchwork: http://patchwork.linux-mips.org/patch/4994/
Acked-by: John Crispin <blogic@openwrt.org>
Having received another series of whitespace patches I decided to do this
once and for all rather than dealing with this kind of patches trickling
in forever.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Most supported systems currently hardwire cpu_has_dsp to 0, so we also
can disable support for cpu_has_dsp2 resulting in a slightly smaller
kernel.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
For unexplainable reasons the Loongson 2 clock API was implemented in a
module so fixing this involved shifting large amounts of code around.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Add missing #inclusions of <linux/irq.h> to a whole bunch of files that should
really include it. Note that this can replace #inclusions of <asm/irq.h>.
This is required for the patch to sort out irqflags handling function naming to
compile on MIPS.
The problem is that these files require access to things like setup_irq() -
which isn't available by #including <linux/interrupt.h>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
On FuLoong-2F IP6 is shared by the performance counter overflow interrupt
and the Bonito northbridge interrupt. To reduce overhead only call
do_IRQ() when oprofile is enabled to reduce overhead.
This patch adds an inline function do_perfcnt_IRQ() to hide the #if's ,
which can be shared by the other Loongson machines, i.e. gdium.
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/1492/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Yeeloong 2F netbook has an KB3310B embedded controller to manage the LID
action. When the LID is closed or opened a SCI interrupt is sent out and
the corresponding event is saved to an EC register for later query.
Allow the LID open interrupt to wake the processor from wait mode if it is
in the suspend mode.
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Cc: linux-mips@linux-mips.org
Patchwork: http://patchwork.linux-mips.org/patch/685/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
This patch adds two new kernel options: CPU_SUPPORTS_CPUFREQ and
CPU_SUPPORTS_ADDRWINCFG to describe the new features of Loongons 2F and
replaces the several ugly #if clauses by them.
These two options will be utilized by the future loongson revisions and
related drivers such as the coming Loongson 2F CPUFreq driver.
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Cc: linux-mips@linux-mips.org
Cc: Wu Zhangjin <wuzhangjin@gmail.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Loongson 2F has built-in DDR2 and PCI-X controller. The PCI-X controller
has a programming interface similiar to the the FPGA northbridge used on
Loongson 2E.
The main differences between Loongson 2E and Loongson 2F include:
1. Loongson 2F has an extra address window configuration module, which
is used to map CPU address space to DDR or PCI address space, or map
the PCI-DMA address space to DDR or LIO address space.
2. Loongson 2F supports 8 levels of software configurable CPu frequency
which can be configured in the LOONGSON_CHIPCFG0 register. The coming
cpufreq and standby support are based on this feature.
Loongson.h abstracts the modules and corresponding methods are abstracted.
Add other Loongson-2F-specific source code including gcc 4.4 support, PCI
memory space, PCI IO space, DMA address.
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Cc: linux-mips@linux-mips.org
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
To share the same kernel image amon different machines we have added the
machtype command line support.
In the old serial port implementation the UART base address is hardcoded as
a macro in machine.h which breaks with machtype, so change that to discover
the address dynamically. Also move the initialization of the UART base
address to uart_base.c to avoid remapping twice for early_printk.c and
serial.c.
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Cc: linux-mips@linux-mips.org
Patchwork: http://patchwork.linux-mips.org/patch/581/
Patchwork: http://patchwork.linux-mips.org/patch/682/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
To choose code for different machines by the value of machtype it needs to
be initialized as early as possible. So move initialization of
mips_machtype to prom_init().
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Cc: linux-mips@linux-mips.org
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The built-in Loongson 2E/2F northbridge in is bonito64-compatible but not
identical with it. To avoid influencing the original bonito64 support and
make the loongson support more maintainable, it's better to separate the
Bonito64 code from the Loongson code.
This also prepares the kernel for the coming Loongson 2f machines family
support.
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Cc: Linux-MIPS <linux-mips@linux-mips.org>
Cc: yanh@lemote.com
Cc: huhb@lemote.com
Cc: Zhang Le <r0bertz@gentoo.org>
Cc: zhangfx@lemote.com,
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Loongson 2 does not have dcache aliases when is using 16k pages. and the
And because Loongson 2 doesn't do SMP , cpu_icache_snoops_remote_store does
not matter here.
Signed-off-by: Zhang Le <r0bertz@gentoo.org>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
The difference between some loongson-based machines is very small, so, if
there is no necessary to add new kernel config options to cope with this
difference, it will be better to share the same kernel image file between
them, benefit from this, the linux distribution developers only have a need
to compile the kernel one time.
This machtype kernel command line argument will be used later to share the
same kernel image file between two different machines(menglong & yeeloong)
made by lemote.
Thanks very much to Zhang Le for cleaning up the machtype implementation.
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
To share common loongson source code between all of the loongson-based
machines. there is a need to split it out of the fuloong-2e/ directory.
at the same time, other according tuning is needed. the machine-specific
parts are defined as macros in relative header file, pci.h, mem.h,
machine.h.
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
To make source code of loongson sharable to the machines(such as gdium)
made by the other companies, we rename arch/mips/lemote to
arch/mips/loongson, asm/mach-lemote to asm/mach-loongson, and rename lm2e
to the name of the machine: fuloong-2e. accordingly, FULONG are renamed to
FULOONG2E to make it distinguishable to the future FULOONG2F. and also,
some other relative tuning is needed.
Signed-off-by: Wu Zhangjin <wuzhangjin@gmail.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>