docs: driver-model: move it to the driver-api book

The audience for the Kernel driver-model is clearly Kernel hackers.

Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> # ice driver changes
This commit is contained in:
Mauro Carvalho Chehab
2019-06-18 12:34:59 -03:00
parent 56198359b6
commit fe34c89d25
24 changed files with 16 additions and 17 deletions

View File

@@ -0,0 +1,98 @@
==============
Driver Binding
==============
Driver binding is the process of associating a device with a device
driver that can control it. Bus drivers have typically handled this
because there have been bus-specific structures to represent the
devices and the drivers. With generic device and device driver
structures, most of the binding can take place using common code.
Bus
~~~
The bus type structure contains a list of all devices that are on that bus
type in the system. When device_register is called for a device, it is
inserted into the end of this list. The bus object also contains a
list of all drivers of that bus type. When driver_register is called
for a driver, it is inserted at the end of this list. These are the
two events which trigger driver binding.
device_register
~~~~~~~~~~~~~~~
When a new device is added, the bus's list of drivers is iterated over
to find one that supports it. In order to determine that, the device
ID of the device must match one of the device IDs that the driver
supports. The format and semantics for comparing IDs is bus-specific.
Instead of trying to derive a complex state machine and matching
algorithm, it is up to the bus driver to provide a callback to compare
a device against the IDs of a driver. The bus returns 1 if a match was
found; 0 otherwise.
int match(struct device * dev, struct device_driver * drv);
If a match is found, the device's driver field is set to the driver
and the driver's probe callback is called. This gives the driver a
chance to verify that it really does support the hardware, and that
it's in a working state.
Device Class
~~~~~~~~~~~~
Upon the successful completion of probe, the device is registered with
the class to which it belongs. Device drivers belong to one and only one
class, and that is set in the driver's devclass field.
devclass_add_device is called to enumerate the device within the class
and actually register it with the class, which happens with the
class's register_dev callback.
Driver
~~~~~~
When a driver is attached to a device, the device is inserted into the
driver's list of devices.
sysfs
~~~~~
A symlink is created in the bus's 'devices' directory that points to
the device's directory in the physical hierarchy.
A symlink is created in the driver's 'devices' directory that points
to the device's directory in the physical hierarchy.
A directory for the device is created in the class's directory. A
symlink is created in that directory that points to the device's
physical location in the sysfs tree.
A symlink can be created (though this isn't done yet) in the device's
physical directory to either its class directory, or the class's
top-level directory. One can also be created to point to its driver's
directory also.
driver_register
~~~~~~~~~~~~~~~
The process is almost identical for when a new driver is added.
The bus's list of devices is iterated over to find a match. Devices
that already have a driver are skipped. All the devices are iterated
over, to bind as many devices as possible to the driver.
Removal
~~~~~~~
When a device is removed, the reference count for it will eventually
go to 0. When it does, the remove callback of the driver is called. It
is removed from the driver's list of devices and the reference count
of the driver is decremented. All symlinks between the two are removed.
When a driver is removed, the list of devices that it supports is
iterated over, and the driver's remove callback is called for each
one. The device is removed from that list and the symlinks removed.

View File

@@ -0,0 +1,146 @@
=========
Bus Types
=========
Definition
~~~~~~~~~~
See the kerneldoc for the struct bus_type.
int bus_register(struct bus_type * bus);
Declaration
~~~~~~~~~~~
Each bus type in the kernel (PCI, USB, etc) should declare one static
object of this type. They must initialize the name field, and may
optionally initialize the match callback::
struct bus_type pci_bus_type = {
.name = "pci",
.match = pci_bus_match,
};
The structure should be exported to drivers in a header file:
extern struct bus_type pci_bus_type;
Registration
~~~~~~~~~~~~
When a bus driver is initialized, it calls bus_register. This
initializes the rest of the fields in the bus object and inserts it
into a global list of bus types. Once the bus object is registered,
the fields in it are usable by the bus driver.
Callbacks
~~~~~~~~~
match(): Attaching Drivers to Devices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The format of device ID structures and the semantics for comparing
them are inherently bus-specific. Drivers typically declare an array
of device IDs of devices they support that reside in a bus-specific
driver structure.
The purpose of the match callback is to give the bus an opportunity to
determine if a particular driver supports a particular device by
comparing the device IDs the driver supports with the device ID of a
particular device, without sacrificing bus-specific functionality or
type-safety.
When a driver is registered with the bus, the bus's list of devices is
iterated over, and the match callback is called for each device that
does not have a driver associated with it.
Device and Driver Lists
~~~~~~~~~~~~~~~~~~~~~~~
The lists of devices and drivers are intended to replace the local
lists that many buses keep. They are lists of struct devices and
struct device_drivers, respectively. Bus drivers are free to use the
lists as they please, but conversion to the bus-specific type may be
necessary.
The LDM core provides helper functions for iterating over each list::
int bus_for_each_dev(struct bus_type * bus, struct device * start,
void * data,
int (*fn)(struct device *, void *));
int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
void * data, int (*fn)(struct device_driver *, void *));
These helpers iterate over the respective list, and call the callback
for each device or driver in the list. All list accesses are
synchronized by taking the bus's lock (read currently). The reference
count on each object in the list is incremented before the callback is
called; it is decremented after the next object has been obtained. The
lock is not held when calling the callback.
sysfs
~~~~~~~~
There is a top-level directory named 'bus'.
Each bus gets a directory in the bus directory, along with two default
directories::
/sys/bus/pci/
|-- devices
`-- drivers
Drivers registered with the bus get a directory in the bus's drivers
directory::
/sys/bus/pci/
|-- devices
`-- drivers
|-- Intel ICH
|-- Intel ICH Joystick
|-- agpgart
`-- e100
Each device that is discovered on a bus of that type gets a symlink in
the bus's devices directory to the device's directory in the physical
hierarchy::
/sys/bus/pci/
|-- devices
| |-- 00:00.0 -> ../../../root/pci0/00:00.0
| |-- 00:01.0 -> ../../../root/pci0/00:01.0
| `-- 00:02.0 -> ../../../root/pci0/00:02.0
`-- drivers
Exporting Attributes
~~~~~~~~~~~~~~~~~~~~
::
struct bus_attribute {
struct attribute attr;
ssize_t (*show)(struct bus_type *, char * buf);
ssize_t (*store)(struct bus_type *, const char * buf, size_t count);
};
Bus drivers can export attributes using the BUS_ATTR_RW macro that works
similarly to the DEVICE_ATTR_RW macro for devices. For example, a
definition like this::
static BUS_ATTR_RW(debug);
is equivalent to declaring::
static bus_attribute bus_attr_debug;
This can then be used to add and remove the attribute from the bus's
sysfs directory using::
int bus_create_file(struct bus_type *, struct bus_attribute *);
void bus_remove_file(struct bus_type *, struct bus_attribute *);

View File

@@ -0,0 +1,149 @@
==============
Device Classes
==============
Introduction
~~~~~~~~~~~~
A device class describes a type of device, like an audio or network
device. The following device classes have been identified:
<Insert List of Device Classes Here>
Each device class defines a set of semantics and a programming interface
that devices of that class adhere to. Device drivers are the
implementation of that programming interface for a particular device on
a particular bus.
Device classes are agnostic with respect to what bus a device resides
on.
Programming Interface
~~~~~~~~~~~~~~~~~~~~~
The device class structure looks like::
typedef int (*devclass_add)(struct device *);
typedef void (*devclass_remove)(struct device *);
See the kerneldoc for the struct class.
A typical device class definition would look like::
struct device_class input_devclass = {
.name = "input",
.add_device = input_add_device,
.remove_device = input_remove_device,
};
Each device class structure should be exported in a header file so it
can be used by drivers, extensions and interfaces.
Device classes are registered and unregistered with the core using::
int devclass_register(struct device_class * cls);
void devclass_unregister(struct device_class * cls);
Devices
~~~~~~~
As devices are bound to drivers, they are added to the device class
that the driver belongs to. Before the driver model core, this would
typically happen during the driver's probe() callback, once the device
has been initialized. It now happens after the probe() callback
finishes from the core.
The device is enumerated in the class. Each time a device is added to
the class, the class's devnum field is incremented and assigned to the
device. The field is never decremented, so if the device is removed
from the class and re-added, it will receive a different enumerated
value.
The class is allowed to create a class-specific structure for the
device and store it in the device's class_data pointer.
There is no list of devices in the device class. Each driver has a
list of devices that it supports. The device class has a list of
drivers of that particular class. To access all of the devices in the
class, iterate over the device lists of each driver in the class.
Device Drivers
~~~~~~~~~~~~~~
Device drivers are added to device classes when they are registered
with the core. A driver specifies the class it belongs to by setting
the struct device_driver::devclass field.
sysfs directory structure
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is a top-level sysfs directory named 'class'.
Each class gets a directory in the class directory, along with two
default subdirectories::
class/
`-- input
|-- devices
`-- drivers
Drivers registered with the class get a symlink in the drivers/ directory
that points to the driver's directory (under its bus directory)::
class/
`-- input
|-- devices
`-- drivers
`-- usb:usb_mouse -> ../../../bus/drivers/usb_mouse/
Each device gets a symlink in the devices/ directory that points to the
device's directory in the physical hierarchy::
class/
`-- input
|-- devices
| `-- 1 -> ../../../root/pci0/00:1f.0/usb_bus/00:1f.2-1:0/
`-- drivers
Exporting Attributes
~~~~~~~~~~~~~~~~~~~~
::
struct devclass_attribute {
struct attribute attr;
ssize_t (*show)(struct device_class *, char * buf, size_t count, loff_t off);
ssize_t (*store)(struct device_class *, const char * buf, size_t count, loff_t off);
};
Class drivers can export attributes using the DEVCLASS_ATTR macro that works
similarly to the DEVICE_ATTR macro for devices. For example, a definition
like this::
static DEVCLASS_ATTR(debug,0644,show_debug,store_debug);
is equivalent to declaring::
static devclass_attribute devclass_attr_debug;
The bus driver can add and remove the attribute from the class's
sysfs directory using::
int devclass_create_file(struct device_class *, struct devclass_attribute *);
void devclass_remove_file(struct device_class *, struct devclass_attribute *);
In the example above, the file will be named 'debug' in placed in the
class's directory in sysfs.
Interfaces
~~~~~~~~~~
There may exist multiple mechanisms for accessing the same device of a
particular class type. Device interfaces describe these mechanisms.
When a device is added to a device class, the core attempts to add it
to every interface that is registered with the device class.

View File

@@ -0,0 +1,116 @@
=============================
Device Driver Design Patterns
=============================
This document describes a few common design patterns found in device drivers.
It is likely that subsystem maintainers will ask driver developers to
conform to these design patterns.
1. State Container
2. container_of()
1. State Container
~~~~~~~~~~~~~~~~~~
While the kernel contains a few device drivers that assume that they will
only be probed() once on a certain system (singletons), it is custom to assume
that the device the driver binds to will appear in several instances. This
means that the probe() function and all callbacks need to be reentrant.
The most common way to achieve this is to use the state container design
pattern. It usually has this form::
struct foo {
spinlock_t lock; /* Example member */
(...)
};
static int foo_probe(...)
{
struct foo *foo;
foo = devm_kzalloc(dev, sizeof(*foo), GFP_KERNEL);
if (!foo)
return -ENOMEM;
spin_lock_init(&foo->lock);
(...)
}
This will create an instance of struct foo in memory every time probe() is
called. This is our state container for this instance of the device driver.
Of course it is then necessary to always pass this instance of the
state around to all functions that need access to the state and its members.
For example, if the driver is registering an interrupt handler, you would
pass around a pointer to struct foo like this::
static irqreturn_t foo_handler(int irq, void *arg)
{
struct foo *foo = arg;
(...)
}
static int foo_probe(...)
{
struct foo *foo;
(...)
ret = request_irq(irq, foo_handler, 0, "foo", foo);
}
This way you always get a pointer back to the correct instance of foo in
your interrupt handler.
2. container_of()
~~~~~~~~~~~~~~~~~
Continuing on the above example we add an offloaded work::
struct foo {
spinlock_t lock;
struct workqueue_struct *wq;
struct work_struct offload;
(...)
};
static void foo_work(struct work_struct *work)
{
struct foo *foo = container_of(work, struct foo, offload);
(...)
}
static irqreturn_t foo_handler(int irq, void *arg)
{
struct foo *foo = arg;
queue_work(foo->wq, &foo->offload);
(...)
}
static int foo_probe(...)
{
struct foo *foo;
foo->wq = create_singlethread_workqueue("foo-wq");
INIT_WORK(&foo->offload, foo_work);
(...)
}
The design pattern is the same for an hrtimer or something similar that will
return a single argument which is a pointer to a struct member in the
callback.
container_of() is a macro defined in <linux/kernel.h>
What container_of() does is to obtain a pointer to the containing struct from
a pointer to a member by a simple subtraction using the offsetof() macro from
standard C, which allows something similar to object oriented behaviours.
Notice that the contained member must not be a pointer, but an actual member
for this to work.
We can see here that we avoid having global pointers to our struct foo *
instance this way, while still keeping the number of parameters passed to the
work function to a single pointer.

View File

@@ -0,0 +1,109 @@
==========================
The Basic Device Structure
==========================
See the kerneldoc for the struct device.
Programming Interface
~~~~~~~~~~~~~~~~~~~~~
The bus driver that discovers the device uses this to register the
device with the core::
int device_register(struct device * dev);
The bus should initialize the following fields:
- parent
- name
- bus_id
- bus
A device is removed from the core when its reference count goes to
0. The reference count can be adjusted using::
struct device * get_device(struct device * dev);
void put_device(struct device * dev);
get_device() will return a pointer to the struct device passed to it
if the reference is not already 0 (if it's in the process of being
removed already).
A driver can access the lock in the device structure using::
void lock_device(struct device * dev);
void unlock_device(struct device * dev);
Attributes
~~~~~~~~~~
::
struct device_attribute {
struct attribute attr;
ssize_t (*show)(struct device *dev, struct device_attribute *attr,
char *buf);
ssize_t (*store)(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count);
};
Attributes of devices can be exported by a device driver through sysfs.
Please see Documentation/filesystems/sysfs.txt for more information
on how sysfs works.
As explained in Documentation/kobject.txt, device attributes must be
created before the KOBJ_ADD uevent is generated. The only way to realize
that is by defining an attribute group.
Attributes are declared using a macro called DEVICE_ATTR::
#define DEVICE_ATTR(name,mode,show,store)
Example:::
static DEVICE_ATTR(type, 0444, show_type, NULL);
static DEVICE_ATTR(power, 0644, show_power, store_power);
This declares two structures of type struct device_attribute with respective
names 'dev_attr_type' and 'dev_attr_power'. These two attributes can be
organized as follows into a group::
static struct attribute *dev_attrs[] = {
&dev_attr_type.attr,
&dev_attr_power.attr,
NULL,
};
static struct attribute_group dev_attr_group = {
.attrs = dev_attrs,
};
static const struct attribute_group *dev_attr_groups[] = {
&dev_attr_group,
NULL,
};
This array of groups can then be associated with a device by setting the
group pointer in struct device before device_register() is invoked::
dev->groups = dev_attr_groups;
device_register(dev);
The device_register() function will use the 'groups' pointer to create the
device attributes and the device_unregister() function will use this pointer
to remove the device attributes.
Word of warning: While the kernel allows device_create_file() and
device_remove_file() to be called on a device at any time, userspace has
strict expectations on when attributes get created. When a new device is
registered in the kernel, a uevent is generated to notify userspace (like
udev) that a new device is available. If attributes are added after the
device is registered, then userspace won't get notified and userspace will
not know about the new attributes.
This is important for device driver that need to publish additional
attributes for a device at driver probe time. If the device driver simply
calls device_create_file() on the device structure passed to it, then
userspace will never be notified of the new attributes.

View File

@@ -0,0 +1,414 @@
================================
Devres - Managed Device Resource
================================
Tejun Heo <teheo@suse.de>
First draft 10 January 2007
.. contents
1. Intro : Huh? Devres?
2. Devres : Devres in a nutshell
3. Devres Group : Group devres'es and release them together
4. Details : Life time rules, calling context, ...
5. Overhead : How much do we have to pay for this?
6. List of managed interfaces: Currently implemented managed interfaces
1. Intro
--------
devres came up while trying to convert libata to use iomap. Each
iomapped address should be kept and unmapped on driver detach. For
example, a plain SFF ATA controller (that is, good old PCI IDE) in
native mode makes use of 5 PCI BARs and all of them should be
maintained.
As with many other device drivers, libata low level drivers have
sufficient bugs in ->remove and ->probe failure path. Well, yes,
that's probably because libata low level driver developers are lazy
bunch, but aren't all low level driver developers? After spending a
day fiddling with braindamaged hardware with no document or
braindamaged document, if it's finally working, well, it's working.
For one reason or another, low level drivers don't receive as much
attention or testing as core code, and bugs on driver detach or
initialization failure don't happen often enough to be noticeable.
Init failure path is worse because it's much less travelled while
needs to handle multiple entry points.
So, many low level drivers end up leaking resources on driver detach
and having half broken failure path implementation in ->probe() which
would leak resources or even cause oops when failure occurs. iomap
adds more to this mix. So do msi and msix.
2. Devres
---------
devres is basically linked list of arbitrarily sized memory areas
associated with a struct device. Each devres entry is associated with
a release function. A devres can be released in several ways. No
matter what, all devres entries are released on driver detach. On
release, the associated release function is invoked and then the
devres entry is freed.
Managed interface is created for resources commonly used by device
drivers using devres. For example, coherent DMA memory is acquired
using dma_alloc_coherent(). The managed version is called
dmam_alloc_coherent(). It is identical to dma_alloc_coherent() except
for the DMA memory allocated using it is managed and will be
automatically released on driver detach. Implementation looks like
the following::
struct dma_devres {
size_t size;
void *vaddr;
dma_addr_t dma_handle;
};
static void dmam_coherent_release(struct device *dev, void *res)
{
struct dma_devres *this = res;
dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
}
dmam_alloc_coherent(dev, size, dma_handle, gfp)
{
struct dma_devres *dr;
void *vaddr;
dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
...
/* alloc DMA memory as usual */
vaddr = dma_alloc_coherent(...);
...
/* record size, vaddr, dma_handle in dr */
dr->vaddr = vaddr;
...
devres_add(dev, dr);
return vaddr;
}
If a driver uses dmam_alloc_coherent(), the area is guaranteed to be
freed whether initialization fails half-way or the device gets
detached. If most resources are acquired using managed interface, a
driver can have much simpler init and exit code. Init path basically
looks like the following::
my_init_one()
{
struct mydev *d;
d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
d->ring = dmam_alloc_coherent(...);
if (!d->ring)
return -ENOMEM;
if (check something)
return -EINVAL;
...
return register_to_upper_layer(d);
}
And exit path::
my_remove_one()
{
unregister_from_upper_layer(d);
shutdown_my_hardware();
}
As shown above, low level drivers can be simplified a lot by using
devres. Complexity is shifted from less maintained low level drivers
to better maintained higher layer. Also, as init failure path is
shared with exit path, both can get more testing.
Note though that when converting current calls or assignments to
managed devm_* versions it is up to you to check if internal operations
like allocating memory, have failed. Managed resources pertains to the
freeing of these resources *only* - all other checks needed are still
on you. In some cases this may mean introducing checks that were not
necessary before moving to the managed devm_* calls.
3. Devres group
---------------
Devres entries can be grouped using devres group. When a group is
released, all contained normal devres entries and properly nested
groups are released. One usage is to rollback series of acquired
resources on failure. For example::
if (!devres_open_group(dev, NULL, GFP_KERNEL))
return -ENOMEM;
acquire A;
if (failed)
goto err;
acquire B;
if (failed)
goto err;
...
devres_remove_group(dev, NULL);
return 0;
err:
devres_release_group(dev, NULL);
return err_code;
As resource acquisition failure usually means probe failure, constructs
like above are usually useful in midlayer driver (e.g. libata core
layer) where interface function shouldn't have side effect on failure.
For LLDs, just returning error code suffices in most cases.
Each group is identified by `void *id`. It can either be explicitly
specified by @id argument to devres_open_group() or automatically
created by passing NULL as @id as in the above example. In both
cases, devres_open_group() returns the group's id. The returned id
can be passed to other devres functions to select the target group.
If NULL is given to those functions, the latest open group is
selected.
For example, you can do something like the following::
int my_midlayer_create_something()
{
if (!devres_open_group(dev, my_midlayer_create_something, GFP_KERNEL))
return -ENOMEM;
...
devres_close_group(dev, my_midlayer_create_something);
return 0;
}
void my_midlayer_destroy_something()
{
devres_release_group(dev, my_midlayer_create_something);
}
4. Details
----------
Lifetime of a devres entry begins on devres allocation and finishes
when it is released or destroyed (removed and freed) - no reference
counting.
devres core guarantees atomicity to all basic devres operations and
has support for single-instance devres types (atomic
lookup-and-add-if-not-found). Other than that, synchronizing
concurrent accesses to allocated devres data is caller's
responsibility. This is usually non-issue because bus ops and
resource allocations already do the job.
For an example of single-instance devres type, read pcim_iomap_table()
in lib/devres.c.
All devres interface functions can be called without context if the
right gfp mask is given.
5. Overhead
-----------
Each devres bookkeeping info is allocated together with requested data
area. With debug option turned off, bookkeeping info occupies 16
bytes on 32bit machines and 24 bytes on 64bit (three pointers rounded
up to ull alignment). If singly linked list is used, it can be
reduced to two pointers (8 bytes on 32bit, 16 bytes on 64bit).
Each devres group occupies 8 pointers. It can be reduced to 6 if
singly linked list is used.
Memory space overhead on ahci controller with two ports is between 300
and 400 bytes on 32bit machine after naive conversion (we can
certainly invest a bit more effort into libata core layer).
6. List of managed interfaces
-----------------------------
CLOCK
devm_clk_get()
devm_clk_get_optional()
devm_clk_put()
devm_clk_hw_register()
devm_of_clk_add_hw_provider()
devm_clk_hw_register_clkdev()
DMA
dmaenginem_async_device_register()
dmam_alloc_coherent()
dmam_alloc_attrs()
dmam_free_coherent()
dmam_pool_create()
dmam_pool_destroy()
DRM
devm_drm_dev_init()
GPIO
devm_gpiod_get()
devm_gpiod_get_index()
devm_gpiod_get_index_optional()
devm_gpiod_get_optional()
devm_gpiod_put()
devm_gpiod_unhinge()
devm_gpiochip_add_data()
devm_gpio_request()
devm_gpio_request_one()
devm_gpio_free()
I2C
devm_i2c_new_dummy_device()
IIO
devm_iio_device_alloc()
devm_iio_device_free()
devm_iio_device_register()
devm_iio_device_unregister()
devm_iio_kfifo_allocate()
devm_iio_kfifo_free()
devm_iio_triggered_buffer_setup()
devm_iio_triggered_buffer_cleanup()
devm_iio_trigger_alloc()
devm_iio_trigger_free()
devm_iio_trigger_register()
devm_iio_trigger_unregister()
devm_iio_channel_get()
devm_iio_channel_release()
devm_iio_channel_get_all()
devm_iio_channel_release_all()
INPUT
devm_input_allocate_device()
IO region
devm_release_mem_region()
devm_release_region()
devm_release_resource()
devm_request_mem_region()
devm_request_region()
devm_request_resource()
IOMAP
devm_ioport_map()
devm_ioport_unmap()
devm_ioremap()
devm_ioremap_nocache()
devm_ioremap_wc()
devm_ioremap_resource() : checks resource, requests memory region, ioremaps
devm_iounmap()
pcim_iomap()
pcim_iomap_regions() : do request_region() and iomap() on multiple BARs
pcim_iomap_table() : array of mapped addresses indexed by BAR
pcim_iounmap()
IRQ
devm_free_irq()
devm_request_any_context_irq()
devm_request_irq()
devm_request_threaded_irq()
devm_irq_alloc_descs()
devm_irq_alloc_desc()
devm_irq_alloc_desc_at()
devm_irq_alloc_desc_from()
devm_irq_alloc_descs_from()
devm_irq_alloc_generic_chip()
devm_irq_setup_generic_chip()
devm_irq_sim_init()
LED
devm_led_classdev_register()
devm_led_classdev_unregister()
MDIO
devm_mdiobus_alloc()
devm_mdiobus_alloc_size()
devm_mdiobus_free()
MEM
devm_free_pages()
devm_get_free_pages()
devm_kasprintf()
devm_kcalloc()
devm_kfree()
devm_kmalloc()
devm_kmalloc_array()
devm_kmemdup()
devm_kstrdup()
devm_kvasprintf()
devm_kzalloc()
MFD
devm_mfd_add_devices()
MUX
devm_mux_chip_alloc()
devm_mux_chip_register()
devm_mux_control_get()
PER-CPU MEM
devm_alloc_percpu()
devm_free_percpu()
PCI
devm_pci_alloc_host_bridge() : managed PCI host bridge allocation
devm_pci_remap_cfgspace() : ioremap PCI configuration space
devm_pci_remap_cfg_resource() : ioremap PCI configuration space resource
pcim_enable_device() : after success, all PCI ops become managed
pcim_pin_device() : keep PCI device enabled after release
PHY
devm_usb_get_phy()
devm_usb_put_phy()
PINCTRL
devm_pinctrl_get()
devm_pinctrl_put()
devm_pinctrl_register()
devm_pinctrl_unregister()
POWER
devm_reboot_mode_register()
devm_reboot_mode_unregister()
PWM
devm_pwm_get()
devm_pwm_put()
REGULATOR
devm_regulator_bulk_get()
devm_regulator_get()
devm_regulator_put()
devm_regulator_register()
RESET
devm_reset_control_get()
devm_reset_controller_register()
SERDEV
devm_serdev_device_open()
SLAVE DMA ENGINE
devm_acpi_dma_controller_register()
SPI
devm_spi_register_master()
WATCHDOG
devm_watchdog_register_device()

View File

@@ -0,0 +1,223 @@
==============
Device Drivers
==============
See the kerneldoc for the struct device_driver.
Allocation
~~~~~~~~~~
Device drivers are statically allocated structures. Though there may
be multiple devices in a system that a driver supports, struct
device_driver represents the driver as a whole (not a particular
device instance).
Initialization
~~~~~~~~~~~~~~
The driver must initialize at least the name and bus fields. It should
also initialize the devclass field (when it arrives), so it may obtain
the proper linkage internally. It should also initialize as many of
the callbacks as possible, though each is optional.
Declaration
~~~~~~~~~~~
As stated above, struct device_driver objects are statically
allocated. Below is an example declaration of the eepro100
driver. This declaration is hypothetical only; it relies on the driver
being converted completely to the new model::
static struct device_driver eepro100_driver = {
.name = "eepro100",
.bus = &pci_bus_type,
.probe = eepro100_probe,
.remove = eepro100_remove,
.suspend = eepro100_suspend,
.resume = eepro100_resume,
};
Most drivers will not be able to be converted completely to the new
model because the bus they belong to has a bus-specific structure with
bus-specific fields that cannot be generalized.
The most common example of this are device ID structures. A driver
typically defines an array of device IDs that it supports. The format
of these structures and the semantics for comparing device IDs are
completely bus-specific. Defining them as bus-specific entities would
sacrifice type-safety, so we keep bus-specific structures around.
Bus-specific drivers should include a generic struct device_driver in
the definition of the bus-specific driver. Like this::
struct pci_driver {
const struct pci_device_id *id_table;
struct device_driver driver;
};
A definition that included bus-specific fields would look like
(using the eepro100 driver again)::
static struct pci_driver eepro100_driver = {
.id_table = eepro100_pci_tbl,
.driver = {
.name = "eepro100",
.bus = &pci_bus_type,
.probe = eepro100_probe,
.remove = eepro100_remove,
.suspend = eepro100_suspend,
.resume = eepro100_resume,
},
};
Some may find the syntax of embedded struct initialization awkward or
even a bit ugly. So far, it's the best way we've found to do what we want...
Registration
~~~~~~~~~~~~
::
int driver_register(struct device_driver *drv);
The driver registers the structure on startup. For drivers that have
no bus-specific fields (i.e. don't have a bus-specific driver
structure), they would use driver_register and pass a pointer to their
struct device_driver object.
Most drivers, however, will have a bus-specific structure and will
need to register with the bus using something like pci_driver_register.
It is important that drivers register their driver structure as early as
possible. Registration with the core initializes several fields in the
struct device_driver object, including the reference count and the
lock. These fields are assumed to be valid at all times and may be
used by the device model core or the bus driver.
Transition Bus Drivers
~~~~~~~~~~~~~~~~~~~~~~
By defining wrapper functions, the transition to the new model can be
made easier. Drivers can ignore the generic structure altogether and
let the bus wrapper fill in the fields. For the callbacks, the bus can
define generic callbacks that forward the call to the bus-specific
callbacks of the drivers.
This solution is intended to be only temporary. In order to get class
information in the driver, the drivers must be modified anyway. Since
converting drivers to the new model should reduce some infrastructural
complexity and code size, it is recommended that they are converted as
class information is added.
Access
~~~~~~
Once the object has been registered, it may access the common fields of
the object, like the lock and the list of devices::
int driver_for_each_dev(struct device_driver *drv, void *data,
int (*callback)(struct device *dev, void *data));
The devices field is a list of all the devices that have been bound to
the driver. The LDM core provides a helper function to operate on all
the devices a driver controls. This helper locks the driver on each
node access, and does proper reference counting on each device as it
accesses it.
sysfs
~~~~~
When a driver is registered, a sysfs directory is created in its
bus's directory. In this directory, the driver can export an interface
to userspace to control operation of the driver on a global basis;
e.g. toggling debugging output in the driver.
A future feature of this directory will be a 'devices' directory. This
directory will contain symlinks to the directories of devices it
supports.
Callbacks
~~~~~~~~~
::
int (*probe) (struct device *dev);
The probe() entry is called in task context, with the bus's rwsem locked
and the driver partially bound to the device. Drivers commonly use
container_of() to convert "dev" to a bus-specific type, both in probe()
and other routines. That type often provides device resource data, such
as pci_dev.resource[] or platform_device.resources, which is used in
addition to dev->platform_data to initialize the driver.
This callback holds the driver-specific logic to bind the driver to a
given device. That includes verifying that the device is present, that
it's a version the driver can handle, that driver data structures can
be allocated and initialized, and that any hardware can be initialized.
Drivers often store a pointer to their state with dev_set_drvdata().
When the driver has successfully bound itself to that device, then probe()
returns zero and the driver model code will finish its part of binding
the driver to that device.
A driver's probe() may return a negative errno value to indicate that
the driver did not bind to this device, in which case it should have
released all resources it allocated::
int (*remove) (struct device *dev);
remove is called to unbind a driver from a device. This may be
called if a device is physically removed from the system, if the
driver module is being unloaded, during a reboot sequence, or
in other cases.
It is up to the driver to determine if the device is present or
not. It should free any resources allocated specifically for the
device; i.e. anything in the device's driver_data field.
If the device is still present, it should quiesce the device and place
it into a supported low-power state::
int (*suspend) (struct device *dev, pm_message_t state);
suspend is called to put the device in a low power state::
int (*resume) (struct device *dev);
Resume is used to bring a device back from a low power state.
Attributes
~~~~~~~~~~
::
struct driver_attribute {
struct attribute attr;
ssize_t (*show)(struct device_driver *driver, char *buf);
ssize_t (*store)(struct device_driver *, const char *buf, size_t count);
};
Device drivers can export attributes via their sysfs directories.
Drivers can declare attributes using a DRIVER_ATTR_RW and DRIVER_ATTR_RO
macro that works identically to the DEVICE_ATTR_RW and DEVICE_ATTR_RO
macros.
Example::
DRIVER_ATTR_RW(debug);
This is equivalent to declaring::
struct driver_attribute driver_attr_debug;
This can then be used to add and remove the attribute from the
driver's directory using::
int driver_create_file(struct device_driver *, const struct driver_attribute *);
void driver_remove_file(struct device_driver *, const struct driver_attribute *);

View File

@@ -0,0 +1,24 @@
============
Driver Model
============
.. toctree::
:maxdepth: 1
binding
bus
class
design-patterns
device
devres
driver
overview
platform
porting
.. only:: subproject and html
Indices
=======
* :ref:`genindex`

View File

@@ -0,0 +1,124 @@
=============================
The Linux Kernel Device Model
=============================
Patrick Mochel <mochel@digitalimplant.org>
Drafted 26 August 2002
Updated 31 January 2006
Overview
~~~~~~~~
The Linux Kernel Driver Model is a unification of all the disparate driver
models that were previously used in the kernel. It is intended to augment the
bus-specific drivers for bridges and devices by consolidating a set of data
and operations into globally accessible data structures.
Traditional driver models implemented some sort of tree-like structure
(sometimes just a list) for the devices they control. There wasn't any
uniformity across the different bus types.
The current driver model provides a common, uniform data model for describing
a bus and the devices that can appear under the bus. The unified bus
model includes a set of common attributes which all busses carry, and a set
of common callbacks, such as device discovery during bus probing, bus
shutdown, bus power management, etc.
The common device and bridge interface reflects the goals of the modern
computer: namely the ability to do seamless device "plug and play", power
management, and hot plug. In particular, the model dictated by Intel and
Microsoft (namely ACPI) ensures that almost every device on almost any bus
on an x86-compatible system can work within this paradigm. Of course,
not every bus is able to support all such operations, although most
buses support most of those operations.
Downstream Access
~~~~~~~~~~~~~~~~~
Common data fields have been moved out of individual bus layers into a common
data structure. These fields must still be accessed by the bus layers,
and sometimes by the device-specific drivers.
Other bus layers are encouraged to do what has been done for the PCI layer.
struct pci_dev now looks like this::
struct pci_dev {
...
struct device dev; /* Generic device interface */
...
};
Note first that the struct device dev within the struct pci_dev is
statically allocated. This means only one allocation on device discovery.
Note also that that struct device dev is not necessarily defined at the
front of the pci_dev structure. This is to make people think about what
they're doing when switching between the bus driver and the global driver,
and to discourage meaningless and incorrect casts between the two.
The PCI bus layer freely accesses the fields of struct device. It knows about
the structure of struct pci_dev, and it should know the structure of struct
device. Individual PCI device drivers that have been converted to the current
driver model generally do not and should not touch the fields of struct device,
unless there is a compelling reason to do so.
The above abstraction prevents unnecessary pain during transitional phases.
If it were not done this way, then when a field was renamed or removed, every
downstream driver would break. On the other hand, if only the bus layer
(and not the device layer) accesses the struct device, it is only the bus
layer that needs to change.
User Interface
~~~~~~~~~~~~~~
By virtue of having a complete hierarchical view of all the devices in the
system, exporting a complete hierarchical view to userspace becomes relatively
easy. This has been accomplished by implementing a special purpose virtual
file system named sysfs.
Almost all mainstream Linux distros mount this filesystem automatically; you
can see some variation of the following in the output of the "mount" command::
$ mount
...
none on /sys type sysfs (rw,noexec,nosuid,nodev)
...
$
The auto-mounting of sysfs is typically accomplished by an entry similar to
the following in the /etc/fstab file::
none /sys sysfs defaults 0 0
or something similar in the /lib/init/fstab file on Debian-based systems::
none /sys sysfs nodev,noexec,nosuid 0 0
If sysfs is not automatically mounted, you can always do it manually with::
# mount -t sysfs sysfs /sys
Whenever a device is inserted into the tree, a directory is created for it.
This directory may be populated at each layer of discovery - the global layer,
the bus layer, or the device layer.
The global layer currently creates two files - 'name' and 'power'. The
former only reports the name of the device. The latter reports the
current power state of the device. It will also be used to set the current
power state.
The bus layer may also create files for the devices it finds while probing the
bus. For example, the PCI layer currently creates 'irq' and 'resource' files
for each PCI device.
A device-specific driver may also export files in its directory to expose
device-specific data or tunable interfaces.
More information about the sysfs directory layout can be found in
the other documents in this directory and in the file
Documentation/filesystems/sysfs.txt.

View File

@@ -0,0 +1,246 @@
============================
Platform Devices and Drivers
============================
See <linux/platform_device.h> for the driver model interface to the
platform bus: platform_device, and platform_driver. This pseudo-bus
is used to connect devices on busses with minimal infrastructure,
like those used to integrate peripherals on many system-on-chip
processors, or some "legacy" PC interconnects; as opposed to large
formally specified ones like PCI or USB.
Platform devices
~~~~~~~~~~~~~~~~
Platform devices are devices that typically appear as autonomous
entities in the system. This includes legacy port-based devices and
host bridges to peripheral buses, and most controllers integrated
into system-on-chip platforms. What they usually have in common
is direct addressing from a CPU bus. Rarely, a platform_device will
be connected through a segment of some other kind of bus; but its
registers will still be directly addressable.
Platform devices are given a name, used in driver binding, and a
list of resources such as addresses and IRQs::
struct platform_device {
const char *name;
u32 id;
struct device dev;
u32 num_resources;
struct resource *resource;
};
Platform drivers
~~~~~~~~~~~~~~~~
Platform drivers follow the standard driver model convention, where
discovery/enumeration is handled outside the drivers, and drivers
provide probe() and remove() methods. They support power management
and shutdown notifications using the standard conventions::
struct platform_driver {
int (*probe)(struct platform_device *);
int (*remove)(struct platform_device *);
void (*shutdown)(struct platform_device *);
int (*suspend)(struct platform_device *, pm_message_t state);
int (*suspend_late)(struct platform_device *, pm_message_t state);
int (*resume_early)(struct platform_device *);
int (*resume)(struct platform_device *);
struct device_driver driver;
};
Note that probe() should in general verify that the specified device hardware
actually exists; sometimes platform setup code can't be sure. The probing
can use device resources, including clocks, and device platform_data.
Platform drivers register themselves the normal way::
int platform_driver_register(struct platform_driver *drv);
Or, in common situations where the device is known not to be hot-pluggable,
the probe() routine can live in an init section to reduce the driver's
runtime memory footprint::
int platform_driver_probe(struct platform_driver *drv,
int (*probe)(struct platform_device *))
Kernel modules can be composed of several platform drivers. The platform core
provides helpers to register and unregister an array of drivers::
int __platform_register_drivers(struct platform_driver * const *drivers,
unsigned int count, struct module *owner);
void platform_unregister_drivers(struct platform_driver * const *drivers,
unsigned int count);
If one of the drivers fails to register, all drivers registered up to that
point will be unregistered in reverse order. Note that there is a convenience
macro that passes THIS_MODULE as owner parameter::
#define platform_register_drivers(drivers, count)
Device Enumeration
~~~~~~~~~~~~~~~~~~
As a rule, platform specific (and often board-specific) setup code will
register platform devices::
int platform_device_register(struct platform_device *pdev);
int platform_add_devices(struct platform_device **pdevs, int ndev);
The general rule is to register only those devices that actually exist,
but in some cases extra devices might be registered. For example, a kernel
might be configured to work with an external network adapter that might not
be populated on all boards, or likewise to work with an integrated controller
that some boards might not hook up to any peripherals.
In some cases, boot firmware will export tables describing the devices
that are populated on a given board. Without such tables, often the
only way for system setup code to set up the correct devices is to build
a kernel for a specific target board. Such board-specific kernels are
common with embedded and custom systems development.
In many cases, the memory and IRQ resources associated with the platform
device are not enough to let the device's driver work. Board setup code
will often provide additional information using the device's platform_data
field to hold additional information.
Embedded systems frequently need one or more clocks for platform devices,
which are normally kept off until they're actively needed (to save power).
System setup also associates those clocks with the device, so that that
calls to clk_get(&pdev->dev, clock_name) return them as needed.
Legacy Drivers: Device Probing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some drivers are not fully converted to the driver model, because they take
on a non-driver role: the driver registers its platform device, rather than
leaving that for system infrastructure. Such drivers can't be hotplugged
or coldplugged, since those mechanisms require device creation to be in a
different system component than the driver.
The only "good" reason for this is to handle older system designs which, like
original IBM PCs, rely on error-prone "probe-the-hardware" models for hardware
configuration. Newer systems have largely abandoned that model, in favor of
bus-level support for dynamic configuration (PCI, USB), or device tables
provided by the boot firmware (e.g. PNPACPI on x86). There are too many
conflicting options about what might be where, and even educated guesses by
an operating system will be wrong often enough to make trouble.
This style of driver is discouraged. If you're updating such a driver,
please try to move the device enumeration to a more appropriate location,
outside the driver. This will usually be cleanup, since such drivers
tend to already have "normal" modes, such as ones using device nodes that
were created by PNP or by platform device setup.
None the less, there are some APIs to support such legacy drivers. Avoid
using these calls except with such hotplug-deficient drivers::
struct platform_device *platform_device_alloc(
const char *name, int id);
You can use platform_device_alloc() to dynamically allocate a device, which
you will then initialize with resources and platform_device_register().
A better solution is usually::
struct platform_device *platform_device_register_simple(
const char *name, int id,
struct resource *res, unsigned int nres);
You can use platform_device_register_simple() as a one-step call to allocate
and register a device.
Device Naming and Driver Binding
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The platform_device.dev.bus_id is the canonical name for the devices.
It's built from two components:
* platform_device.name ... which is also used to for driver matching.
* platform_device.id ... the device instance number, or else "-1"
to indicate there's only one.
These are concatenated, so name/id "serial"/0 indicates bus_id "serial.0", and
"serial/3" indicates bus_id "serial.3"; both would use the platform_driver
named "serial". While "my_rtc"/-1 would be bus_id "my_rtc" (no instance id)
and use the platform_driver called "my_rtc".
Driver binding is performed automatically by the driver core, invoking
driver probe() after finding a match between device and driver. If the
probe() succeeds, the driver and device are bound as usual. There are
three different ways to find such a match:
- Whenever a device is registered, the drivers for that bus are
checked for matches. Platform devices should be registered very
early during system boot.
- When a driver is registered using platform_driver_register(), all
unbound devices on that bus are checked for matches. Drivers
usually register later during booting, or by module loading.
- Registering a driver using platform_driver_probe() works just like
using platform_driver_register(), except that the driver won't
be probed later if another device registers. (Which is OK, since
this interface is only for use with non-hotpluggable devices.)
Early Platform Devices and Drivers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The early platform interfaces provide platform data to platform device
drivers early on during the system boot. The code is built on top of the
early_param() command line parsing and can be executed very early on.
Example: "earlyprintk" class early serial console in 6 steps
1. Registering early platform device data
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The architecture code registers platform device data using the function
early_platform_add_devices(). In the case of early serial console this
should be hardware configuration for the serial port. Devices registered
at this point will later on be matched against early platform drivers.
2. Parsing kernel command line
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The architecture code calls parse_early_param() to parse the kernel
command line. This will execute all matching early_param() callbacks.
User specified early platform devices will be registered at this point.
For the early serial console case the user can specify port on the
kernel command line as "earlyprintk=serial.0" where "earlyprintk" is
the class string, "serial" is the name of the platform driver and
0 is the platform device id. If the id is -1 then the dot and the
id can be omitted.
3. Installing early platform drivers belonging to a certain class
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The architecture code may optionally force registration of all early
platform drivers belonging to a certain class using the function
early_platform_driver_register_all(). User specified devices from
step 2 have priority over these. This step is omitted by the serial
driver example since the early serial driver code should be disabled
unless the user has specified port on the kernel command line.
4. Early platform driver registration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Compiled-in platform drivers making use of early_platform_init() are
automatically registered during step 2 or 3. The serial driver example
should use early_platform_init("earlyprintk", &platform_driver).
5. Probing of early platform drivers belonging to a certain class
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The architecture code calls early_platform_driver_probe() to match
registered early platform devices associated with a certain class with
registered early platform drivers. Matched devices will get probed().
This step can be executed at any point during the early boot. As soon
as possible may be good for the serial port case.
6. Inside the early platform driver probe()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The driver code needs to take special care during early boot, especially
when it comes to memory allocation and interrupt registration. The code
in the probe() function can use is_early_platform_device() to check if
it is called at early platform device or at the regular platform device
time. The early serial driver performs register_console() at this point.
For further information, see <linux/platform_device.h>.

View File

@@ -0,0 +1,448 @@
=======================================
Porting Drivers to the New Driver Model
=======================================
Patrick Mochel
7 January 2003
Overview
Please refer to `Documentation/driver-api/driver-model/*.rst` for definitions of
various driver types and concepts.
Most of the work of porting devices drivers to the new model happens
at the bus driver layer. This was intentional, to minimize the
negative effect on kernel drivers, and to allow a gradual transition
of bus drivers.
In a nutshell, the driver model consists of a set of objects that can
be embedded in larger, bus-specific objects. Fields in these generic
objects can replace fields in the bus-specific objects.
The generic objects must be registered with the driver model core. By
doing so, they will exported via the sysfs filesystem. sysfs can be
mounted by doing::
# mount -t sysfs sysfs /sys
The Process
Step 0: Read include/linux/device.h for object and function definitions.
Step 1: Registering the bus driver.
- Define a struct bus_type for the bus driver::
struct bus_type pci_bus_type = {
.name = "pci",
};
- Register the bus type.
This should be done in the initialization function for the bus type,
which is usually the module_init(), or equivalent, function::
static int __init pci_driver_init(void)
{
return bus_register(&pci_bus_type);
}
subsys_initcall(pci_driver_init);
The bus type may be unregistered (if the bus driver may be compiled
as a module) by doing::
bus_unregister(&pci_bus_type);
- Export the bus type for others to use.
Other code may wish to reference the bus type, so declare it in a
shared header file and export the symbol.
From include/linux/pci.h::
extern struct bus_type pci_bus_type;
From file the above code appears in::
EXPORT_SYMBOL(pci_bus_type);
- This will cause the bus to show up in /sys/bus/pci/ with two
subdirectories: 'devices' and 'drivers'::
# tree -d /sys/bus/pci/
/sys/bus/pci/
|-- devices
`-- drivers
Step 2: Registering Devices.
struct device represents a single device. It mainly contains metadata
describing the relationship the device has to other entities.
- Embed a struct device in the bus-specific device type::
struct pci_dev {
...
struct device dev; /* Generic device interface */
...
};
It is recommended that the generic device not be the first item in
the struct to discourage programmers from doing mindless casts
between the object types. Instead macros, or inline functions,
should be created to convert from the generic object type::
#define to_pci_dev(n) container_of(n, struct pci_dev, dev)
or
static inline struct pci_dev * to_pci_dev(struct kobject * kobj)
{
return container_of(n, struct pci_dev, dev);
}
This allows the compiler to verify type-safety of the operations
that are performed (which is Good).
- Initialize the device on registration.
When devices are discovered or registered with the bus type, the
bus driver should initialize the generic device. The most important
things to initialize are the bus_id, parent, and bus fields.
The bus_id is an ASCII string that contains the device's address on
the bus. The format of this string is bus-specific. This is
necessary for representing devices in sysfs.
parent is the physical parent of the device. It is important that
the bus driver sets this field correctly.
The driver model maintains an ordered list of devices that it uses
for power management. This list must be in order to guarantee that
devices are shutdown before their physical parents, and vice versa.
The order of this list is determined by the parent of registered
devices.
Also, the location of the device's sysfs directory depends on a
device's parent. sysfs exports a directory structure that mirrors
the device hierarchy. Accurately setting the parent guarantees that
sysfs will accurately represent the hierarchy.
The device's bus field is a pointer to the bus type the device
belongs to. This should be set to the bus_type that was declared
and initialized before.
Optionally, the bus driver may set the device's name and release
fields.
The name field is an ASCII string describing the device, like
"ATI Technologies Inc Radeon QD"
The release field is a callback that the driver model core calls
when the device has been removed, and all references to it have
been released. More on this in a moment.
- Register the device.
Once the generic device has been initialized, it can be registered
with the driver model core by doing::
device_register(&dev->dev);
It can later be unregistered by doing::
device_unregister(&dev->dev);
This should happen on buses that support hotpluggable devices.
If a bus driver unregisters a device, it should not immediately free
it. It should instead wait for the driver model core to call the
device's release method, then free the bus-specific object.
(There may be other code that is currently referencing the device
structure, and it would be rude to free the device while that is
happening).
When the device is registered, a directory in sysfs is created.
The PCI tree in sysfs looks like::
/sys/devices/pci0/
|-- 00:00.0
|-- 00:01.0
| `-- 01:00.0
|-- 00:02.0
| `-- 02:1f.0
| `-- 03:00.0
|-- 00:1e.0
| `-- 04:04.0
|-- 00:1f.0
|-- 00:1f.1
| |-- ide0
| | |-- 0.0
| | `-- 0.1
| `-- ide1
| `-- 1.0
|-- 00:1f.2
|-- 00:1f.3
`-- 00:1f.5
Also, symlinks are created in the bus's 'devices' directory
that point to the device's directory in the physical hierarchy::
/sys/bus/pci/devices/
|-- 00:00.0 -> ../../../devices/pci0/00:00.0
|-- 00:01.0 -> ../../../devices/pci0/00:01.0
|-- 00:02.0 -> ../../../devices/pci0/00:02.0
|-- 00:1e.0 -> ../../../devices/pci0/00:1e.0
|-- 00:1f.0 -> ../../../devices/pci0/00:1f.0
|-- 00:1f.1 -> ../../../devices/pci0/00:1f.1
|-- 00:1f.2 -> ../../../devices/pci0/00:1f.2
|-- 00:1f.3 -> ../../../devices/pci0/00:1f.3
|-- 00:1f.5 -> ../../../devices/pci0/00:1f.5
|-- 01:00.0 -> ../../../devices/pci0/00:01.0/01:00.0
|-- 02:1f.0 -> ../../../devices/pci0/00:02.0/02:1f.0
|-- 03:00.0 -> ../../../devices/pci0/00:02.0/02:1f.0/03:00.0
`-- 04:04.0 -> ../../../devices/pci0/00:1e.0/04:04.0
Step 3: Registering Drivers.
struct device_driver is a simple driver structure that contains a set
of operations that the driver model core may call.
- Embed a struct device_driver in the bus-specific driver.
Just like with devices, do something like::
struct pci_driver {
...
struct device_driver driver;
};
- Initialize the generic driver structure.
When the driver registers with the bus (e.g. doing pci_register_driver()),
initialize the necessary fields of the driver: the name and bus
fields.
- Register the driver.
After the generic driver has been initialized, call::
driver_register(&drv->driver);
to register the driver with the core.
When the driver is unregistered from the bus, unregister it from the
core by doing::
driver_unregister(&drv->driver);
Note that this will block until all references to the driver have
gone away. Normally, there will not be any.
- Sysfs representation.
Drivers are exported via sysfs in their bus's 'driver's directory.
For example::
/sys/bus/pci/drivers/
|-- 3c59x
|-- Ensoniq AudioPCI
|-- agpgart-amdk7
|-- e100
`-- serial
Step 4: Define Generic Methods for Drivers.
struct device_driver defines a set of operations that the driver model
core calls. Most of these operations are probably similar to
operations the bus already defines for drivers, but taking different
parameters.
It would be difficult and tedious to force every driver on a bus to
simultaneously convert their drivers to generic format. Instead, the
bus driver should define single instances of the generic methods that
forward call to the bus-specific drivers. For instance::
static int pci_device_remove(struct device * dev)
{
struct pci_dev * pci_dev = to_pci_dev(dev);
struct pci_driver * drv = pci_dev->driver;
if (drv) {
if (drv->remove)
drv->remove(pci_dev);
pci_dev->driver = NULL;
}
return 0;
}
The generic driver should be initialized with these methods before it
is registered::
/* initialize common driver fields */
drv->driver.name = drv->name;
drv->driver.bus = &pci_bus_type;
drv->driver.probe = pci_device_probe;
drv->driver.resume = pci_device_resume;
drv->driver.suspend = pci_device_suspend;
drv->driver.remove = pci_device_remove;
/* register with core */
driver_register(&drv->driver);
Ideally, the bus should only initialize the fields if they are not
already set. This allows the drivers to implement their own generic
methods.
Step 5: Support generic driver binding.
The model assumes that a device or driver can be dynamically
registered with the bus at any time. When registration happens,
devices must be bound to a driver, or drivers must be bound to all
devices that it supports.
A driver typically contains a list of device IDs that it supports. The
bus driver compares these IDs to the IDs of devices registered with it.
The format of the device IDs, and the semantics for comparing them are
bus-specific, so the generic model does attempt to generalize them.
Instead, a bus may supply a method in struct bus_type that does the
comparison::
int (*match)(struct device * dev, struct device_driver * drv);
match should return positive value if the driver supports the device,
and zero otherwise. It may also return error code (for example
-EPROBE_DEFER) if determining that given driver supports the device is
not possible.
When a device is registered, the bus's list of drivers is iterated
over. bus->match() is called for each one until a match is found.
When a driver is registered, the bus's list of devices is iterated
over. bus->match() is called for each device that is not already
claimed by a driver.
When a device is successfully bound to a driver, device->driver is
set, the device is added to a per-driver list of devices, and a
symlink is created in the driver's sysfs directory that points to the
device's physical directory::
/sys/bus/pci/drivers/
|-- 3c59x
| `-- 00:0b.0 -> ../../../../devices/pci0/00:0b.0
|-- Ensoniq AudioPCI
|-- agpgart-amdk7
| `-- 00:00.0 -> ../../../../devices/pci0/00:00.0
|-- e100
| `-- 00:0c.0 -> ../../../../devices/pci0/00:0c.0
`-- serial
This driver binding should replace the existing driver binding
mechanism the bus currently uses.
Step 6: Supply a hotplug callback.
Whenever a device is registered with the driver model core, the
userspace program /sbin/hotplug is called to notify userspace.
Users can define actions to perform when a device is inserted or
removed.
The driver model core passes several arguments to userspace via
environment variables, including
- ACTION: set to 'add' or 'remove'
- DEVPATH: set to the device's physical path in sysfs.
A bus driver may also supply additional parameters for userspace to
consume. To do this, a bus must implement the 'hotplug' method in
struct bus_type::
int (*hotplug) (struct device *dev, char **envp,
int num_envp, char *buffer, int buffer_size);
This is called immediately before /sbin/hotplug is executed.
Step 7: Cleaning up the bus driver.
The generic bus, device, and driver structures provide several fields
that can replace those defined privately to the bus driver.
- Device list.
struct bus_type contains a list of all devices registered with the bus
type. This includes all devices on all instances of that bus type.
An internal list that the bus uses may be removed, in favor of using
this one.
The core provides an iterator to access these devices::
int bus_for_each_dev(struct bus_type * bus, struct device * start,
void * data, int (*fn)(struct device *, void *));
- Driver list.
struct bus_type also contains a list of all drivers registered with
it. An internal list of drivers that the bus driver maintains may
be removed in favor of using the generic one.
The drivers may be iterated over, like devices::
int bus_for_each_drv(struct bus_type * bus, struct device_driver * start,
void * data, int (*fn)(struct device_driver *, void *));
Please see drivers/base/bus.c for more information.
- rwsem
struct bus_type contains an rwsem that protects all core accesses to
the device and driver lists. This can be used by the bus driver
internally, and should be used when accessing the device or driver
lists the bus maintains.
- Device and driver fields.
Some of the fields in struct device and struct device_driver duplicate
fields in the bus-specific representations of these objects. Feel free
to remove the bus-specific ones and favor the generic ones. Note
though, that this will likely mean fixing up all the drivers that
reference the bus-specific fields (though those should all be 1-line
changes).

View File

@@ -399,7 +399,7 @@ symbol:
will pass the struct gpio_chip* for the chip to all IRQ callbacks, so the
callbacks need to embed the gpio_chip in its state container and obtain a
pointer to the container using container_of().
(See Documentation/driver-model/design-patterns.rst)
(See Documentation/driver-api/driver-model/design-patterns.rst)
- gpiochip_irqchip_add_nested(): adds a nested cascaded irqchip to a gpiochip,
as discussed above regarding different types of cascaded irqchips. The

View File

@@ -14,6 +14,7 @@ available subsections can be seen below.
.. toctree::
:maxdepth: 2
driver-model/index
basics
infrastructure
early-userspace/index