arch/tile: Enable more sophisticated IRQ model for 32-bit chips.
This model is based on the on-chip interrupt model used by the TILE-Gx next-generation hardware, and interacts much more cleanly with the Linux generic IRQ layer. The change includes modifications to the Tilera hypervisor, which are reflected in the hypervisor headers in arch/tile/include/arch/. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> Acked-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
@@ -19,6 +19,11 @@
|
||||
#include <linux/kernel_stat.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <hv/drv_pcie_rc_intf.h>
|
||||
#include <arch/spr_def.h>
|
||||
#include <asm/traps.h>
|
||||
|
||||
/* Bit-flag stored in irq_desc->chip_data to indicate HW-cleared irqs. */
|
||||
#define IS_HW_CLEARED 1
|
||||
|
||||
/*
|
||||
* The set of interrupts we enable for raw_local_irq_enable().
|
||||
@@ -31,30 +36,74 @@ DEFINE_PER_CPU(unsigned long long, interrupts_enabled_mask) =
|
||||
INITIAL_INTERRUPTS_ENABLED;
|
||||
EXPORT_PER_CPU_SYMBOL(interrupts_enabled_mask);
|
||||
|
||||
/* Define per-tile device interrupt state */
|
||||
DEFINE_PER_CPU(HV_IntrState, dev_intr_state);
|
||||
|
||||
/* Define per-tile device interrupt statistics state. */
|
||||
DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_internodealigned_in_smp;
|
||||
EXPORT_PER_CPU_SYMBOL(irq_stat);
|
||||
|
||||
|
||||
/*
|
||||
* Define per-tile irq disable mask; the hardware/HV only has a single
|
||||
* mask that we use to implement both masking and disabling.
|
||||
*/
|
||||
static DEFINE_PER_CPU(unsigned long, irq_disable_mask)
|
||||
____cacheline_internodealigned_in_smp;
|
||||
|
||||
/*
|
||||
* Interrupt dispatcher, invoked upon a hypervisor device interrupt downcall
|
||||
* Per-tile IRQ nesting depth. Used to make sure we enable newly
|
||||
* enabled IRQs before exiting the outermost interrupt.
|
||||
*/
|
||||
static DEFINE_PER_CPU(int, irq_depth);
|
||||
|
||||
/* State for allocating IRQs on Gx. */
|
||||
#if CHIP_HAS_IPI()
|
||||
static unsigned long available_irqs = ~(1UL << IRQ_RESCHEDULE);
|
||||
static DEFINE_SPINLOCK(available_irqs_lock);
|
||||
#endif
|
||||
|
||||
#if CHIP_HAS_IPI()
|
||||
/* Use SPRs to manipulate device interrupts. */
|
||||
#define mask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_SET_1, irq_mask)
|
||||
#define unmask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_RESET_1, irq_mask)
|
||||
#define clear_irqs(irq_mask) __insn_mtspr(SPR_IPI_EVENT_RESET_1, irq_mask)
|
||||
#else
|
||||
/* Use HV to manipulate device interrupts. */
|
||||
#define mask_irqs(irq_mask) hv_disable_intr(irq_mask)
|
||||
#define unmask_irqs(irq_mask) hv_enable_intr(irq_mask)
|
||||
#define clear_irqs(irq_mask) hv_clear_intr(irq_mask)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The interrupt handling path, implemented in terms of HV interrupt
|
||||
* emulation on TILE64 and TILEPro, and IPI hardware on TILE-Gx.
|
||||
*/
|
||||
void tile_dev_intr(struct pt_regs *regs, int intnum)
|
||||
{
|
||||
int irq;
|
||||
int depth = __get_cpu_var(irq_depth)++;
|
||||
unsigned long original_irqs;
|
||||
unsigned long remaining_irqs;
|
||||
struct pt_regs *old_regs;
|
||||
|
||||
#if CHIP_HAS_IPI()
|
||||
/*
|
||||
* Get the device interrupt pending mask from where the hypervisor
|
||||
* has tucked it away for us.
|
||||
* Pending interrupts are listed in an SPR. We might be
|
||||
* nested, so be sure to only handle irqs that weren't already
|
||||
* masked by a previous interrupt. Then, mask out the ones
|
||||
* we're going to handle.
|
||||
*/
|
||||
unsigned long pending_dev_intr_mask = __insn_mfspr(SPR_SYSTEM_SAVE_1_3);
|
||||
|
||||
unsigned long masked = __insn_mfspr(SPR_IPI_MASK_1);
|
||||
original_irqs = __insn_mfspr(SPR_IPI_EVENT_1) & ~masked;
|
||||
__insn_mtspr(SPR_IPI_MASK_SET_1, original_irqs);
|
||||
#else
|
||||
/*
|
||||
* Hypervisor performs the equivalent of the Gx code above and
|
||||
* then puts the pending interrupt mask into a system save reg
|
||||
* for us to find.
|
||||
*/
|
||||
original_irqs = __insn_mfspr(SPR_SYSTEM_SAVE_1_3);
|
||||
#endif
|
||||
remaining_irqs = original_irqs;
|
||||
|
||||
/* Track time spent here in an interrupt context. */
|
||||
struct pt_regs *old_regs = set_irq_regs(regs);
|
||||
old_regs = set_irq_regs(regs);
|
||||
irq_enter();
|
||||
|
||||
#ifdef CONFIG_DEBUG_STACKOVERFLOW
|
||||
@@ -62,25 +111,34 @@ void tile_dev_intr(struct pt_regs *regs, int intnum)
|
||||
{
|
||||
long sp = stack_pointer - (long) current_thread_info();
|
||||
if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) {
|
||||
printk(KERN_EMERG "tile_dev_intr: "
|
||||
pr_emerg("tile_dev_intr: "
|
||||
"stack overflow: %ld\n",
|
||||
sp - sizeof(struct thread_info));
|
||||
dump_stack();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
while (remaining_irqs) {
|
||||
unsigned long irq = __ffs(remaining_irqs);
|
||||
remaining_irqs &= ~(1UL << irq);
|
||||
|
||||
for (irq = 0; pending_dev_intr_mask; ++irq) {
|
||||
if (pending_dev_intr_mask & 0x1) {
|
||||
generic_handle_irq(irq);
|
||||
/* Count device irqs; Linux IPIs are counted elsewhere. */
|
||||
if (irq != IRQ_RESCHEDULE)
|
||||
__get_cpu_var(irq_stat).irq_dev_intr_count++;
|
||||
|
||||
/* Count device irqs; IPIs are counted elsewhere. */
|
||||
if (irq > HV_MAX_IPI_INTERRUPT)
|
||||
__get_cpu_var(irq_stat).irq_dev_intr_count++;
|
||||
}
|
||||
pending_dev_intr_mask >>= 1;
|
||||
generic_handle_irq(irq);
|
||||
}
|
||||
|
||||
/*
|
||||
* If we weren't nested, turn on all enabled interrupts,
|
||||
* including any that were reenabled during interrupt
|
||||
* handling.
|
||||
*/
|
||||
if (depth == 0)
|
||||
unmask_irqs(~__get_cpu_var(irq_disable_mask));
|
||||
|
||||
__get_cpu_var(irq_depth)--;
|
||||
|
||||
/*
|
||||
* Track time spent against the current process again and
|
||||
* process any softirqs if they are waiting.
|
||||
@@ -90,97 +148,114 @@ void tile_dev_intr(struct pt_regs *regs, int intnum)
|
||||
}
|
||||
|
||||
|
||||
/* Mask an interrupt. */
|
||||
static void hv_dev_irq_mask(unsigned int irq)
|
||||
/*
|
||||
* Remove an irq from the disabled mask. If we're in an interrupt
|
||||
* context, defer enabling the HW interrupt until we leave.
|
||||
*/
|
||||
void enable_percpu_irq(unsigned int irq)
|
||||
{
|
||||
HV_IntrState *p_intr_state = &__get_cpu_var(dev_intr_state);
|
||||
hv_disable_intr(p_intr_state, 1 << irq);
|
||||
get_cpu_var(irq_disable_mask) &= ~(1UL << irq);
|
||||
if (__get_cpu_var(irq_depth) == 0)
|
||||
unmask_irqs(1UL << irq);
|
||||
put_cpu_var(irq_disable_mask);
|
||||
}
|
||||
EXPORT_SYMBOL(enable_percpu_irq);
|
||||
|
||||
/*
|
||||
* Add an irq to the disabled mask. We disable the HW interrupt
|
||||
* immediately so that there's no possibility of it firing. If we're
|
||||
* in an interrupt context, the return path is careful to avoid
|
||||
* unmasking a newly disabled interrupt.
|
||||
*/
|
||||
void disable_percpu_irq(unsigned int irq)
|
||||
{
|
||||
get_cpu_var(irq_disable_mask) |= (1UL << irq);
|
||||
mask_irqs(1UL << irq);
|
||||
put_cpu_var(irq_disable_mask);
|
||||
}
|
||||
EXPORT_SYMBOL(disable_percpu_irq);
|
||||
|
||||
/* Mask an interrupt. */
|
||||
static void tile_irq_chip_mask(unsigned int irq)
|
||||
{
|
||||
mask_irqs(1UL << irq);
|
||||
}
|
||||
|
||||
/* Unmask an interrupt. */
|
||||
static void hv_dev_irq_unmask(unsigned int irq)
|
||||
static void tile_irq_chip_unmask(unsigned int irq)
|
||||
{
|
||||
/* Re-enable the hypervisor to generate interrupts. */
|
||||
HV_IntrState *p_intr_state = &__get_cpu_var(dev_intr_state);
|
||||
hv_enable_intr(p_intr_state, 1 << irq);
|
||||
unmask_irqs(1UL << irq);
|
||||
}
|
||||
|
||||
/*
|
||||
* The HV doesn't latch incoming interrupts while an interrupt is
|
||||
* disabled, so we need to reenable interrupts before running the
|
||||
* handler.
|
||||
*
|
||||
* ISSUE: Enabling the interrupt this early avoids any race conditions
|
||||
* but introduces the possibility of nested interrupt stack overflow.
|
||||
* An imminent change to the HV IRQ model will fix this.
|
||||
* Clear an interrupt before processing it so that any new assertions
|
||||
* will trigger another irq.
|
||||
*/
|
||||
static void hv_dev_irq_ack(unsigned int irq)
|
||||
static void tile_irq_chip_ack(unsigned int irq)
|
||||
{
|
||||
hv_dev_irq_unmask(irq);
|
||||
if ((unsigned long)get_irq_chip_data(irq) != IS_HW_CLEARED)
|
||||
clear_irqs(1UL << irq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Since ack() reenables interrupts, there's nothing to do at eoi().
|
||||
* For per-cpu interrupts, we need to avoid unmasking any interrupts
|
||||
* that we disabled via disable_percpu_irq().
|
||||
*/
|
||||
static void hv_dev_irq_eoi(unsigned int irq)
|
||||
static void tile_irq_chip_eoi(unsigned int irq)
|
||||
{
|
||||
if (!(__get_cpu_var(irq_disable_mask) & (1UL << irq)))
|
||||
unmask_irqs(1UL << irq);
|
||||
}
|
||||
|
||||
static struct irq_chip hv_dev_irq_chip = {
|
||||
.typename = "hv_dev_irq_chip",
|
||||
.ack = hv_dev_irq_ack,
|
||||
.mask = hv_dev_irq_mask,
|
||||
.unmask = hv_dev_irq_unmask,
|
||||
.eoi = hv_dev_irq_eoi,
|
||||
};
|
||||
|
||||
static struct irqaction resched_action = {
|
||||
.handler = handle_reschedule_ipi,
|
||||
.name = "resched",
|
||||
.dev_id = handle_reschedule_ipi /* unique token */,
|
||||
static struct irq_chip tile_irq_chip = {
|
||||
.typename = "tile_irq_chip",
|
||||
.ack = tile_irq_chip_ack,
|
||||
.eoi = tile_irq_chip_eoi,
|
||||
.mask = tile_irq_chip_mask,
|
||||
.unmask = tile_irq_chip_unmask,
|
||||
};
|
||||
|
||||
void __init init_IRQ(void)
|
||||
{
|
||||
/* Bind IPI irqs. Does this belong somewhere else in init? */
|
||||
tile_irq_activate(IRQ_RESCHEDULE);
|
||||
BUG_ON(setup_irq(IRQ_RESCHEDULE, &resched_action));
|
||||
ipi_init();
|
||||
}
|
||||
|
||||
void __cpuinit init_per_tile_IRQs(void)
|
||||
void __cpuinit setup_irq_regs(void)
|
||||
{
|
||||
int rc;
|
||||
|
||||
/* Set the pointer to the per-tile device interrupt state. */
|
||||
HV_IntrState *sv_ptr = &__get_cpu_var(dev_intr_state);
|
||||
rc = hv_dev_register_intr_state(sv_ptr);
|
||||
if (rc != HV_OK)
|
||||
panic("hv_dev_register_intr_state: error %d", rc);
|
||||
|
||||
/* Enable interrupt delivery. */
|
||||
unmask_irqs(~0UL);
|
||||
#if CHIP_HAS_IPI()
|
||||
raw_local_irq_unmask(INT_IPI_1);
|
||||
#endif
|
||||
}
|
||||
|
||||
void tile_irq_activate(unsigned int irq)
|
||||
void tile_irq_activate(unsigned int irq, int tile_irq_type)
|
||||
{
|
||||
/*
|
||||
* Paravirtualized drivers can call up to the HV to find out
|
||||
* which irq they're associated with. The HV interface
|
||||
* doesn't provide a generic call for discovering all valid
|
||||
* IRQs, so drivers must call this method to initialize newly
|
||||
* discovered IRQs.
|
||||
*
|
||||
* We could also just initialize all 32 IRQs at startup, but
|
||||
* doing so would lead to a kernel fault if an unexpected
|
||||
* interrupt fires and jumps to a NULL action. By defering
|
||||
* the set_irq_chip_and_handler() call, unexpected IRQs are
|
||||
* handled properly by handle_bad_irq().
|
||||
* We use handle_level_irq() by default because the pending
|
||||
* interrupt vector (whether modeled by the HV on TILE64 and
|
||||
* TILEPro or implemented in hardware on TILE-Gx) has
|
||||
* level-style semantics for each bit. An interrupt fires
|
||||
* whenever a bit is high, not just at edges.
|
||||
*/
|
||||
hv_dev_irq_mask(irq);
|
||||
set_irq_chip_and_handler(irq, &hv_dev_irq_chip, handle_percpu_irq);
|
||||
irq_flow_handler_t handle = handle_level_irq;
|
||||
if (tile_irq_type == TILE_IRQ_PERCPU)
|
||||
handle = handle_percpu_irq;
|
||||
set_irq_chip_and_handler(irq, &tile_irq_chip, handle);
|
||||
|
||||
/*
|
||||
* Flag interrupts that are hardware-cleared so that ack()
|
||||
* won't clear them.
|
||||
*/
|
||||
if (tile_irq_type == TILE_IRQ_HW_CLEAR)
|
||||
set_irq_chip_data(irq, (void *)IS_HW_CLEARED);
|
||||
}
|
||||
EXPORT_SYMBOL(tile_irq_activate);
|
||||
|
||||
|
||||
void ack_bad_irq(unsigned int irq)
|
||||
{
|
||||
printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
|
||||
pr_err("unexpected IRQ trap at vector %02x\n", irq);
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -225,3 +300,35 @@ skip:
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if CHIP_HAS_IPI()
|
||||
int create_irq(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
int result;
|
||||
|
||||
spin_lock_irqsave(&available_irqs_lock, flags);
|
||||
if (available_irqs == 0)
|
||||
result = -ENOMEM;
|
||||
else {
|
||||
result = __ffs(available_irqs);
|
||||
available_irqs &= ~(1UL << result);
|
||||
dynamic_irq_init(result);
|
||||
}
|
||||
spin_unlock_irqrestore(&available_irqs_lock, flags);
|
||||
|
||||
return result;
|
||||
}
|
||||
EXPORT_SYMBOL(create_irq);
|
||||
|
||||
void destroy_irq(unsigned int irq)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&available_irqs_lock, flags);
|
||||
available_irqs |= (1UL << irq);
|
||||
dynamic_irq_cleanup(irq);
|
||||
spin_unlock_irqrestore(&available_irqs_lock, flags);
|
||||
}
|
||||
EXPORT_SYMBOL(destroy_irq);
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user