arch/tile: Enable more sophisticated IRQ model for 32-bit chips.

This model is based on the on-chip interrupt model used by the
TILE-Gx next-generation hardware, and interacts much more cleanly
with the Linux generic IRQ layer.

The change includes modifications to the Tilera hypervisor, which
are reflected in the hypervisor headers in arch/tile/include/arch/.

Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
Chris Metcalf
2010-06-25 16:41:11 -04:00
szülő de5d9bf654
commit fb702b942b
9 fájl változott, egészen pontosan 438 új sor hozzáadva és 157 régi sor törölve

Fájl megtekintése

@@ -19,6 +19,11 @@
#include <linux/kernel_stat.h>
#include <linux/uaccess.h>
#include <hv/drv_pcie_rc_intf.h>
#include <arch/spr_def.h>
#include <asm/traps.h>
/* Bit-flag stored in irq_desc->chip_data to indicate HW-cleared irqs. */
#define IS_HW_CLEARED 1
/*
* The set of interrupts we enable for raw_local_irq_enable().
@@ -31,30 +36,74 @@ DEFINE_PER_CPU(unsigned long long, interrupts_enabled_mask) =
INITIAL_INTERRUPTS_ENABLED;
EXPORT_PER_CPU_SYMBOL(interrupts_enabled_mask);
/* Define per-tile device interrupt state */
DEFINE_PER_CPU(HV_IntrState, dev_intr_state);
/* Define per-tile device interrupt statistics state. */
DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_internodealigned_in_smp;
EXPORT_PER_CPU_SYMBOL(irq_stat);
/*
* Define per-tile irq disable mask; the hardware/HV only has a single
* mask that we use to implement both masking and disabling.
*/
static DEFINE_PER_CPU(unsigned long, irq_disable_mask)
____cacheline_internodealigned_in_smp;
/*
* Interrupt dispatcher, invoked upon a hypervisor device interrupt downcall
* Per-tile IRQ nesting depth. Used to make sure we enable newly
* enabled IRQs before exiting the outermost interrupt.
*/
static DEFINE_PER_CPU(int, irq_depth);
/* State for allocating IRQs on Gx. */
#if CHIP_HAS_IPI()
static unsigned long available_irqs = ~(1UL << IRQ_RESCHEDULE);
static DEFINE_SPINLOCK(available_irqs_lock);
#endif
#if CHIP_HAS_IPI()
/* Use SPRs to manipulate device interrupts. */
#define mask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_SET_1, irq_mask)
#define unmask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_RESET_1, irq_mask)
#define clear_irqs(irq_mask) __insn_mtspr(SPR_IPI_EVENT_RESET_1, irq_mask)
#else
/* Use HV to manipulate device interrupts. */
#define mask_irqs(irq_mask) hv_disable_intr(irq_mask)
#define unmask_irqs(irq_mask) hv_enable_intr(irq_mask)
#define clear_irqs(irq_mask) hv_clear_intr(irq_mask)
#endif
/*
* The interrupt handling path, implemented in terms of HV interrupt
* emulation on TILE64 and TILEPro, and IPI hardware on TILE-Gx.
*/
void tile_dev_intr(struct pt_regs *regs, int intnum)
{
int irq;
int depth = __get_cpu_var(irq_depth)++;
unsigned long original_irqs;
unsigned long remaining_irqs;
struct pt_regs *old_regs;
#if CHIP_HAS_IPI()
/*
* Get the device interrupt pending mask from where the hypervisor
* has tucked it away for us.
* Pending interrupts are listed in an SPR. We might be
* nested, so be sure to only handle irqs that weren't already
* masked by a previous interrupt. Then, mask out the ones
* we're going to handle.
*/
unsigned long pending_dev_intr_mask = __insn_mfspr(SPR_SYSTEM_SAVE_1_3);
unsigned long masked = __insn_mfspr(SPR_IPI_MASK_1);
original_irqs = __insn_mfspr(SPR_IPI_EVENT_1) & ~masked;
__insn_mtspr(SPR_IPI_MASK_SET_1, original_irqs);
#else
/*
* Hypervisor performs the equivalent of the Gx code above and
* then puts the pending interrupt mask into a system save reg
* for us to find.
*/
original_irqs = __insn_mfspr(SPR_SYSTEM_SAVE_1_3);
#endif
remaining_irqs = original_irqs;
/* Track time spent here in an interrupt context. */
struct pt_regs *old_regs = set_irq_regs(regs);
old_regs = set_irq_regs(regs);
irq_enter();
#ifdef CONFIG_DEBUG_STACKOVERFLOW
@@ -62,25 +111,34 @@ void tile_dev_intr(struct pt_regs *regs, int intnum)
{
long sp = stack_pointer - (long) current_thread_info();
if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) {
printk(KERN_EMERG "tile_dev_intr: "
pr_emerg("tile_dev_intr: "
"stack overflow: %ld\n",
sp - sizeof(struct thread_info));
dump_stack();
}
}
#endif
while (remaining_irqs) {
unsigned long irq = __ffs(remaining_irqs);
remaining_irqs &= ~(1UL << irq);
for (irq = 0; pending_dev_intr_mask; ++irq) {
if (pending_dev_intr_mask & 0x1) {
generic_handle_irq(irq);
/* Count device irqs; Linux IPIs are counted elsewhere. */
if (irq != IRQ_RESCHEDULE)
__get_cpu_var(irq_stat).irq_dev_intr_count++;
/* Count device irqs; IPIs are counted elsewhere. */
if (irq > HV_MAX_IPI_INTERRUPT)
__get_cpu_var(irq_stat).irq_dev_intr_count++;
}
pending_dev_intr_mask >>= 1;
generic_handle_irq(irq);
}
/*
* If we weren't nested, turn on all enabled interrupts,
* including any that were reenabled during interrupt
* handling.
*/
if (depth == 0)
unmask_irqs(~__get_cpu_var(irq_disable_mask));
__get_cpu_var(irq_depth)--;
/*
* Track time spent against the current process again and
* process any softirqs if they are waiting.
@@ -90,97 +148,114 @@ void tile_dev_intr(struct pt_regs *regs, int intnum)
}
/* Mask an interrupt. */
static void hv_dev_irq_mask(unsigned int irq)
/*
* Remove an irq from the disabled mask. If we're in an interrupt
* context, defer enabling the HW interrupt until we leave.
*/
void enable_percpu_irq(unsigned int irq)
{
HV_IntrState *p_intr_state = &__get_cpu_var(dev_intr_state);
hv_disable_intr(p_intr_state, 1 << irq);
get_cpu_var(irq_disable_mask) &= ~(1UL << irq);
if (__get_cpu_var(irq_depth) == 0)
unmask_irqs(1UL << irq);
put_cpu_var(irq_disable_mask);
}
EXPORT_SYMBOL(enable_percpu_irq);
/*
* Add an irq to the disabled mask. We disable the HW interrupt
* immediately so that there's no possibility of it firing. If we're
* in an interrupt context, the return path is careful to avoid
* unmasking a newly disabled interrupt.
*/
void disable_percpu_irq(unsigned int irq)
{
get_cpu_var(irq_disable_mask) |= (1UL << irq);
mask_irqs(1UL << irq);
put_cpu_var(irq_disable_mask);
}
EXPORT_SYMBOL(disable_percpu_irq);
/* Mask an interrupt. */
static void tile_irq_chip_mask(unsigned int irq)
{
mask_irqs(1UL << irq);
}
/* Unmask an interrupt. */
static void hv_dev_irq_unmask(unsigned int irq)
static void tile_irq_chip_unmask(unsigned int irq)
{
/* Re-enable the hypervisor to generate interrupts. */
HV_IntrState *p_intr_state = &__get_cpu_var(dev_intr_state);
hv_enable_intr(p_intr_state, 1 << irq);
unmask_irqs(1UL << irq);
}
/*
* The HV doesn't latch incoming interrupts while an interrupt is
* disabled, so we need to reenable interrupts before running the
* handler.
*
* ISSUE: Enabling the interrupt this early avoids any race conditions
* but introduces the possibility of nested interrupt stack overflow.
* An imminent change to the HV IRQ model will fix this.
* Clear an interrupt before processing it so that any new assertions
* will trigger another irq.
*/
static void hv_dev_irq_ack(unsigned int irq)
static void tile_irq_chip_ack(unsigned int irq)
{
hv_dev_irq_unmask(irq);
if ((unsigned long)get_irq_chip_data(irq) != IS_HW_CLEARED)
clear_irqs(1UL << irq);
}
/*
* Since ack() reenables interrupts, there's nothing to do at eoi().
* For per-cpu interrupts, we need to avoid unmasking any interrupts
* that we disabled via disable_percpu_irq().
*/
static void hv_dev_irq_eoi(unsigned int irq)
static void tile_irq_chip_eoi(unsigned int irq)
{
if (!(__get_cpu_var(irq_disable_mask) & (1UL << irq)))
unmask_irqs(1UL << irq);
}
static struct irq_chip hv_dev_irq_chip = {
.typename = "hv_dev_irq_chip",
.ack = hv_dev_irq_ack,
.mask = hv_dev_irq_mask,
.unmask = hv_dev_irq_unmask,
.eoi = hv_dev_irq_eoi,
};
static struct irqaction resched_action = {
.handler = handle_reschedule_ipi,
.name = "resched",
.dev_id = handle_reschedule_ipi /* unique token */,
static struct irq_chip tile_irq_chip = {
.typename = "tile_irq_chip",
.ack = tile_irq_chip_ack,
.eoi = tile_irq_chip_eoi,
.mask = tile_irq_chip_mask,
.unmask = tile_irq_chip_unmask,
};
void __init init_IRQ(void)
{
/* Bind IPI irqs. Does this belong somewhere else in init? */
tile_irq_activate(IRQ_RESCHEDULE);
BUG_ON(setup_irq(IRQ_RESCHEDULE, &resched_action));
ipi_init();
}
void __cpuinit init_per_tile_IRQs(void)
void __cpuinit setup_irq_regs(void)
{
int rc;
/* Set the pointer to the per-tile device interrupt state. */
HV_IntrState *sv_ptr = &__get_cpu_var(dev_intr_state);
rc = hv_dev_register_intr_state(sv_ptr);
if (rc != HV_OK)
panic("hv_dev_register_intr_state: error %d", rc);
/* Enable interrupt delivery. */
unmask_irqs(~0UL);
#if CHIP_HAS_IPI()
raw_local_irq_unmask(INT_IPI_1);
#endif
}
void tile_irq_activate(unsigned int irq)
void tile_irq_activate(unsigned int irq, int tile_irq_type)
{
/*
* Paravirtualized drivers can call up to the HV to find out
* which irq they're associated with. The HV interface
* doesn't provide a generic call for discovering all valid
* IRQs, so drivers must call this method to initialize newly
* discovered IRQs.
*
* We could also just initialize all 32 IRQs at startup, but
* doing so would lead to a kernel fault if an unexpected
* interrupt fires and jumps to a NULL action. By defering
* the set_irq_chip_and_handler() call, unexpected IRQs are
* handled properly by handle_bad_irq().
* We use handle_level_irq() by default because the pending
* interrupt vector (whether modeled by the HV on TILE64 and
* TILEPro or implemented in hardware on TILE-Gx) has
* level-style semantics for each bit. An interrupt fires
* whenever a bit is high, not just at edges.
*/
hv_dev_irq_mask(irq);
set_irq_chip_and_handler(irq, &hv_dev_irq_chip, handle_percpu_irq);
irq_flow_handler_t handle = handle_level_irq;
if (tile_irq_type == TILE_IRQ_PERCPU)
handle = handle_percpu_irq;
set_irq_chip_and_handler(irq, &tile_irq_chip, handle);
/*
* Flag interrupts that are hardware-cleared so that ack()
* won't clear them.
*/
if (tile_irq_type == TILE_IRQ_HW_CLEAR)
set_irq_chip_data(irq, (void *)IS_HW_CLEARED);
}
EXPORT_SYMBOL(tile_irq_activate);
void ack_bad_irq(unsigned int irq)
{
printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
pr_err("unexpected IRQ trap at vector %02x\n", irq);
}
/*
@@ -225,3 +300,35 @@ skip:
}
return 0;
}
#if CHIP_HAS_IPI()
int create_irq(void)
{
unsigned long flags;
int result;
spin_lock_irqsave(&available_irqs_lock, flags);
if (available_irqs == 0)
result = -ENOMEM;
else {
result = __ffs(available_irqs);
available_irqs &= ~(1UL << result);
dynamic_irq_init(result);
}
spin_unlock_irqrestore(&available_irqs_lock, flags);
return result;
}
EXPORT_SYMBOL(create_irq);
void destroy_irq(unsigned int irq)
{
unsigned long flags;
spin_lock_irqsave(&available_irqs_lock, flags);
available_irqs |= (1UL << irq);
dynamic_irq_cleanup(irq);
spin_unlock_irqrestore(&available_irqs_lock, flags);
}
EXPORT_SYMBOL(destroy_irq);
#endif