Merge with /pub/scm/linux/kernel/git/torvalds/linux-2.6.git
This commit is contained in:
@@ -8,7 +8,7 @@
|
||||
|
||||
DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \
|
||||
kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
|
||||
procfs-guide.xml writing_usb_driver.xml scsidrivers.xml \
|
||||
procfs-guide.xml writing_usb_driver.xml \
|
||||
sis900.xml kernel-api.xml journal-api.xml lsm.xml usb.xml \
|
||||
gadget.xml libata.xml mtdnand.xml librs.xml
|
||||
|
||||
|
@@ -338,7 +338,6 @@ X!Earch/i386/kernel/mca.c
|
||||
X!Iinclude/linux/device.h
|
||||
-->
|
||||
!Edrivers/base/driver.c
|
||||
!Edrivers/base/class_simple.c
|
||||
!Edrivers/base/core.c
|
||||
!Edrivers/base/firmware_class.c
|
||||
!Edrivers/base/transport_class.c
|
||||
|
@@ -14,7 +14,7 @@
|
||||
</authorgroup>
|
||||
|
||||
<copyright>
|
||||
<year>2003</year>
|
||||
<year>2003-2005</year>
|
||||
<holder>Jeff Garzik</holder>
|
||||
</copyright>
|
||||
|
||||
@@ -44,30 +44,38 @@
|
||||
|
||||
<toc></toc>
|
||||
|
||||
<chapter id="libataThanks">
|
||||
<title>Thanks</title>
|
||||
<chapter id="libataIntroduction">
|
||||
<title>Introduction</title>
|
||||
<para>
|
||||
The bulk of the ATA knowledge comes thanks to long conversations with
|
||||
Andre Hedrick (www.linux-ide.org).
|
||||
libATA is a library used inside the Linux kernel to support ATA host
|
||||
controllers and devices. libATA provides an ATA driver API, class
|
||||
transports for ATA and ATAPI devices, and SCSI<->ATA translation
|
||||
for ATA devices according to the T10 SAT specification.
|
||||
</para>
|
||||
<para>
|
||||
Thanks to Alan Cox for pointing out similarities
|
||||
between SATA and SCSI, and in general for motivation to hack on
|
||||
libata.
|
||||
</para>
|
||||
<para>
|
||||
libata's device detection
|
||||
method, ata_pio_devchk, and in general all the early probing was
|
||||
based on extensive study of Hale Landis's probe/reset code in his
|
||||
ATADRVR driver (www.ata-atapi.com).
|
||||
This Guide documents the libATA driver API, library functions, library
|
||||
internals, and a couple sample ATA low-level drivers.
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="libataDriverApi">
|
||||
<title>libata Driver API</title>
|
||||
<para>
|
||||
struct ata_port_operations is defined for every low-level libata
|
||||
hardware driver, and it controls how the low-level driver
|
||||
interfaces with the ATA and SCSI layers.
|
||||
</para>
|
||||
<para>
|
||||
FIS-based drivers will hook into the system with ->qc_prep() and
|
||||
->qc_issue() high-level hooks. Hardware which behaves in a manner
|
||||
similar to PCI IDE hardware may utilize several generic helpers,
|
||||
defining at a bare minimum the bus I/O addresses of the ATA shadow
|
||||
register blocks.
|
||||
</para>
|
||||
<sect1>
|
||||
<title>struct ata_port_operations</title>
|
||||
|
||||
<sect2><title>Disable ATA port</title>
|
||||
<programlisting>
|
||||
void (*port_disable) (struct ata_port *);
|
||||
</programlisting>
|
||||
@@ -78,6 +86,9 @@ void (*port_disable) (struct ata_port *);
|
||||
unplug).
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Post-IDENTIFY device configuration</title>
|
||||
<programlisting>
|
||||
void (*dev_config) (struct ata_port *, struct ata_device *);
|
||||
</programlisting>
|
||||
@@ -88,6 +99,9 @@ void (*dev_config) (struct ata_port *, struct ata_device *);
|
||||
issue of SET FEATURES - XFER MODE, and prior to operation.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Set PIO/DMA mode</title>
|
||||
<programlisting>
|
||||
void (*set_piomode) (struct ata_port *, struct ata_device *);
|
||||
void (*set_dmamode) (struct ata_port *, struct ata_device *);
|
||||
@@ -108,6 +122,9 @@ void (*post_set_mode) (struct ata_port *ap);
|
||||
->set_dma_mode() is only called if DMA is possible.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Taskfile read/write</title>
|
||||
<programlisting>
|
||||
void (*tf_load) (struct ata_port *ap, struct ata_taskfile *tf);
|
||||
void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
|
||||
@@ -120,6 +137,9 @@ void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf);
|
||||
taskfile register values.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>ATA command execute</title>
|
||||
<programlisting>
|
||||
void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf);
|
||||
</programlisting>
|
||||
@@ -129,17 +149,37 @@ void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf);
|
||||
->tf_load(), to be initiated in hardware.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Per-cmd ATAPI DMA capabilities filter</title>
|
||||
<programlisting>
|
||||
u8 (*check_status)(struct ata_port *ap);
|
||||
void (*dev_select)(struct ata_port *ap, unsigned int device);
|
||||
int (*check_atapi_dma) (struct ata_queued_cmd *qc);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
Reads the Status ATA shadow register from hardware. On some
|
||||
hardware, this has the side effect of clearing the interrupt
|
||||
condition.
|
||||
Allow low-level driver to filter ATA PACKET commands, returning a status
|
||||
indicating whether or not it is OK to use DMA for the supplied PACKET
|
||||
command.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Read specific ATA shadow registers</title>
|
||||
<programlisting>
|
||||
u8 (*check_status)(struct ata_port *ap);
|
||||
u8 (*check_altstatus)(struct ata_port *ap);
|
||||
u8 (*check_err)(struct ata_port *ap);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
Reads the Status/AltStatus/Error ATA shadow register from
|
||||
hardware. On some hardware, reading the Status register has
|
||||
the side effect of clearing the interrupt condition.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Select ATA device on bus</title>
|
||||
<programlisting>
|
||||
void (*dev_select)(struct ata_port *ap, unsigned int device);
|
||||
</programlisting>
|
||||
@@ -147,9 +187,13 @@ void (*dev_select)(struct ata_port *ap, unsigned int device);
|
||||
<para>
|
||||
Issues the low-level hardware command(s) that causes one of N
|
||||
hardware devices to be considered 'selected' (active and
|
||||
available for use) on the ATA bus.
|
||||
available for use) on the ATA bus. This generally has no
|
||||
meaning on FIS-based devices.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Reset ATA bus</title>
|
||||
<programlisting>
|
||||
void (*phy_reset) (struct ata_port *ap);
|
||||
</programlisting>
|
||||
@@ -162,17 +206,31 @@ void (*phy_reset) (struct ata_port *ap);
|
||||
functions ata_bus_reset() or sata_phy_reset() for this hook.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Control PCI IDE BMDMA engine</title>
|
||||
<programlisting>
|
||||
void (*bmdma_setup) (struct ata_queued_cmd *qc);
|
||||
void (*bmdma_start) (struct ata_queued_cmd *qc);
|
||||
void (*bmdma_stop) (struct ata_port *ap);
|
||||
u8 (*bmdma_status) (struct ata_port *ap);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
When setting up an IDE BMDMA transaction, these hooks arm
|
||||
(->bmdma_setup) and fire (->bmdma_start) the hardware's DMA
|
||||
engine.
|
||||
When setting up an IDE BMDMA transaction, these hooks arm
|
||||
(->bmdma_setup), fire (->bmdma_start), and halt (->bmdma_stop)
|
||||
the hardware's DMA engine. ->bmdma_status is used to read the standard
|
||||
PCI IDE DMA Status register.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
These hooks are typically either no-ops, or simply not implemented, in
|
||||
FIS-based drivers.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>High-level taskfile hooks</title>
|
||||
<programlisting>
|
||||
void (*qc_prep) (struct ata_queued_cmd *qc);
|
||||
int (*qc_issue) (struct ata_queued_cmd *qc);
|
||||
@@ -190,20 +248,26 @@ int (*qc_issue) (struct ata_queued_cmd *qc);
|
||||
->qc_issue is used to make a command active, once the hardware
|
||||
and S/G tables have been prepared. IDE BMDMA drivers use the
|
||||
helper function ata_qc_issue_prot() for taskfile protocol-based
|
||||
dispatch. More advanced drivers roll their own ->qc_issue
|
||||
implementation, using this as the "issue new ATA command to
|
||||
hardware" hook.
|
||||
dispatch. More advanced drivers implement their own ->qc_issue.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Timeout (error) handling</title>
|
||||
<programlisting>
|
||||
void (*eng_timeout) (struct ata_port *ap);
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
This is a high level error handling function, called from the
|
||||
error handling thread, when a command times out.
|
||||
This is a high level error handling function, called from the
|
||||
error handling thread, when a command times out. Most newer
|
||||
hardware will implement its own error handling code here. IDE BMDMA
|
||||
drivers may use the helper function ata_eng_timeout().
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Hardware interrupt handling</title>
|
||||
<programlisting>
|
||||
irqreturn_t (*irq_handler)(int, void *, struct pt_regs *);
|
||||
void (*irq_clear) (struct ata_port *);
|
||||
@@ -216,6 +280,9 @@ void (*irq_clear) (struct ata_port *);
|
||||
is quiet.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>SATA phy read/write</title>
|
||||
<programlisting>
|
||||
u32 (*scr_read) (struct ata_port *ap, unsigned int sc_reg);
|
||||
void (*scr_write) (struct ata_port *ap, unsigned int sc_reg,
|
||||
@@ -227,6 +294,9 @@ void (*scr_write) (struct ata_port *ap, unsigned int sc_reg,
|
||||
if ->phy_reset hook called the sata_phy_reset() helper function.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
<sect2><title>Init and shutdown</title>
|
||||
<programlisting>
|
||||
int (*port_start) (struct ata_port *ap);
|
||||
void (*port_stop) (struct ata_port *ap);
|
||||
@@ -240,15 +310,17 @@ void (*host_stop) (struct ata_host_set *host_set);
|
||||
tasks.
|
||||
</para>
|
||||
<para>
|
||||
->host_stop() is called when the rmmod or hot unplug process
|
||||
begins. The hook must stop all hardware interrupts, DMA
|
||||
engines, etc.
|
||||
</para>
|
||||
<para>
|
||||
->port_stop() is called after ->host_stop(). It's sole function
|
||||
is to release DMA/memory resources, now that they are no longer
|
||||
actively being used.
|
||||
</para>
|
||||
<para>
|
||||
->host_stop() is called after all ->port_stop() calls
|
||||
have completed. The hook must finalize hardware shutdown, release DMA
|
||||
and other resources, etc.
|
||||
</para>
|
||||
|
||||
</sect2>
|
||||
|
||||
</sect1>
|
||||
</chapter>
|
||||
@@ -279,4 +351,24 @@ void (*host_stop) (struct ata_host_set *host_set);
|
||||
!Idrivers/scsi/sata_sil.c
|
||||
</chapter>
|
||||
|
||||
<chapter id="libataThanks">
|
||||
<title>Thanks</title>
|
||||
<para>
|
||||
The bulk of the ATA knowledge comes thanks to long conversations with
|
||||
Andre Hedrick (www.linux-ide.org), and long hours pondering the ATA
|
||||
and SCSI specifications.
|
||||
</para>
|
||||
<para>
|
||||
Thanks to Alan Cox for pointing out similarities
|
||||
between SATA and SCSI, and in general for motivation to hack on
|
||||
libata.
|
||||
</para>
|
||||
<para>
|
||||
libata's device detection
|
||||
method, ata_pio_devchk, and in general all the early probing was
|
||||
based on extensive study of Hale Landis's probe/reset code in his
|
||||
ATADRVR driver (www.ata-atapi.com).
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
</book>
|
||||
|
@@ -1,193 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
|
||||
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
|
||||
|
||||
<book id="scsidrivers">
|
||||
<bookinfo>
|
||||
<title>SCSI Subsystem Interfaces</title>
|
||||
|
||||
<authorgroup>
|
||||
<author>
|
||||
<firstname>Douglas</firstname>
|
||||
<surname>Gilbert</surname>
|
||||
<affiliation>
|
||||
<address>
|
||||
<email>dgilbert@interlog.com</email>
|
||||
</address>
|
||||
</affiliation>
|
||||
</author>
|
||||
</authorgroup>
|
||||
<pubdate>2003-08-11</pubdate>
|
||||
|
||||
<copyright>
|
||||
<year>2002</year>
|
||||
<year>2003</year>
|
||||
<holder>Douglas Gilbert</holder>
|
||||
</copyright>
|
||||
|
||||
<legalnotice>
|
||||
<para>
|
||||
This documentation is free software; you can redistribute
|
||||
it and/or modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later
|
||||
version.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
This program is distributed in the hope that it will be
|
||||
useful, but WITHOUT ANY WARRANTY; without even the implied
|
||||
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
See the GNU General Public License for more details.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with this program; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
MA 02111-1307 USA
|
||||
</para>
|
||||
|
||||
<para>
|
||||
For more details see the file COPYING in the source
|
||||
distribution of Linux.
|
||||
</para>
|
||||
</legalnotice>
|
||||
|
||||
</bookinfo>
|
||||
|
||||
<toc></toc>
|
||||
|
||||
<chapter id="intro">
|
||||
<title>Introduction</title>
|
||||
<para>
|
||||
This document outlines the interface between the Linux scsi mid level
|
||||
and lower level drivers. Lower level drivers are variously called HBA
|
||||
(host bus adapter) drivers, host drivers (HD) or pseudo adapter drivers.
|
||||
The latter alludes to the fact that a lower level driver may be a
|
||||
bridge to another IO subsystem (and the "ide-scsi" driver is an example
|
||||
of this). There can be many lower level drivers active in a running
|
||||
system, but only one per hardware type. For example, the aic7xxx driver
|
||||
controls adaptec controllers based on the 7xxx chip series. Most lower
|
||||
level drivers can control one or more scsi hosts (a.k.a. scsi initiators).
|
||||
</para>
|
||||
<para>
|
||||
This document can been found in an ASCII text file in the linux kernel
|
||||
source: <filename>Documentation/scsi/scsi_mid_low_api.txt</filename> .
|
||||
It currently hold a little more information than this document. The
|
||||
<filename>drivers/scsi/hosts.h</filename> and <filename>
|
||||
drivers/scsi/scsi.h</filename> headers contain descriptions of members
|
||||
of important structures for the scsi subsystem.
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="driver-struct">
|
||||
<title>Driver structure</title>
|
||||
<para>
|
||||
Traditionally a lower level driver for the scsi subsystem has been
|
||||
at least two files in the drivers/scsi directory. For example, a
|
||||
driver called "xyz" has a header file "xyz.h" and a source file
|
||||
"xyz.c". [Actually there is no good reason why this couldn't all
|
||||
be in one file.] Some drivers that have been ported to several operating
|
||||
systems (e.g. aic7xxx which has separate files for generic and
|
||||
OS-specific code) have more than two files. Such drivers tend to have
|
||||
their own directory under the drivers/scsi directory.
|
||||
</para>
|
||||
<para>
|
||||
scsi_module.c is normally included at the end of a lower
|
||||
level driver. For it to work a declaration like this is needed before
|
||||
it is included:
|
||||
<programlisting>
|
||||
static Scsi_Host_Template driver_template = DRIVER_TEMPLATE;
|
||||
/* DRIVER_TEMPLATE should contain pointers to supported interface
|
||||
functions. Scsi_Host_Template is defined hosts.h */
|
||||
#include "scsi_module.c"
|
||||
</programlisting>
|
||||
</para>
|
||||
<para>
|
||||
The scsi_module.c assumes the name "driver_template" is appropriately
|
||||
defined. It contains 2 functions:
|
||||
<orderedlist>
|
||||
<listitem><para>
|
||||
init_this_scsi_driver() called during builtin and module driver
|
||||
initialization: invokes mid level's scsi_register_host()
|
||||
</para></listitem>
|
||||
<listitem><para>
|
||||
exit_this_scsi_driver() called during closedown: invokes
|
||||
mid level's scsi_unregister_host()
|
||||
</para></listitem>
|
||||
</orderedlist>
|
||||
</para>
|
||||
<para>
|
||||
When a new, lower level driver is being added to Linux, the following
|
||||
files (all found in the drivers/scsi directory) will need some attention:
|
||||
Makefile, Config.help and Config.in . It is probably best to look at what
|
||||
an existing lower level driver does in this regard.
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="intfunctions">
|
||||
<title>Interface Functions</title>
|
||||
!EDocumentation/scsi/scsi_mid_low_api.txt
|
||||
</chapter>
|
||||
|
||||
<chapter id="locks">
|
||||
<title>Locks</title>
|
||||
<para>
|
||||
Each Scsi_Host instance has a spin_lock called Scsi_Host::default_lock
|
||||
which is initialized in scsi_register() [found in hosts.c]. Within the
|
||||
same function the Scsi_Host::host_lock pointer is initialized to point
|
||||
at default_lock with the scsi_assign_lock() function. Thereafter
|
||||
lock and unlock operations performed by the mid level use the
|
||||
Scsi_Host::host_lock pointer.
|
||||
</para>
|
||||
<para>
|
||||
Lower level drivers can override the use of Scsi_Host::default_lock by
|
||||
using scsi_assign_lock(). The earliest opportunity to do this would
|
||||
be in the detect() function after it has invoked scsi_register(). It
|
||||
could be replaced by a coarser grain lock (e.g. per driver) or a
|
||||
lock of equal granularity (i.e. per host). Using finer grain locks
|
||||
(e.g. per scsi device) may be possible by juggling locks in
|
||||
queuecommand().
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="changes">
|
||||
<title>Changes since lk 2.4 series</title>
|
||||
<para>
|
||||
io_request_lock has been replaced by several finer grained locks. The lock
|
||||
relevant to lower level drivers is Scsi_Host::host_lock and there is one
|
||||
per scsi host.
|
||||
</para>
|
||||
<para>
|
||||
The older error handling mechanism has been removed. This means the
|
||||
lower level interface functions abort() and reset() have been removed.
|
||||
</para>
|
||||
<para>
|
||||
In the 2.4 series the scsi subsystem configuration descriptions were
|
||||
aggregated with the configuration descriptions from all other Linux
|
||||
subsystems in the Documentation/Configure.help file. In the 2.5 series,
|
||||
the scsi subsystem now has its own (much smaller) drivers/scsi/Config.help
|
||||
file.
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="credits">
|
||||
<title>Credits</title>
|
||||
<para>
|
||||
The following people have contributed to this document:
|
||||
<orderedlist>
|
||||
<listitem><para>
|
||||
Mike Anderson <email>andmike@us.ibm.com</email>
|
||||
</para></listitem>
|
||||
<listitem><para>
|
||||
James Bottomley <email>James.Bottomley@steeleye.com</email>
|
||||
</para></listitem>
|
||||
<listitem><para>
|
||||
Patrick Mansfield <email>patmans@us.ibm.com</email>
|
||||
</para></listitem>
|
||||
</orderedlist>
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
</book>
|
@@ -271,7 +271,7 @@ patch, which certifies that you wrote it or otherwise have the right to
|
||||
pass it on as a open-source patch. The rules are pretty simple: if you
|
||||
can certify the below:
|
||||
|
||||
Developer's Certificate of Origin 1.0
|
||||
Developer's Certificate of Origin 1.1
|
||||
|
||||
By making a contribution to this project, I certify that:
|
||||
|
||||
@@ -291,6 +291,12 @@ can certify the below:
|
||||
person who certified (a), (b) or (c) and I have not modified
|
||||
it.
|
||||
|
||||
(d) I understand and agree that this project and the contribution
|
||||
are public and that a record of the contribution (including all
|
||||
personal information I submit with it, including my sign-off) is
|
||||
maintained indefinitely and may be redistributed consistent with
|
||||
this project or the open source license(s) involved.
|
||||
|
||||
then you just add a line saying
|
||||
|
||||
Signed-off-by: Random J Developer <random@developer.org>
|
||||
|
128
Documentation/cpu-freq/cpufreq-stats.txt
Normal file
128
Documentation/cpu-freq/cpufreq-stats.txt
Normal file
@@ -0,0 +1,128 @@
|
||||
|
||||
CPU frequency and voltage scaling statictics in the Linux(TM) kernel
|
||||
|
||||
|
||||
L i n u x c p u f r e q - s t a t s d r i v e r
|
||||
|
||||
- information for users -
|
||||
|
||||
|
||||
Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
||||
|
||||
Contents
|
||||
1. Introduction
|
||||
2. Statistics Provided (with example)
|
||||
3. Configuring cpufreq-stats
|
||||
|
||||
|
||||
1. Introduction
|
||||
|
||||
cpufreq-stats is a driver that provices CPU frequency statistics for each CPU.
|
||||
This statistics is provided in /sysfs as a bunch of read_only interfaces. This
|
||||
interface (when configured) will appear in a seperate directory under cpufreq
|
||||
in /sysfs (<sysfs root>/devices/system/cpu/cpuX/cpufreq/stats/) for each CPU.
|
||||
Various statistics will form read_only files under this directory.
|
||||
|
||||
This driver is designed to be independent of any particular cpufreq_driver
|
||||
that may be running on your CPU. So, it will work with any cpufreq_driver.
|
||||
|
||||
|
||||
2. Statistics Provided (with example)
|
||||
|
||||
cpufreq stats provides following statistics (explained in detail below).
|
||||
- time_in_state
|
||||
- total_trans
|
||||
- trans_table
|
||||
|
||||
All the statistics will be from the time the stats driver has been inserted
|
||||
to the time when a read of a particular statistic is done. Obviously, stats
|
||||
driver will not have any information about the the frequcny transitions before
|
||||
the stats driver insertion.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # ls -l
|
||||
total 0
|
||||
drwxr-xr-x 2 root root 0 May 14 16:06 .
|
||||
drwxr-xr-x 3 root root 0 May 14 15:58 ..
|
||||
-r--r--r-- 1 root root 4096 May 14 16:06 time_in_state
|
||||
-r--r--r-- 1 root root 4096 May 14 16:06 total_trans
|
||||
-r--r--r-- 1 root root 4096 May 14 16:06 trans_table
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
- time_in_state
|
||||
This gives the amount of time spent in each of the frequencies supported by
|
||||
this CPU. The cat output will have "<frequency> <time>" pair in each line, which
|
||||
will mean this CPU spent <time> usertime units of time at <frequency>. Output
|
||||
will have one line for each of the supported freuencies. usertime units here
|
||||
is 10mS (similar to other time exported in /proc).
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat time_in_state
|
||||
3600000 2089
|
||||
3400000 136
|
||||
3200000 34
|
||||
3000000 67
|
||||
2800000 172488
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
|
||||
- total_trans
|
||||
This gives the total number of frequency transitions on this CPU. The cat
|
||||
output will have a single count which is the total number of frequency
|
||||
transitions.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat total_trans
|
||||
20
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
- trans_table
|
||||
This will give a fine grained information about all the CPU frequency
|
||||
transitions. The cat output here is a two dimensional matrix, where an entry
|
||||
<i,j> (row i, column j) represents the count of number of transitions from
|
||||
Freq_i to Freq_j. Freq_i is in descending order with increasing rows and
|
||||
Freq_j is in descending order with increasing columns. The output here also
|
||||
contains the actual freq values for each row and column for better readability.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat trans_table
|
||||
From : To
|
||||
: 3600000 3400000 3200000 3000000 2800000
|
||||
3600000: 0 5 0 0 0
|
||||
3400000: 4 0 2 0 0
|
||||
3200000: 0 1 0 2 0
|
||||
3000000: 0 0 1 0 3
|
||||
2800000: 0 0 0 2 0
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
|
||||
3. Configuring cpufreq-stats
|
||||
|
||||
To configure cpufreq-stats in your kernel
|
||||
Config Main Menu
|
||||
Power management options (ACPI, APM) --->
|
||||
CPU Frequency scaling --->
|
||||
[*] CPU Frequency scaling
|
||||
<*> CPU frequency translation statistics
|
||||
[*] CPU frequency translation statistics details
|
||||
|
||||
|
||||
"CPU Frequency scaling" (CONFIG_CPU_FREQ) should be enabled to configure
|
||||
cpufreq-stats.
|
||||
|
||||
"CPU frequency translation statistics" (CONFIG_CPU_FREQ_STAT) provides the
|
||||
basic statistics which includes time_in_state and total_trans.
|
||||
|
||||
"CPU frequency translation statistics details" (CONFIG_CPU_FREQ_STAT_DETAILS)
|
||||
provides fine grained cpufreq stats by trans_table. The reason for having a
|
||||
seperate config option for trans_table is:
|
||||
- trans_table goes against the traditional /sysfs rule of one value per
|
||||
interface. It provides a whole bunch of value in a 2 dimensional matrix
|
||||
form.
|
||||
|
||||
Once these two options are enabled and your CPU supports cpufrequency, you
|
||||
will be able to see the CPU frequency statistics in /sysfs.
|
||||
|
||||
|
||||
|
||||
|
@@ -76,6 +76,14 @@ driver_data: Driver-specific data.
|
||||
|
||||
platform_data: Platform data specific to the device.
|
||||
|
||||
Example: for devices on custom boards, as typical of embedded
|
||||
and SOC based hardware, Linux often uses platform_data to point
|
||||
to board-specific structures describing devices and how they
|
||||
are wired. That can include what ports are available, chip
|
||||
variants, which GPIO pins act in what additional roles, and so
|
||||
on. This shrinks the "Board Support Packages" (BSPs) and
|
||||
minimizes board-specific #ifdefs in drivers.
|
||||
|
||||
current_state: Current power state of the device.
|
||||
|
||||
saved_state: Pointer to saved state of the device. This is usable by
|
||||
|
@@ -5,21 +5,17 @@ struct device_driver {
|
||||
char * name;
|
||||
struct bus_type * bus;
|
||||
|
||||
rwlock_t lock;
|
||||
atomic_t refcount;
|
||||
|
||||
list_t bus_list;
|
||||
struct completion unloaded;
|
||||
struct kobject kobj;
|
||||
list_t devices;
|
||||
|
||||
struct driver_dir_entry dir;
|
||||
struct module *owner;
|
||||
|
||||
int (*probe) (struct device * dev);
|
||||
int (*remove) (struct device * dev);
|
||||
|
||||
int (*suspend) (struct device * dev, pm_message_t state, u32 level);
|
||||
int (*resume) (struct device * dev, u32 level);
|
||||
|
||||
void (*release) (struct device_driver * drv);
|
||||
};
|
||||
|
||||
|
||||
@@ -51,7 +47,6 @@ being converted completely to the new model.
|
||||
static struct device_driver eepro100_driver = {
|
||||
.name = "eepro100",
|
||||
.bus = &pci_bus_type,
|
||||
.devclass = ðernet_devclass, /* when it's implemented */
|
||||
|
||||
.probe = eepro100_probe,
|
||||
.remove = eepro100_remove,
|
||||
@@ -85,7 +80,6 @@ static struct pci_driver eepro100_driver = {
|
||||
.driver = {
|
||||
.name = "eepro100",
|
||||
.bus = &pci_bus_type,
|
||||
.devclass = ðernet_devclass, /* when it's implemented */
|
||||
.probe = eepro100_probe,
|
||||
.remove = eepro100_remove,
|
||||
.suspend = eepro100_suspend,
|
||||
@@ -166,27 +160,32 @@ Callbacks
|
||||
|
||||
int (*probe) (struct device * dev);
|
||||
|
||||
probe is called to verify the existence of a certain type of
|
||||
hardware. This is called during the driver binding process, after the
|
||||
bus has verified that the device ID of a device matches one of the
|
||||
device IDs supported by the driver.
|
||||
The probe() entry is called in task context, with the bus's rwsem locked
|
||||
and the driver partially bound to the device. Drivers commonly use
|
||||
container_of() to convert "dev" to a bus-specific type, both in probe()
|
||||
and other routines. That type often provides device resource data, such
|
||||
as pci_dev.resource[] or platform_device.resources, which is used in
|
||||
addition to dev->platform_data to initialize the driver.
|
||||
|
||||
This callback only verifies that there actually is supported hardware
|
||||
present. It may allocate a driver-specific structure, but it should
|
||||
not do any initialization of the hardware itself. The device-specific
|
||||
structure may be stored in the device's driver_data field.
|
||||
This callback holds the driver-specific logic to bind the driver to a
|
||||
given device. That includes verifying that the device is present, that
|
||||
it's a version the driver can handle, that driver data structures can
|
||||
be allocated and initialized, and that any hardware can be initialized.
|
||||
Drivers often store a pointer to their state with dev_set_drvdata().
|
||||
When the driver has successfully bound itself to that device, then probe()
|
||||
returns zero and the driver model code will finish its part of binding
|
||||
the driver to that device.
|
||||
|
||||
int (*init) (struct device * dev);
|
||||
|
||||
init is called during the binding stage. It is called after probe has
|
||||
successfully returned and the device has been registered with its
|
||||
class. It is responsible for initializing the hardware.
|
||||
A driver's probe() may return a negative errno value to indicate that
|
||||
the driver did not bind to this device, in which case it should have
|
||||
released all reasources it allocated.
|
||||
|
||||
int (*remove) (struct device * dev);
|
||||
|
||||
remove is called to dissociate a driver with a device. This may be
|
||||
remove is called to unbind a driver from a device. This may be
|
||||
called if a device is physically removed from the system, if the
|
||||
driver module is being unloaded, or during a reboot sequence.
|
||||
driver module is being unloaded, during a reboot sequence, or
|
||||
in other cases.
|
||||
|
||||
It is up to the driver to determine if the device is present or
|
||||
not. It should free any resources allocated specifically for the
|
||||
|
@@ -214,7 +214,7 @@ Other notes:
|
||||
|
||||
A very simple (and naive) implementation of a device attribute is:
|
||||
|
||||
static ssize_t show_name(struct device * dev, char * buf)
|
||||
static ssize_t show_name(struct device *dev, struct device_attribute *attr, char *buf)
|
||||
{
|
||||
return sprintf(buf,"%s\n",dev->name);
|
||||
}
|
||||
|
@@ -1,21 +1,21 @@
|
||||
Generic HDLC layer
|
||||
Krzysztof Halasa <khc@pm.waw.pl>
|
||||
January, 2003
|
||||
|
||||
|
||||
Generic HDLC layer currently supports:
|
||||
- Frame Relay (ANSI, CCITT and no LMI), with ARP support (no InARP).
|
||||
Normal (routed) and Ethernet-bridged (Ethernet device emulation)
|
||||
interfaces can share a single PVC.
|
||||
- raw HDLC - either IP (IPv4) interface or Ethernet device emulation.
|
||||
- Cisco HDLC,
|
||||
- PPP (uses syncppp.c),
|
||||
- X.25 (uses X.25 routines).
|
||||
1. Frame Relay (ANSI, CCITT, Cisco and no LMI).
|
||||
- Normal (routed) and Ethernet-bridged (Ethernet device emulation)
|
||||
interfaces can share a single PVC.
|
||||
- ARP support (no InARP support in the kernel - there is an
|
||||
experimental InARP user-space daemon available on:
|
||||
http://www.kernel.org/pub/linux/utils/net/hdlc/).
|
||||
2. raw HDLC - either IP (IPv4) interface or Ethernet device emulation.
|
||||
3. Cisco HDLC.
|
||||
4. PPP (uses syncppp.c).
|
||||
5. X.25 (uses X.25 routines).
|
||||
|
||||
There are hardware drivers for the following cards:
|
||||
- C101 by Moxa Technologies Co., Ltd.
|
||||
- RISCom/N2 by SDL Communications Inc.
|
||||
- and others, some not in the official kernel.
|
||||
Generic HDLC is a protocol driver only - it needs a low-level driver
|
||||
for your particular hardware.
|
||||
|
||||
Ethernet device emulation (using HDLC or Frame-Relay PVC) is compatible
|
||||
with IEEE 802.1Q (VLANs) and 802.1D (Ethernet bridging).
|
||||
@@ -24,7 +24,7 @@ with IEEE 802.1Q (VLANs) and 802.1D (Ethernet bridging).
|
||||
Make sure the hdlc.o and the hardware driver are loaded. It should
|
||||
create a number of "hdlc" (hdlc0 etc) network devices, one for each
|
||||
WAN port. You'll need the "sethdlc" utility, get it from:
|
||||
http://hq.pm.waw.pl/hdlc/
|
||||
http://www.kernel.org/pub/linux/utils/net/hdlc/
|
||||
|
||||
Compile sethdlc.c utility:
|
||||
gcc -O2 -Wall -o sethdlc sethdlc.c
|
||||
@@ -52,12 +52,12 @@ Setting interface:
|
||||
* v35 | rs232 | x21 | t1 | e1 - sets physical interface for a given port
|
||||
if the card has software-selectable interfaces
|
||||
loopback - activate hardware loopback (for testing only)
|
||||
* clock ext - external clock (uses DTE RX and TX clock)
|
||||
* clock int - internal clock (provides clock signal on DCE clock output)
|
||||
* clock txint - TX internal, RX external (provides TX clock on DCE output)
|
||||
* clock txfromrx - TX clock derived from RX clock (TX clock on DCE output)
|
||||
* rate - sets clock rate in bps (not required for external clock or
|
||||
for txfromrx)
|
||||
* clock ext - both RX clock and TX clock external
|
||||
* clock int - both RX clock and TX clock internal
|
||||
* clock txint - RX clock external, TX clock internal
|
||||
* clock txfromrx - RX clock external, TX clock derived from RX clock
|
||||
* rate - sets clock rate in bps (for "int" or "txint" clock only)
|
||||
|
||||
|
||||
Setting protocol:
|
||||
|
||||
@@ -79,7 +79,7 @@ Setting protocol:
|
||||
* x25 - sets X.25 mode
|
||||
|
||||
* fr - Frame Relay mode
|
||||
lmi ansi / ccitt / none - LMI (link management) type
|
||||
lmi ansi / ccitt / cisco / none - LMI (link management) type
|
||||
dce - Frame Relay DCE (network) side LMI instead of default DTE (user).
|
||||
It has nothing to do with clocks!
|
||||
t391 - link integrity verification polling timer (in seconds) - user
|
||||
@@ -119,13 +119,14 @@ or
|
||||
|
||||
|
||||
|
||||
If you have a problem with N2 or C101 card, you can issue the "private"
|
||||
command to see port's packet descriptor rings (in kernel logs):
|
||||
If you have a problem with N2, C101 or PLX200SYN card, you can issue the
|
||||
"private" command to see port's packet descriptor rings (in kernel logs):
|
||||
|
||||
sethdlc hdlc0 private
|
||||
|
||||
The hardware driver has to be build with CONFIG_HDLC_DEBUG_RINGS.
|
||||
The hardware driver has to be build with #define DEBUG_RINGS.
|
||||
Attaching this info to bug reports would be helpful. Anyway, let me know
|
||||
if you have problems using this.
|
||||
|
||||
For patches and other info look at http://hq.pm.waw.pl/hdlc/
|
||||
For patches and other info look at:
|
||||
<http://www.kernel.org/pub/linux/utils/net/hdlc/>.
|
||||
|
@@ -47,7 +47,6 @@ ni52 <------------------ Buggy ------------------>
|
||||
ni65 YES YES YES Software(#)
|
||||
seeq NO NO NO N/A
|
||||
sgiseek <------------------ Buggy ------------------>
|
||||
sk_g16 NO NO YES N/A
|
||||
smc-ultra YES YES YES Hardware
|
||||
sunlance YES YES YES Hardware
|
||||
tulip YES YES YES Hardware
|
||||
|
@@ -284,9 +284,6 @@ ppp.c:
|
||||
seeq8005.c: *Not modularized*
|
||||
(Probes ports: 0x300, 0x320, 0x340, 0x360)
|
||||
|
||||
sk_g16.c: *Not modularized*
|
||||
(Probes ports: 0x100, 0x180, 0x208, 0x220m 0x288, 0x320, 0x328, 0x390)
|
||||
|
||||
skeleton.c: *Skeleton*
|
||||
|
||||
slhc.c:
|
||||
|
@@ -12,7 +12,7 @@ Don is no longer the prime maintainer of this version of the driver.
|
||||
Please report problems to one or more of:
|
||||
|
||||
Andrew Morton <andrewm@uow.edu.au>
|
||||
Netdev mailing list <netdev@oss.sgi.com>
|
||||
Netdev mailing list <netdev@vger.kernel.org>
|
||||
Linux kernel mailing list <linux-kernel@vger.kernel.org>
|
||||
|
||||
Please note the 'Reporting and Diagnosing Problems' section at the end
|
||||
|
@@ -1,3 +1,69 @@
|
||||
Release Date : Mon Mar 07 12:27:22 EST 2005 - Seokmann Ju <sju@lsil.com>
|
||||
Current Version : 2.20.4.6 (scsi module), 2.20.2.6 (cmm module)
|
||||
Older Version : 2.20.4.5 (scsi module), 2.20.2.5 (cmm module)
|
||||
|
||||
1. Added IOCTL backward compatibility.
|
||||
Convert megaraid_mm driver to new compat_ioctl entry points.
|
||||
I don't have easy access to hardware, so only compile tested.
|
||||
- Signed-off-by:Andi Kleen <ak@muc.de>
|
||||
|
||||
2. megaraid_mbox fix: wrong order of arguments in memset()
|
||||
That, BTW, shows why cross-builds are useful-the only indication of
|
||||
problem had been a new warning showing up in sparse output on alpha
|
||||
build (number of exceeding 256 got truncated).
|
||||
- Signed-off-by: Al Viro
|
||||
<viro@parcelfarce.linux.theplanet.co.uk>
|
||||
|
||||
3. Convert pci_module_init to pci_register_driver
|
||||
Convert from pci_module_init to pci_register_driver
|
||||
(from:http://kerneljanitors.org/TODO)
|
||||
- Signed-off-by: Domen Puncer <domen@coderock.org>
|
||||
|
||||
4. Use the pre defined DMA mask constants from dma-mapping.h
|
||||
Use the DMA_{64,32}BIT_MASK constants from dma-mapping.h when calling
|
||||
pci_set_dma_mask() or pci_set_consistend_dma_mask(). See
|
||||
http://marc.theaimsgroup.com/?t=108001993000001&r=1&w=2 for more
|
||||
details.
|
||||
Signed-off-by: Tobias Klauser <tklauser@nuerscht.ch>
|
||||
Signed-off-by: Domen Puncer <domen@coderock.org>
|
||||
|
||||
5. Remove SSID checking for Dobson, Lindsay, and Verde based products.
|
||||
Checking the SSVID/SSID for controllers which have Dobson, Lindsay,
|
||||
and Verde is unnecessary because device ID has been assigned by LSI
|
||||
and it is unique value. So, all controllers with these IOPs have to be
|
||||
supported by the driver regardless SSVID/SSID.
|
||||
|
||||
6. Date Thu, 27 Jan 2005 04:31:09 +0100
|
||||
From Herbert Poetzl <>
|
||||
Subject RFC: assert_spin_locked() for 2.6
|
||||
|
||||
Greetings!
|
||||
|
||||
overcautious programming will kill your kernel ;)
|
||||
ever thought about checking a spin_lock or even
|
||||
asserting that it must be held (maybe just for
|
||||
spinlock debugging?) ...
|
||||
|
||||
there are several checks present in the kernel
|
||||
where somebody does a variation on the following:
|
||||
|
||||
BUG_ON(!spin_is_locked(&some_lock));
|
||||
|
||||
so what's wrong about that? nothing, unless you
|
||||
compile the code with CONFIG_DEBUG_SPINLOCK but
|
||||
without CONFIG_SMP ... in which case the BUG()
|
||||
will kill your kernel ...
|
||||
|
||||
maybe it's not advised to make such assertions,
|
||||
but here is a solution which works for me ...
|
||||
(compile tested for sh, x86_64 and x86, boot/run
|
||||
tested for x86 only)
|
||||
|
||||
best,
|
||||
Herbert
|
||||
|
||||
- Herbert Poetzl <herbert@13thfloor.at>, Thu, 27 Jan 2005
|
||||
|
||||
Release Date : Thu Feb 03 12:27:22 EST 2005 - Seokmann Ju <sju@lsil.com>
|
||||
Current Version : 2.20.4.5 (scsi module), 2.20.2.5 (cmm module)
|
||||
Older Version : 2.20.4.4 (scsi module), 2.20.2.4 (cmm module)
|
||||
|
180
Documentation/scsi/scsi-changer.txt
Normal file
180
Documentation/scsi/scsi-changer.txt
Normal file
@@ -0,0 +1,180 @@
|
||||
|
||||
README for the SCSI media changer driver
|
||||
========================================
|
||||
|
||||
This is a driver for SCSI Medium Changer devices, which are listed
|
||||
with "Type: Medium Changer" in /proc/scsi/scsi.
|
||||
|
||||
This is for *real* Jukeboxes. It is *not* supported to work with
|
||||
common small CD-ROM changers, neither one-lun-per-slot SCSI changers
|
||||
nor IDE drives.
|
||||
|
||||
Userland tools available from here:
|
||||
http://linux.bytesex.org/misc/changer.html
|
||||
|
||||
|
||||
General Information
|
||||
-------------------
|
||||
|
||||
First some words about how changers work: A changer has 2 (possibly
|
||||
more) SCSI ID's. One for the changer device which controls the robot,
|
||||
and one for the device which actually reads and writes the data. The
|
||||
later may be anything, a MOD, a CD-ROM, a tape or whatever. For the
|
||||
changer device this is a "don't care", he *only* shuffles around the
|
||||
media, nothing else.
|
||||
|
||||
|
||||
The SCSI changer model is complex, compared to - for example - IDE-CD
|
||||
changers. But it allows to handle nearly all possible cases. It knows
|
||||
4 different types of changer elements:
|
||||
|
||||
media transport - this one shuffles around the media, i.e. the
|
||||
transport arm. Also known as "picker".
|
||||
storage - a slot which can hold a media.
|
||||
import/export - the same as above, but is accessable from outside,
|
||||
i.e. there the operator (you !) can use this to
|
||||
fill in and remove media from the changer.
|
||||
Sometimes named "mailslot".
|
||||
data transfer - this is the device which reads/writes, i.e. the
|
||||
CD-ROM / Tape / whatever drive.
|
||||
|
||||
None of these is limited to one: A huge Jukebox could have slots for
|
||||
123 CD-ROM's, 5 CD-ROM readers (and therefore 6 SCSI ID's: the changer
|
||||
and each CD-ROM) and 2 transport arms. No problem to handle.
|
||||
|
||||
|
||||
How it is implemented
|
||||
---------------------
|
||||
|
||||
I implemented the driver as character device driver with a NetBSD-like
|
||||
ioctl interface. Just grabbed NetBSD's header file and one of the
|
||||
other linux SCSI device drivers as starting point. The interface
|
||||
should be source code compatible with NetBSD. So if there is any
|
||||
software (anybody knows ???) which supports a BSDish changer driver,
|
||||
it should work with this driver too.
|
||||
|
||||
Over time a few more ioctls where added, volume tag support for example
|
||||
wasn't covered by the NetBSD ioctl API.
|
||||
|
||||
|
||||
Current State
|
||||
-------------
|
||||
|
||||
Support for more than one transport arm is not implemented yet (and
|
||||
nobody asked for it so far...).
|
||||
|
||||
I test and use the driver myself with a 35 slot cdrom jukebox from
|
||||
Grundig. I got some reports telling it works ok with tape autoloaders
|
||||
(Exabyte, HP and DEC). Some People use this driver with amanda. It
|
||||
works fine with small (11 slots) and a huge (4 MOs, 88 slots)
|
||||
magneto-optical Jukebox. Probably with lots of other changers too, most
|
||||
(but not all :-) people mail me only if it does *not* work...
|
||||
|
||||
I don't have any device lists, neither black-list nor white-list. Thus
|
||||
it is quite useless to ask me whenever a specific device is supported or
|
||||
not. In theory every changer device which supports the SCSI-2 media
|
||||
changer command set should work out-of-the-box with this driver. If it
|
||||
doesn't, it is a bug. Either within the driver or within the firmware
|
||||
of the changer device.
|
||||
|
||||
|
||||
Using it
|
||||
--------
|
||||
|
||||
This is a character device with major number is 86, so use
|
||||
"mknod /dev/sch0 c 86 0" to create the special file for the driver.
|
||||
|
||||
If the module finds the changer, it prints some messages about the
|
||||
device [ try "dmesg" if you don't see anything ] and should show up in
|
||||
/proc/devices. If not.... some changers use ID ? / LUN 0 for the
|
||||
device and ID ? / LUN 1 for the robot mechanism. But Linux does *not*
|
||||
look for LUN's other than 0 as default, becauce there are to many
|
||||
broken devices. So you can try:
|
||||
|
||||
1) echo "scsi add-single-device 0 0 ID 1" > /proc/scsi/scsi
|
||||
(replace ID with the SCSI-ID of the device)
|
||||
2) boot the kernel with "max_scsi_luns=1" on the command line
|
||||
(append="max_scsi_luns=1" in lilo.conf should do the trick)
|
||||
|
||||
|
||||
Trouble?
|
||||
--------
|
||||
|
||||
If you insmod the driver with "insmod debug=1", it will be verbose and
|
||||
prints a lot of stuff to the syslog. Compiling the kernel with
|
||||
CONFIG_SCSI_CONSTANTS=y improves the quality of the error messages alot
|
||||
because the kernel will translate the error codes into human-readable
|
||||
strings then.
|
||||
|
||||
You can display these messages with the dmesg command (or check the
|
||||
logfiles). If you email me some question becauce of a problem with the
|
||||
driver, please include these messages.
|
||||
|
||||
|
||||
Insmod options
|
||||
--------------
|
||||
|
||||
debug=0/1
|
||||
Enable debug messages (see above, default: 0).
|
||||
|
||||
verbose=0/1
|
||||
Be verbose (default: 1).
|
||||
|
||||
init=0/1
|
||||
Send INITIALIZE ELEMENT STATUS command to the changer
|
||||
at insmod time (default: 1).
|
||||
|
||||
timeout_init=<seconds>
|
||||
timeout for the INITIALIZE ELEMENT STATUS command
|
||||
(default: 3600).
|
||||
|
||||
timeout_move=<seconds>
|
||||
timeout for all other commands (default: 120).
|
||||
|
||||
dt_id=<id1>,<id2>,...
|
||||
dt_lun=<lun1>,<lun2>,...
|
||||
These two allow to specify the SCSI ID and LUN for the data
|
||||
transfer elements. You likely don't need this as the jukebox
|
||||
should provide this information. But some devices don't ...
|
||||
|
||||
vendor_firsts=
|
||||
vendor_counts=
|
||||
vendor_labels=
|
||||
These insmod options can be used to tell the driver that there
|
||||
are some vendor-specific element types. Grundig for example
|
||||
does this. Some jukeboxes have a printer to label fresh burned
|
||||
CDs, which is addressed as element 0xc000 (type 5). To tell the
|
||||
driver about this vendor-specific element, use this:
|
||||
$ insmod ch \
|
||||
vendor_firsts=0xc000 \
|
||||
vendor_counts=1 \
|
||||
vendor_labels=printer
|
||||
All three insmod options accept up to four comma-separated
|
||||
values, this way you can configure the element types 5-8.
|
||||
You likely need the SCSI specs for the device in question to
|
||||
find the correct values as they are not covered by the SCSI-2
|
||||
standard.
|
||||
|
||||
|
||||
Credits
|
||||
-------
|
||||
|
||||
I wrote this driver using the famous mailing-patches-around-the-world
|
||||
method. With (more or less) help from:
|
||||
|
||||
Daniel Moehwald <moehwald@hdg.de>
|
||||
Dane Jasper <dane@sonic.net>
|
||||
R. Scott Bailey <sbailey@dsddi.eds.com>
|
||||
Jonathan Corbet <corbet@lwn.net>
|
||||
|
||||
Special thanks go to
|
||||
Martin Kuehne <martin.kuehne@bnbt.de>
|
||||
for a old, second-hand (but full functional) cdrom jukebox which I use
|
||||
to develop/test driver and tools now.
|
||||
|
||||
Have fun,
|
||||
|
||||
Gerd
|
||||
|
||||
--
|
||||
Gerd Knorr <kraxel@bytesex.org>
|
@@ -936,8 +936,7 @@ Details:
|
||||
*
|
||||
* Returns SUCCESS if command aborted else FAILED
|
||||
*
|
||||
* Locks: struct Scsi_Host::host_lock held (with irqsave) on entry
|
||||
* and assumed to be held on return.
|
||||
* Locks: None held
|
||||
*
|
||||
* Calling context: kernel thread
|
||||
*
|
||||
@@ -955,8 +954,7 @@ Details:
|
||||
*
|
||||
* Returns SUCCESS if command aborted else FAILED
|
||||
*
|
||||
* Locks: struct Scsi_Host::host_lock held (with irqsave) on entry
|
||||
* and assumed to be held on return.
|
||||
* Locks: None held
|
||||
*
|
||||
* Calling context: kernel thread
|
||||
*
|
||||
@@ -974,8 +972,7 @@ Details:
|
||||
*
|
||||
* Returns SUCCESS if command aborted else FAILED
|
||||
*
|
||||
* Locks: struct Scsi_Host::host_lock held (with irqsave) on entry
|
||||
* and assumed to be held on return.
|
||||
* Locks: None held
|
||||
*
|
||||
* Calling context: kernel thread
|
||||
*
|
||||
@@ -993,8 +990,7 @@ Details:
|
||||
*
|
||||
* Returns SUCCESS if command aborted else FAILED
|
||||
*
|
||||
* Locks: struct Scsi_Host::host_lock held (with irqsave) on entry
|
||||
* and assumed to be held on return.
|
||||
* Locks: None held
|
||||
*
|
||||
* Calling context: kernel thread
|
||||
*
|
||||
|
Reference in New Issue
Block a user