MIPS: use generic dma noncoherent ops for simple noncoherent platforms
Convert everything not overriding dma-coherence.h to the generic noncoherent ops. The new dma-noncoherent.c file duplicates a lot of the code in dma-default.c, but that file will be gone by the end of this series. Signed-off-by: Christoph Hellwig <hch@lst.de> Patchwork: https://patchwork.linux-mips.org/patch/19544/ Signed-off-by: Paul Burton <paul.burton@mips.com> Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: David Daney <david.daney@cavium.com> Cc: Kevin Cernekee <cernekee@gmail.com> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: Tom Bogendoerfer <tsbogend@alpha.franken.de> Cc: Huacai Chen <chenhc@lemote.com> Cc: iommu@lists.linux-foundation.org Cc: linux-mips@linux-mips.org
This commit is contained in:

committed by
Paul Burton

parent
aa4db77595
commit
f8c55dc6e8
@@ -18,6 +18,7 @@ obj-$(CONFIG_64BIT) += pgtable-64.o
|
||||
obj-$(CONFIG_HIGHMEM) += highmem.o
|
||||
obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
|
||||
obj-$(CONFIG_MIPS_DMA_DEFAULT) += dma-default.o
|
||||
obj-$(CONFIG_DMA_NONCOHERENT) += dma-noncoherent.o
|
||||
obj-$(CONFIG_SWIOTLB) += dma-swiotlb.o
|
||||
|
||||
obj-$(CONFIG_CPU_R4K_CACHE_TLB) += c-r4k.o cex-gen.o tlb-r4k.o
|
||||
|
208
arch/mips/mm/dma-noncoherent.c
Normal file
208
arch/mips/mm/dma-noncoherent.c
Normal file
@@ -0,0 +1,208 @@
|
||||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
|
||||
* Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
|
||||
* swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
|
||||
*/
|
||||
#include <linux/dma-direct.h>
|
||||
#include <linux/dma-noncoherent.h>
|
||||
#include <linux/dma-contiguous.h>
|
||||
#include <linux/highmem.h>
|
||||
|
||||
#include <asm/cache.h>
|
||||
#include <asm/cpu-type.h>
|
||||
#include <asm/dma-coherence.h>
|
||||
#include <asm/io.h>
|
||||
|
||||
#ifdef CONFIG_DMA_PERDEV_COHERENT
|
||||
static inline int dev_is_coherent(struct device *dev)
|
||||
{
|
||||
return dev->archdata.dma_coherent;
|
||||
}
|
||||
#else
|
||||
static inline int dev_is_coherent(struct device *dev)
|
||||
{
|
||||
switch (coherentio) {
|
||||
default:
|
||||
case IO_COHERENCE_DEFAULT:
|
||||
return hw_coherentio;
|
||||
case IO_COHERENCE_ENABLED:
|
||||
return 1;
|
||||
case IO_COHERENCE_DISABLED:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
#endif /* CONFIG_DMA_PERDEV_COHERENT */
|
||||
|
||||
/*
|
||||
* The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively
|
||||
* fill random cachelines with stale data at any time, requiring an extra
|
||||
* flush post-DMA.
|
||||
*
|
||||
* Warning on the terminology - Linux calls an uncached area coherent; MIPS
|
||||
* terminology calls memory areas with hardware maintained coherency coherent.
|
||||
*
|
||||
* Note that the R14000 and R16000 should also be checked for in this condition.
|
||||
* However this function is only called on non-I/O-coherent systems and only the
|
||||
* R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp.
|
||||
* SGI IP32 aka O2.
|
||||
*/
|
||||
static inline bool cpu_needs_post_dma_flush(struct device *dev)
|
||||
{
|
||||
if (dev_is_coherent(dev))
|
||||
return false;
|
||||
|
||||
switch (boot_cpu_type()) {
|
||||
case CPU_R10000:
|
||||
case CPU_R12000:
|
||||
case CPU_BMIPS5000:
|
||||
return true;
|
||||
default:
|
||||
/*
|
||||
* Presence of MAARs suggests that the CPU supports
|
||||
* speculatively prefetching data, and therefore requires
|
||||
* the post-DMA flush/invalidate.
|
||||
*/
|
||||
return cpu_has_maar;
|
||||
}
|
||||
}
|
||||
|
||||
void *arch_dma_alloc(struct device *dev, size_t size,
|
||||
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
||||
{
|
||||
void *ret;
|
||||
|
||||
ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
|
||||
if (!ret)
|
||||
return NULL;
|
||||
|
||||
if (!dev_is_coherent(dev) && !(attrs & DMA_ATTR_NON_CONSISTENT)) {
|
||||
dma_cache_wback_inv((unsigned long) ret, size);
|
||||
ret = UNCAC_ADDR(ret);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
||||
dma_addr_t dma_addr, unsigned long attrs)
|
||||
{
|
||||
if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !dev_is_coherent(dev))
|
||||
cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr);
|
||||
dma_direct_free(dev, size, cpu_addr, dma_addr, attrs);
|
||||
}
|
||||
|
||||
int arch_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
||||
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
||||
unsigned long attrs)
|
||||
{
|
||||
unsigned long user_count = vma_pages(vma);
|
||||
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
||||
unsigned long addr = (unsigned long)cpu_addr;
|
||||
unsigned long off = vma->vm_pgoff;
|
||||
unsigned long pfn;
|
||||
int ret = -ENXIO;
|
||||
|
||||
if (!dev_is_coherent(dev))
|
||||
addr = CAC_ADDR(addr);
|
||||
|
||||
pfn = page_to_pfn(virt_to_page((void *)addr));
|
||||
|
||||
if (attrs & DMA_ATTR_WRITE_COMBINE)
|
||||
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
||||
else
|
||||
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
||||
|
||||
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
||||
return ret;
|
||||
|
||||
if (off < count && user_count <= (count - off)) {
|
||||
ret = remap_pfn_range(vma, vma->vm_start,
|
||||
pfn + off,
|
||||
user_count << PAGE_SHIFT,
|
||||
vma->vm_page_prot);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void dma_sync_virt(void *addr, size_t size,
|
||||
enum dma_data_direction dir)
|
||||
{
|
||||
switch (dir) {
|
||||
case DMA_TO_DEVICE:
|
||||
dma_cache_wback((unsigned long)addr, size);
|
||||
break;
|
||||
|
||||
case DMA_FROM_DEVICE:
|
||||
dma_cache_inv((unsigned long)addr, size);
|
||||
break;
|
||||
|
||||
case DMA_BIDIRECTIONAL:
|
||||
dma_cache_wback_inv((unsigned long)addr, size);
|
||||
break;
|
||||
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* A single sg entry may refer to multiple physically contiguous pages. But
|
||||
* we still need to process highmem pages individually. If highmem is not
|
||||
* configured then the bulk of this loop gets optimized out.
|
||||
*/
|
||||
static inline void dma_sync_phys(phys_addr_t paddr, size_t size,
|
||||
enum dma_data_direction dir)
|
||||
{
|
||||
struct page *page = pfn_to_page(paddr >> PAGE_SHIFT);
|
||||
unsigned long offset = paddr & ~PAGE_MASK;
|
||||
size_t left = size;
|
||||
|
||||
do {
|
||||
size_t len = left;
|
||||
|
||||
if (PageHighMem(page)) {
|
||||
void *addr;
|
||||
|
||||
if (offset + len > PAGE_SIZE) {
|
||||
if (offset >= PAGE_SIZE) {
|
||||
page += offset >> PAGE_SHIFT;
|
||||
offset &= ~PAGE_MASK;
|
||||
}
|
||||
len = PAGE_SIZE - offset;
|
||||
}
|
||||
|
||||
addr = kmap_atomic(page);
|
||||
dma_sync_virt(addr + offset, len, dir);
|
||||
kunmap_atomic(addr);
|
||||
} else
|
||||
dma_sync_virt(page_address(page) + offset, size, dir);
|
||||
offset = 0;
|
||||
page++;
|
||||
left -= len;
|
||||
} while (left);
|
||||
}
|
||||
|
||||
void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
|
||||
size_t size, enum dma_data_direction dir)
|
||||
{
|
||||
if (!dev_is_coherent(dev))
|
||||
dma_sync_phys(paddr, size, dir);
|
||||
}
|
||||
|
||||
void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
|
||||
size_t size, enum dma_data_direction dir)
|
||||
{
|
||||
if (cpu_needs_post_dma_flush(dev))
|
||||
dma_sync_phys(paddr, size, dir);
|
||||
}
|
||||
|
||||
void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size,
|
||||
enum dma_data_direction direction)
|
||||
{
|
||||
BUG_ON(direction == DMA_NONE);
|
||||
|
||||
if (!dev_is_coherent(dev))
|
||||
dma_sync_virt(vaddr, size, direction);
|
||||
}
|
Reference in New Issue
Block a user