Merge tag 'timers-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timekeeping updates from Thomas Gleixner: "Updates for timekeeping, timers and related drivers: Core: - Early boot support for the NMI safe timekeeper by utilizing local_clock() up to the point where timekeeping is initialized. This allows printk() to store multiple timestamps in the ringbuffer which is useful for coordinating dmesg information across a fleet of machines. - Provide a multi-timestamp accessor for printk() - Make timer init more robust by checking for invalid timer flags. - Comma vs semicolon fixes Drivers: - Support for new platforms in existing drivers (SP804 and Renesas CMT) - Comma vs semicolon fixes * tag 'timers-core-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: clocksource/drivers/armada-370-xp: Use semicolons rather than commas to separate statements clocksource/drivers/mps2-timer: Use semicolons rather than commas to separate statements timers: Mask invalid flags in do_init_timer() clocksource/drivers/sp804: Enable Hisilicon sp804 timer 64bit mode clocksource/drivers/sp804: Add support for Hisilicon sp804 timer clocksource/drivers/sp804: Support non-standard register offset clocksource/drivers/sp804: Prepare for support non-standard register offset clocksource/drivers/sp804: Remove a mismatched comment clocksource/drivers/sp804: Delete the leading "__" of some functions clocksource/drivers/sp804: Remove unused sp804_timer_disable() and timer-sp804.h clocksource/drivers/sp804: Cleanup clk_get_sys() dt-bindings: timer: renesas,cmt: Document r8a774e1 CMT support dt-bindings: timer: renesas,cmt: Document r8a7742 CMT support alarmtimer: Convert comma to semicolon timekeeping: Provide multi-timestamp accessor to NMI safe timekeeper timekeeping: Utilize local_clock() for NMI safe timekeeper during early boot
This commit is contained in:
@@ -908,7 +908,7 @@ static int __init alarmtimer_init(void)
|
||||
/* Initialize alarm bases */
|
||||
alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
|
||||
alarm_bases[ALARM_REALTIME].get_ktime = &ktime_get_real;
|
||||
alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64,
|
||||
alarm_bases[ALARM_REALTIME].get_timespec = ktime_get_real_ts64;
|
||||
alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
|
||||
alarm_bases[ALARM_BOOTTIME].get_ktime = &ktime_get_boottime;
|
||||
alarm_bases[ALARM_BOOTTIME].get_timespec = get_boottime_timespec;
|
||||
|
@@ -54,6 +54,9 @@ static struct {
|
||||
|
||||
static struct timekeeper shadow_timekeeper;
|
||||
|
||||
/* flag for if timekeeping is suspended */
|
||||
int __read_mostly timekeeping_suspended;
|
||||
|
||||
/**
|
||||
* struct tk_fast - NMI safe timekeeper
|
||||
* @seq: Sequence counter for protecting updates. The lowest bit
|
||||
@@ -73,28 +76,42 @@ static u64 cycles_at_suspend;
|
||||
|
||||
static u64 dummy_clock_read(struct clocksource *cs)
|
||||
{
|
||||
return cycles_at_suspend;
|
||||
if (timekeeping_suspended)
|
||||
return cycles_at_suspend;
|
||||
return local_clock();
|
||||
}
|
||||
|
||||
static struct clocksource dummy_clock = {
|
||||
.read = dummy_clock_read,
|
||||
};
|
||||
|
||||
/*
|
||||
* Boot time initialization which allows local_clock() to be utilized
|
||||
* during early boot when clocksources are not available. local_clock()
|
||||
* returns nanoseconds already so no conversion is required, hence mult=1
|
||||
* and shift=0. When the first proper clocksource is installed then
|
||||
* the fast time keepers are updated with the correct values.
|
||||
*/
|
||||
#define FAST_TK_INIT \
|
||||
{ \
|
||||
.clock = &dummy_clock, \
|
||||
.mask = CLOCKSOURCE_MASK(64), \
|
||||
.mult = 1, \
|
||||
.shift = 0, \
|
||||
}
|
||||
|
||||
static struct tk_fast tk_fast_mono ____cacheline_aligned = {
|
||||
.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_mono.seq, &timekeeper_lock),
|
||||
.base[0] = { .clock = &dummy_clock, },
|
||||
.base[1] = { .clock = &dummy_clock, },
|
||||
.base[0] = FAST_TK_INIT,
|
||||
.base[1] = FAST_TK_INIT,
|
||||
};
|
||||
|
||||
static struct tk_fast tk_fast_raw ____cacheline_aligned = {
|
||||
.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_fast_raw.seq, &timekeeper_lock),
|
||||
.base[0] = { .clock = &dummy_clock, },
|
||||
.base[1] = { .clock = &dummy_clock, },
|
||||
.base[0] = FAST_TK_INIT,
|
||||
.base[1] = FAST_TK_INIT,
|
||||
};
|
||||
|
||||
/* flag for if timekeeping is suspended */
|
||||
int __read_mostly timekeeping_suspended;
|
||||
|
||||
static inline void tk_normalize_xtime(struct timekeeper *tk)
|
||||
{
|
||||
while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
|
||||
@@ -513,29 +530,29 @@ u64 notrace ktime_get_boot_fast_ns(void)
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
|
||||
|
||||
|
||||
/*
|
||||
* See comment for __ktime_get_fast_ns() vs. timestamp ordering
|
||||
*/
|
||||
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
|
||||
static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
|
||||
{
|
||||
struct tk_read_base *tkr;
|
||||
u64 basem, baser, delta;
|
||||
unsigned int seq;
|
||||
u64 now;
|
||||
|
||||
do {
|
||||
seq = raw_read_seqcount_latch(&tkf->seq);
|
||||
tkr = tkf->base + (seq & 0x01);
|
||||
now = ktime_to_ns(tkr->base_real);
|
||||
basem = ktime_to_ns(tkr->base);
|
||||
baser = ktime_to_ns(tkr->base_real);
|
||||
|
||||
now += timekeeping_delta_to_ns(tkr,
|
||||
clocksource_delta(
|
||||
tk_clock_read(tkr),
|
||||
tkr->cycle_last,
|
||||
tkr->mask));
|
||||
delta = timekeeping_delta_to_ns(tkr,
|
||||
clocksource_delta(tk_clock_read(tkr),
|
||||
tkr->cycle_last, tkr->mask));
|
||||
} while (read_seqcount_retry(&tkf->seq, seq));
|
||||
|
||||
return now;
|
||||
if (mono)
|
||||
*mono = basem + delta;
|
||||
return baser + delta;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -543,10 +560,64 @@ static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
|
||||
*/
|
||||
u64 ktime_get_real_fast_ns(void)
|
||||
{
|
||||
return __ktime_get_real_fast_ns(&tk_fast_mono);
|
||||
return __ktime_get_real_fast(&tk_fast_mono, NULL);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
|
||||
|
||||
/**
|
||||
* ktime_get_fast_timestamps: - NMI safe timestamps
|
||||
* @snapshot: Pointer to timestamp storage
|
||||
*
|
||||
* Stores clock monotonic, boottime and realtime timestamps.
|
||||
*
|
||||
* Boot time is a racy access on 32bit systems if the sleep time injection
|
||||
* happens late during resume and not in timekeeping_resume(). That could
|
||||
* be avoided by expanding struct tk_read_base with boot offset for 32bit
|
||||
* and adding more overhead to the update. As this is a hard to observe
|
||||
* once per resume event which can be filtered with reasonable effort using
|
||||
* the accurate mono/real timestamps, it's probably not worth the trouble.
|
||||
*
|
||||
* Aside of that it might be possible on 32 and 64 bit to observe the
|
||||
* following when the sleep time injection happens late:
|
||||
*
|
||||
* CPU 0 CPU 1
|
||||
* timekeeping_resume()
|
||||
* ktime_get_fast_timestamps()
|
||||
* mono, real = __ktime_get_real_fast()
|
||||
* inject_sleep_time()
|
||||
* update boot offset
|
||||
* boot = mono + bootoffset;
|
||||
*
|
||||
* That means that boot time already has the sleep time adjustment, but
|
||||
* real time does not. On the next readout both are in sync again.
|
||||
*
|
||||
* Preventing this for 64bit is not really feasible without destroying the
|
||||
* careful cache layout of the timekeeper because the sequence count and
|
||||
* struct tk_read_base would then need two cache lines instead of one.
|
||||
*
|
||||
* Access to the time keeper clock source is disabled accross the innermost
|
||||
* steps of suspend/resume. The accessors still work, but the timestamps
|
||||
* are frozen until time keeping is resumed which happens very early.
|
||||
*
|
||||
* For regular suspend/resume there is no observable difference vs. sched
|
||||
* clock, but it might affect some of the nasty low level debug printks.
|
||||
*
|
||||
* OTOH, access to sched clock is not guaranteed accross suspend/resume on
|
||||
* all systems either so it depends on the hardware in use.
|
||||
*
|
||||
* If that turns out to be a real problem then this could be mitigated by
|
||||
* using sched clock in a similar way as during early boot. But it's not as
|
||||
* trivial as on early boot because it needs some careful protection
|
||||
* against the clock monotonic timestamp jumping backwards on resume.
|
||||
*/
|
||||
void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
|
||||
{
|
||||
struct timekeeper *tk = &tk_core.timekeeper;
|
||||
|
||||
snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
|
||||
snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
|
||||
}
|
||||
|
||||
/**
|
||||
* halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
|
||||
* @tk: Timekeeper to snapshot.
|
||||
|
@@ -794,6 +794,8 @@ static void do_init_timer(struct timer_list *timer,
|
||||
{
|
||||
timer->entry.pprev = NULL;
|
||||
timer->function = func;
|
||||
if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
|
||||
flags &= TIMER_INIT_FLAGS;
|
||||
timer->flags = flags | raw_smp_processor_id();
|
||||
lockdep_init_map(&timer->lockdep_map, name, key, 0);
|
||||
}
|
||||
|
Reference in New Issue
Block a user