gve: Add transmit and receive support

Add support for passing traffic.

Signed-off-by: Catherine Sullivan <csully@google.com>
Signed-off-by: Sagi Shahar <sagis@google.com>
Signed-off-by: Jon Olson <jonolson@google.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: Luigi Rizzo <lrizzo@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Catherine Sullivan
2019-07-01 15:57:53 -07:00
کامیت شده توسط David S. Miller
والد 893ce44df5
کامیت f5cedc84a3
9فایلهای تغییر یافته به همراه2221 افزوده شده و 5 حذف شده

مشاهده پرونده

@@ -1,4 +1,4 @@
# Makefile for the Google virtual Ethernet (gve) driver
obj-$(CONFIG_GVE) += gve.o
gve-objs := gve_main.o gve_adminq.o
gve-objs := gve_main.o gve_tx.o gve_rx.o gve_adminq.o

مشاهده پرونده

@@ -10,6 +10,8 @@
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/u64_stats_sync.h>
#include "gve_desc.h"
#ifndef PCI_VENDOR_ID_GOOGLE
#define PCI_VENDOR_ID_GOOGLE 0x1ae0
@@ -20,18 +22,152 @@
#define GVE_REGISTER_BAR 0
#define GVE_DOORBELL_BAR 2
/* 1 for management */
/* Driver can alloc up to 2 segments for the header and 2 for the payload. */
#define GVE_TX_MAX_IOVEC 4
/* 1 for management, 1 for rx, 1 for tx */
#define GVE_MIN_MSIX 3
/* Each slot in the desc ring has a 1:1 mapping to a slot in the data ring */
struct gve_rx_desc_queue {
struct gve_rx_desc *desc_ring; /* the descriptor ring */
dma_addr_t bus; /* the bus for the desc_ring */
u32 cnt; /* free-running total number of completed packets */
u32 fill_cnt; /* free-running total number of descriptors posted */
u32 mask; /* masks the cnt to the size of the ring */
u8 seqno; /* the next expected seqno for this desc*/
};
/* The page info for a single slot in the RX data queue */
struct gve_rx_slot_page_info {
struct page *page;
void *page_address;
u32 page_offset; /* offset to write to in page */
};
/* A list of pages registered with the device during setup and used by a queue
* as buffers
*/
struct gve_queue_page_list {
u32 id; /* unique id */
u32 num_entries;
struct page **pages; /* list of num_entries pages */
dma_addr_t *page_buses; /* the dma addrs of the pages */
};
/* Each slot in the data ring has a 1:1 mapping to a slot in the desc ring */
struct gve_rx_data_queue {
struct gve_rx_data_slot *data_ring; /* read by NIC */
dma_addr_t data_bus; /* dma mapping of the slots */
struct gve_rx_slot_page_info *page_info; /* page info of the buffers */
struct gve_queue_page_list *qpl; /* qpl assigned to this queue */
u32 mask; /* masks the cnt to the size of the ring */
u32 cnt; /* free-running total number of completed packets */
};
struct gve_priv;
/* An RX ring that contains a power-of-two sized desc and data ring. */
struct gve_rx_ring {
struct gve_priv *gve;
struct gve_rx_desc_queue desc;
struct gve_rx_data_queue data;
u64 rbytes; /* free-running bytes received */
u64 rpackets; /* free-running packets received */
u32 q_num; /* queue index */
u32 ntfy_id; /* notification block index */
struct gve_queue_resources *q_resources; /* head and tail pointer idx */
dma_addr_t q_resources_bus; /* dma address for the queue resources */
struct u64_stats_sync statss; /* sync stats for 32bit archs */
};
/* A TX desc ring entry */
union gve_tx_desc {
struct gve_tx_pkt_desc pkt; /* first desc for a packet */
struct gve_tx_seg_desc seg; /* subsequent descs for a packet */
};
/* Tracks the memory in the fifo occupied by a segment of a packet */
struct gve_tx_iovec {
u32 iov_offset; /* offset into this segment */
u32 iov_len; /* length */
u32 iov_padding; /* padding associated with this segment */
};
/* Tracks the memory in the fifo occupied by the skb. Mapped 1:1 to a desc
* ring entry but only used for a pkt_desc not a seg_desc
*/
struct gve_tx_buffer_state {
struct sk_buff *skb; /* skb for this pkt */
struct gve_tx_iovec iov[GVE_TX_MAX_IOVEC]; /* segments of this pkt */
};
/* A TX buffer - each queue has one */
struct gve_tx_fifo {
void *base; /* address of base of FIFO */
u32 size; /* total size */
atomic_t available; /* how much space is still available */
u32 head; /* offset to write at */
struct gve_queue_page_list *qpl; /* QPL mapped into this FIFO */
};
/* A TX ring that contains a power-of-two sized desc ring and a FIFO buffer */
struct gve_tx_ring {
/* Cacheline 0 -- Accessed & dirtied during transmit */
struct gve_tx_fifo tx_fifo;
u32 req; /* driver tracked head pointer */
u32 done; /* driver tracked tail pointer */
/* Cacheline 1 -- Accessed & dirtied during gve_clean_tx_done */
__be32 last_nic_done ____cacheline_aligned; /* NIC tail pointer */
u64 pkt_done; /* free-running - total packets completed */
u64 bytes_done; /* free-running - total bytes completed */
/* Cacheline 2 -- Read-mostly fields */
union gve_tx_desc *desc ____cacheline_aligned;
struct gve_tx_buffer_state *info; /* Maps 1:1 to a desc */
struct netdev_queue *netdev_txq;
struct gve_queue_resources *q_resources; /* head and tail pointer idx */
u32 mask; /* masks req and done down to queue size */
/* Slow-path fields */
u32 q_num ____cacheline_aligned; /* queue idx */
u32 stop_queue; /* count of queue stops */
u32 wake_queue; /* count of queue wakes */
u32 ntfy_id; /* notification block index */
dma_addr_t bus; /* dma address of the descr ring */
dma_addr_t q_resources_bus; /* dma address of the queue resources */
struct u64_stats_sync statss; /* sync stats for 32bit archs */
} ____cacheline_aligned;
/* Wraps the info for one irq including the napi struct and the queues
* associated with that irq.
*/
struct gve_notify_block {
__be32 irq_db_index; /* idx into Bar2 - set by device, must be 1st */
char name[IFNAMSIZ + 16]; /* name registered with the kernel */
struct napi_struct napi; /* kernel napi struct for this block */
struct gve_priv *priv;
struct gve_tx_ring *tx; /* tx rings on this block */
struct gve_rx_ring *rx; /* rx rings on this block */
} ____cacheline_aligned;
/* Tracks allowed and current queue settings */
struct gve_queue_config {
u16 max_queues;
u16 num_queues; /* current */
};
/* Tracks the available and used qpl IDs */
struct gve_qpl_config {
u32 qpl_map_size; /* map memory size */
unsigned long *qpl_id_map; /* bitmap of used qpl ids */
};
struct gve_priv {
struct net_device *dev;
struct gve_tx_ring *tx; /* array of tx_cfg.num_queues */
struct gve_rx_ring *rx; /* array of rx_cfg.num_queues */
struct gve_queue_page_list *qpls; /* array of num qpls */
struct gve_notify_block *ntfy_blocks; /* array of num_ntfy_blks */
dma_addr_t ntfy_block_bus;
struct msix_entry *msix_vectors; /* array of num_ntfy_blks + 1 */
@@ -41,7 +177,18 @@ struct gve_priv {
dma_addr_t counter_array_bus;
u16 num_event_counters;
u16 tx_desc_cnt; /* num desc per ring */
u16 rx_desc_cnt; /* num desc per ring */
u16 tx_pages_per_qpl; /* tx buffer length */
u16 rx_pages_per_qpl; /* rx buffer length */
u64 max_registered_pages;
u64 num_registered_pages; /* num pages registered with NIC */
u32 rx_copybreak; /* copy packets smaller than this */
u16 default_num_queues; /* default num queues to set up */
struct gve_queue_config tx_cfg;
struct gve_queue_config rx_cfg;
struct gve_qpl_config qpl_cfg; /* map used QPL ids */
u32 num_ntfy_blks; /* spilt between TX and RX so must be even */
struct gve_registers __iomem *reg_bar0; /* see gve_register.h */
@@ -49,6 +196,9 @@ struct gve_priv {
u32 msg_enable; /* level for netif* netdev print macros */
struct pci_dev *pdev;
/* metrics */
u32 tx_timeo_cnt;
/* Admin queue - see gve_adminq.h*/
union gve_adminq_command *adminq;
dma_addr_t adminq_bus_addr;
@@ -132,4 +282,112 @@ static inline __be32 __iomem *gve_irq_doorbell(struct gve_priv *priv,
{
return &priv->db_bar2[be32_to_cpu(block->irq_db_index)];
}
/* Returns the index into ntfy_blocks of the given tx ring's block
*/
static inline u32 gve_tx_idx_to_ntfy(struct gve_priv *priv, u32 queue_idx)
{
return queue_idx;
}
/* Returns the index into ntfy_blocks of the given rx ring's block
*/
static inline u32 gve_rx_idx_to_ntfy(struct gve_priv *priv, u32 queue_idx)
{
return (priv->num_ntfy_blks / 2) + queue_idx;
}
/* Returns the number of tx queue page lists
*/
static inline u32 gve_num_tx_qpls(struct gve_priv *priv)
{
return priv->tx_cfg.num_queues;
}
/* Returns the number of rx queue page lists
*/
static inline u32 gve_num_rx_qpls(struct gve_priv *priv)
{
return priv->rx_cfg.num_queues;
}
/* Returns a pointer to the next available tx qpl in the list of qpls
*/
static inline
struct gve_queue_page_list *gve_assign_tx_qpl(struct gve_priv *priv)
{
int id = find_first_zero_bit(priv->qpl_cfg.qpl_id_map,
priv->qpl_cfg.qpl_map_size);
/* we are out of tx qpls */
if (id >= gve_num_tx_qpls(priv))
return NULL;
set_bit(id, priv->qpl_cfg.qpl_id_map);
return &priv->qpls[id];
}
/* Returns a pointer to the next available rx qpl in the list of qpls
*/
static inline
struct gve_queue_page_list *gve_assign_rx_qpl(struct gve_priv *priv)
{
int id = find_next_zero_bit(priv->qpl_cfg.qpl_id_map,
priv->qpl_cfg.qpl_map_size,
gve_num_tx_qpls(priv));
/* we are out of rx qpls */
if (id == priv->qpl_cfg.qpl_map_size)
return NULL;
set_bit(id, priv->qpl_cfg.qpl_id_map);
return &priv->qpls[id];
}
/* Unassigns the qpl with the given id
*/
static inline void gve_unassign_qpl(struct gve_priv *priv, int id)
{
clear_bit(id, priv->qpl_cfg.qpl_id_map);
}
/* Returns the correct dma direction for tx and rx qpls
*/
static inline enum dma_data_direction gve_qpl_dma_dir(struct gve_priv *priv,
int id)
{
if (id < gve_num_tx_qpls(priv))
return DMA_TO_DEVICE;
else
return DMA_FROM_DEVICE;
}
/* Returns true if the max mtu allows page recycling */
static inline bool gve_can_recycle_pages(struct net_device *dev)
{
/* We can't recycle the pages if we can't fit a packet into half a
* page.
*/
return dev->max_mtu <= PAGE_SIZE / 2;
}
/* buffers */
int gve_alloc_page(struct device *dev, struct page **page, dma_addr_t *dma,
enum dma_data_direction);
void gve_free_page(struct device *dev, struct page *page, dma_addr_t dma,
enum dma_data_direction);
/* tx handling */
netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev);
bool gve_tx_poll(struct gve_notify_block *block, int budget);
int gve_tx_alloc_rings(struct gve_priv *priv);
void gve_tx_free_rings(struct gve_priv *priv);
__be32 gve_tx_load_event_counter(struct gve_priv *priv,
struct gve_tx_ring *tx);
/* rx handling */
void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx);
bool gve_rx_poll(struct gve_notify_block *block, int budget);
int gve_rx_alloc_rings(struct gve_priv *priv);
void gve_rx_free_rings(struct gve_priv *priv);
bool gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
netdev_features_t feat);
#endif /* _GVE_H_ */

مشاهده پرونده

@@ -190,6 +190,72 @@ int gve_adminq_deconfigure_device_resources(struct gve_priv *priv)
return gve_adminq_execute_cmd(priv, &cmd);
}
int gve_adminq_create_tx_queue(struct gve_priv *priv, u32 queue_index)
{
struct gve_tx_ring *tx = &priv->tx[queue_index];
union gve_adminq_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = cpu_to_be32(GVE_ADMINQ_CREATE_TX_QUEUE);
cmd.create_tx_queue = (struct gve_adminq_create_tx_queue) {
.queue_id = cpu_to_be32(queue_index),
.reserved = 0,
.queue_resources_addr = cpu_to_be64(tx->q_resources_bus),
.tx_ring_addr = cpu_to_be64(tx->bus),
.queue_page_list_id = cpu_to_be32(tx->tx_fifo.qpl->id),
.ntfy_id = cpu_to_be32(tx->ntfy_id),
};
return gve_adminq_execute_cmd(priv, &cmd);
}
int gve_adminq_create_rx_queue(struct gve_priv *priv, u32 queue_index)
{
struct gve_rx_ring *rx = &priv->rx[queue_index];
union gve_adminq_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = cpu_to_be32(GVE_ADMINQ_CREATE_RX_QUEUE);
cmd.create_rx_queue = (struct gve_adminq_create_rx_queue) {
.queue_id = cpu_to_be32(queue_index),
.index = cpu_to_be32(queue_index),
.reserved = 0,
.ntfy_id = cpu_to_be32(rx->ntfy_id),
.queue_resources_addr = cpu_to_be64(rx->q_resources_bus),
.rx_desc_ring_addr = cpu_to_be64(rx->desc.bus),
.rx_data_ring_addr = cpu_to_be64(rx->data.data_bus),
.queue_page_list_id = cpu_to_be32(rx->data.qpl->id),
};
return gve_adminq_execute_cmd(priv, &cmd);
}
int gve_adminq_destroy_tx_queue(struct gve_priv *priv, u32 queue_index)
{
union gve_adminq_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = cpu_to_be32(GVE_ADMINQ_DESTROY_TX_QUEUE);
cmd.destroy_tx_queue = (struct gve_adminq_destroy_tx_queue) {
.queue_id = cpu_to_be32(queue_index),
};
return gve_adminq_execute_cmd(priv, &cmd);
}
int gve_adminq_destroy_rx_queue(struct gve_priv *priv, u32 queue_index)
{
union gve_adminq_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = cpu_to_be32(GVE_ADMINQ_DESTROY_RX_QUEUE);
cmd.destroy_rx_queue = (struct gve_adminq_destroy_rx_queue) {
.queue_id = cpu_to_be32(queue_index),
};
return gve_adminq_execute_cmd(priv, &cmd);
}
int gve_adminq_describe_device(struct gve_priv *priv)
{
struct gve_device_descriptor *descriptor;
@@ -215,6 +281,25 @@ int gve_adminq_describe_device(struct gve_priv *priv)
if (err)
goto free_device_descriptor;
priv->tx_desc_cnt = be16_to_cpu(descriptor->tx_queue_entries);
if (priv->tx_desc_cnt * sizeof(priv->tx->desc[0]) < PAGE_SIZE) {
netif_err(priv, drv, priv->dev, "Tx desc count %d too low\n",
priv->tx_desc_cnt);
err = -EINVAL;
goto free_device_descriptor;
}
priv->rx_desc_cnt = be16_to_cpu(descriptor->rx_queue_entries);
if (priv->rx_desc_cnt * sizeof(priv->rx->desc.desc_ring[0])
< PAGE_SIZE ||
priv->rx_desc_cnt * sizeof(priv->rx->data.data_ring[0])
< PAGE_SIZE) {
netif_err(priv, drv, priv->dev, "Rx desc count %d too low\n",
priv->rx_desc_cnt);
err = -EINVAL;
goto free_device_descriptor;
}
priv->max_registered_pages =
be64_to_cpu(descriptor->max_registered_pages);
mtu = be16_to_cpu(descriptor->mtu);
if (mtu < ETH_MIN_MTU) {
netif_err(priv, drv, priv->dev, "MTU %d below minimum MTU\n",
@@ -227,6 +312,14 @@ int gve_adminq_describe_device(struct gve_priv *priv)
ether_addr_copy(priv->dev->dev_addr, descriptor->mac);
mac = descriptor->mac;
netif_info(priv, drv, priv->dev, "MAC addr: %pM\n", mac);
priv->tx_pages_per_qpl = be16_to_cpu(descriptor->tx_pages_per_qpl);
priv->rx_pages_per_qpl = be16_to_cpu(descriptor->rx_pages_per_qpl);
if (priv->rx_pages_per_qpl < priv->rx_desc_cnt) {
netif_err(priv, drv, priv->dev, "rx_pages_per_qpl cannot be smaller than rx_desc_cnt, setting rx_desc_cnt down to %d.\n",
priv->rx_pages_per_qpl);
priv->rx_desc_cnt = priv->rx_pages_per_qpl;
}
priv->default_num_queues = be16_to_cpu(descriptor->default_num_queues);
free_device_descriptor:
dma_free_coherent(&priv->pdev->dev, sizeof(*descriptor), descriptor,
@@ -234,6 +327,51 @@ free_device_descriptor:
return err;
}
int gve_adminq_register_page_list(struct gve_priv *priv,
struct gve_queue_page_list *qpl)
{
struct device *hdev = &priv->pdev->dev;
u32 num_entries = qpl->num_entries;
u32 size = num_entries * sizeof(qpl->page_buses[0]);
union gve_adminq_command cmd;
dma_addr_t page_list_bus;
__be64 *page_list;
int err;
int i;
memset(&cmd, 0, sizeof(cmd));
page_list = dma_alloc_coherent(hdev, size, &page_list_bus, GFP_KERNEL);
if (!page_list)
return -ENOMEM;
for (i = 0; i < num_entries; i++)
page_list[i] = cpu_to_be64(qpl->page_buses[i]);
cmd.opcode = cpu_to_be32(GVE_ADMINQ_REGISTER_PAGE_LIST);
cmd.reg_page_list = (struct gve_adminq_register_page_list) {
.page_list_id = cpu_to_be32(qpl->id),
.num_pages = cpu_to_be32(num_entries),
.page_address_list_addr = cpu_to_be64(page_list_bus),
};
err = gve_adminq_execute_cmd(priv, &cmd);
dma_free_coherent(hdev, size, page_list, page_list_bus);
return err;
}
int gve_adminq_unregister_page_list(struct gve_priv *priv, u32 page_list_id)
{
union gve_adminq_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.opcode = cpu_to_be32(GVE_ADMINQ_UNREGISTER_PAGE_LIST);
cmd.unreg_page_list = (struct gve_adminq_unregister_page_list) {
.page_list_id = cpu_to_be32(page_list_id),
};
return gve_adminq_execute_cmd(priv, &cmd);
}
int gve_adminq_set_mtu(struct gve_priv *priv, u64 mtu)
{
union gve_adminq_command cmd;

مشاهده پرونده

@@ -13,6 +13,12 @@
enum gve_adminq_opcodes {
GVE_ADMINQ_DESCRIBE_DEVICE = 0x1,
GVE_ADMINQ_CONFIGURE_DEVICE_RESOURCES = 0x2,
GVE_ADMINQ_REGISTER_PAGE_LIST = 0x3,
GVE_ADMINQ_UNREGISTER_PAGE_LIST = 0x4,
GVE_ADMINQ_CREATE_TX_QUEUE = 0x5,
GVE_ADMINQ_CREATE_RX_QUEUE = 0x6,
GVE_ADMINQ_DESTROY_TX_QUEUE = 0x7,
GVE_ADMINQ_DESTROY_RX_QUEUE = 0x8,
GVE_ADMINQ_DECONFIGURE_DEVICE_RESOURCES = 0x9,
GVE_ADMINQ_SET_DRIVER_PARAMETER = 0xB,
};
@@ -89,6 +95,70 @@ struct gve_adminq_configure_device_resources {
static_assert(sizeof(struct gve_adminq_configure_device_resources) == 32);
struct gve_adminq_register_page_list {
__be32 page_list_id;
__be32 num_pages;
__be64 page_address_list_addr;
};
static_assert(sizeof(struct gve_adminq_register_page_list) == 16);
struct gve_adminq_unregister_page_list {
__be32 page_list_id;
};
static_assert(sizeof(struct gve_adminq_unregister_page_list) == 4);
struct gve_adminq_create_tx_queue {
__be32 queue_id;
__be32 reserved;
__be64 queue_resources_addr;
__be64 tx_ring_addr;
__be32 queue_page_list_id;
__be32 ntfy_id;
};
static_assert(sizeof(struct gve_adminq_create_tx_queue) == 32);
struct gve_adminq_create_rx_queue {
__be32 queue_id;
__be32 index;
__be32 reserved;
__be32 ntfy_id;
__be64 queue_resources_addr;
__be64 rx_desc_ring_addr;
__be64 rx_data_ring_addr;
__be32 queue_page_list_id;
u8 padding[4];
};
static_assert(sizeof(struct gve_adminq_create_rx_queue) == 48);
/* Queue resources that are shared with the device */
struct gve_queue_resources {
union {
struct {
__be32 db_index; /* Device -> Guest */
__be32 counter_index; /* Device -> Guest */
};
u8 reserved[64];
};
};
static_assert(sizeof(struct gve_queue_resources) == 64);
struct gve_adminq_destroy_tx_queue {
__be32 queue_id;
};
static_assert(sizeof(struct gve_adminq_destroy_tx_queue) == 4);
struct gve_adminq_destroy_rx_queue {
__be32 queue_id;
};
static_assert(sizeof(struct gve_adminq_destroy_rx_queue) == 4);
/* GVE Set Driver Parameter Types */
enum gve_set_driver_param_types {
GVE_SET_PARAM_MTU = 0x1,
@@ -109,7 +179,13 @@ union gve_adminq_command {
union {
struct gve_adminq_configure_device_resources
configure_device_resources;
struct gve_adminq_create_tx_queue create_tx_queue;
struct gve_adminq_create_rx_queue create_rx_queue;
struct gve_adminq_destroy_tx_queue destroy_tx_queue;
struct gve_adminq_destroy_rx_queue destroy_rx_queue;
struct gve_adminq_describe_device describe_device;
struct gve_adminq_register_page_list reg_page_list;
struct gve_adminq_unregister_page_list unreg_page_list;
struct gve_adminq_set_driver_parameter set_driver_param;
};
};
@@ -130,5 +206,12 @@ int gve_adminq_configure_device_resources(struct gve_priv *priv,
dma_addr_t db_array_bus_addr,
u32 num_ntfy_blks);
int gve_adminq_deconfigure_device_resources(struct gve_priv *priv);
int gve_adminq_create_tx_queue(struct gve_priv *priv, u32 queue_id);
int gve_adminq_destroy_tx_queue(struct gve_priv *priv, u32 queue_id);
int gve_adminq_create_rx_queue(struct gve_priv *priv, u32 queue_id);
int gve_adminq_destroy_rx_queue(struct gve_priv *priv, u32 queue_id);
int gve_adminq_register_page_list(struct gve_priv *priv,
struct gve_queue_page_list *qpl);
int gve_adminq_unregister_page_list(struct gve_priv *priv, u32 page_list_id);
int gve_adminq_set_mtu(struct gve_priv *priv, u64 mtu);
#endif /* _GVE_ADMINQ_H */

مشاهده پرونده

@@ -0,0 +1,113 @@
/* SPDX-License-Identifier: (GPL-2.0 OR MIT)
* Google virtual Ethernet (gve) driver
*
* Copyright (C) 2015-2019 Google, Inc.
*/
/* GVE Transmit Descriptor formats */
#ifndef _GVE_DESC_H_
#define _GVE_DESC_H_
#include <linux/build_bug.h>
/* A note on seg_addrs
*
* Base addresses encoded in seg_addr are not assumed to be physical
* addresses. The ring format assumes these come from some linear address
* space. This could be physical memory, kernel virtual memory, user virtual
* memory. gVNIC uses lists of registered pages. Each queue is assumed
* to be associated with a single such linear address space to ensure a
* consistent meaning for seg_addrs posted to its rings.
*/
struct gve_tx_pkt_desc {
u8 type_flags; /* desc type is lower 4 bits, flags upper */
u8 l4_csum_offset; /* relative offset of L4 csum word */
u8 l4_hdr_offset; /* Offset of start of L4 headers in packet */
u8 desc_cnt; /* Total descriptors for this packet */
__be16 len; /* Total length of this packet (in bytes) */
__be16 seg_len; /* Length of this descriptor's segment */
__be64 seg_addr; /* Base address (see note) of this segment */
} __packed;
struct gve_tx_seg_desc {
u8 type_flags; /* type is lower 4 bits, flags upper */
u8 l3_offset; /* TSO: 2 byte units to start of IPH */
__be16 reserved;
__be16 mss; /* TSO MSS */
__be16 seg_len;
__be64 seg_addr;
} __packed;
/* GVE Transmit Descriptor Types */
#define GVE_TXD_STD (0x0 << 4) /* Std with Host Address */
#define GVE_TXD_TSO (0x1 << 4) /* TSO with Host Address */
#define GVE_TXD_SEG (0x2 << 4) /* Seg with Host Address */
/* GVE Transmit Descriptor Flags for Std Pkts */
#define GVE_TXF_L4CSUM BIT(0) /* Need csum offload */
#define GVE_TXF_TSTAMP BIT(2) /* Timestamp required */
/* GVE Transmit Descriptor Flags for TSO Segs */
#define GVE_TXSF_IPV6 BIT(1) /* IPv6 TSO */
/* GVE Receive Packet Descriptor */
/* The start of an ethernet packet comes 2 bytes into the rx buffer.
* gVNIC adds this padding so that both the DMA and the L3/4 protocol header
* access is aligned.
*/
#define GVE_RX_PAD 2
struct gve_rx_desc {
u8 padding[48];
__be32 rss_hash; /* Receive-side scaling hash (Toeplitz for gVNIC) */
__be16 mss;
__be16 reserved; /* Reserved to zero */
u8 hdr_len; /* Header length (L2-L4) including padding */
u8 hdr_off; /* 64-byte-scaled offset into RX_DATA entry */
__sum16 csum; /* 1's-complement partial checksum of L3+ bytes */
__be16 len; /* Length of the received packet */
__be16 flags_seq; /* Flags [15:3] and sequence number [2:0] (1-7) */
} __packed;
static_assert(sizeof(struct gve_rx_desc) == 64);
/* As with the Tx ring format, the qpl_offset entries below are offsets into an
* ordered list of registered pages.
*/
struct gve_rx_data_slot {
/* byte offset into the rx registered segment of this slot */
__be64 qpl_offset;
};
/* GVE Recive Packet Descriptor Seq No */
#define GVE_SEQNO(x) (be16_to_cpu(x) & 0x7)
/* GVE Recive Packet Descriptor Flags */
#define GVE_RXFLG(x) cpu_to_be16(1 << (3 + (x)))
#define GVE_RXF_FRAG GVE_RXFLG(3) /* IP Fragment */
#define GVE_RXF_IPV4 GVE_RXFLG(4) /* IPv4 */
#define GVE_RXF_IPV6 GVE_RXFLG(5) /* IPv6 */
#define GVE_RXF_TCP GVE_RXFLG(6) /* TCP Packet */
#define GVE_RXF_UDP GVE_RXFLG(7) /* UDP Packet */
#define GVE_RXF_ERR GVE_RXFLG(8) /* Packet Error Detected */
/* GVE IRQ */
#define GVE_IRQ_ACK BIT(31)
#define GVE_IRQ_MASK BIT(30)
#define GVE_IRQ_EVENT BIT(29)
static inline bool gve_needs_rss(__be16 flag)
{
if (flag & GVE_RXF_FRAG)
return false;
if (flag & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
return true;
return false;
}
static inline u8 gve_next_seqno(u8 seq)
{
return (seq + 1) == 8 ? 1 : seq + 1;
}
#endif /* _GVE_DESC_H_ */

مشاهده پرونده

@@ -16,6 +16,8 @@
#include "gve_adminq.h"
#include "gve_register.h"
#define GVE_DEFAULT_RX_COPYBREAK (256)
#define DEFAULT_MSG_LEVEL (NETIF_MSG_DRV | NETIF_MSG_LINK)
#define GVE_VERSION "1.0.0"
#define GVE_VERSION_PREFIX "GVE-"
@@ -23,6 +25,34 @@
static const char gve_version_str[] = GVE_VERSION;
static const char gve_version_prefix[] = GVE_VERSION_PREFIX;
static void gve_get_stats(struct net_device *dev, struct rtnl_link_stats64 *s)
{
struct gve_priv *priv = netdev_priv(dev);
unsigned int start;
int ring;
if (priv->rx) {
for (ring = 0; ring < priv->rx_cfg.num_queues; ring++) {
do {
u64_stats_fetch_begin(&priv->rx[ring].statss);
s->rx_packets += priv->rx[ring].rpackets;
s->rx_bytes += priv->rx[ring].rbytes;
} while (u64_stats_fetch_retry(&priv->rx[ring].statss,
start));
}
}
if (priv->tx) {
for (ring = 0; ring < priv->tx_cfg.num_queues; ring++) {
do {
u64_stats_fetch_begin(&priv->tx[ring].statss);
s->tx_packets += priv->tx[ring].pkt_done;
s->tx_bytes += priv->tx[ring].bytes_done;
} while (u64_stats_fetch_retry(&priv->rx[ring].statss,
start));
}
}
}
static int gve_alloc_counter_array(struct gve_priv *priv)
{
priv->counter_array =
@@ -52,9 +82,50 @@ static irqreturn_t gve_mgmnt_intr(int irq, void *arg)
static irqreturn_t gve_intr(int irq, void *arg)
{
struct gve_notify_block *block = arg;
struct gve_priv *priv = block->priv;
iowrite32be(GVE_IRQ_MASK, gve_irq_doorbell(priv, block));
napi_schedule_irqoff(&block->napi);
return IRQ_HANDLED;
}
static int gve_napi_poll(struct napi_struct *napi, int budget)
{
struct gve_notify_block *block;
__be32 __iomem *irq_doorbell;
bool reschedule = false;
struct gve_priv *priv;
block = container_of(napi, struct gve_notify_block, napi);
priv = block->priv;
if (block->tx)
reschedule |= gve_tx_poll(block, budget);
if (block->rx)
reschedule |= gve_rx_poll(block, budget);
if (reschedule)
return budget;
napi_complete(napi);
irq_doorbell = gve_irq_doorbell(priv, block);
iowrite32be(GVE_IRQ_ACK | GVE_IRQ_EVENT, irq_doorbell);
/* Double check we have no extra work.
* Ensure unmask synchronizes with checking for work.
*/
dma_rmb();
if (block->tx)
reschedule |= gve_tx_poll(block, -1);
if (block->rx)
reschedule |= gve_rx_poll(block, -1);
if (reschedule && napi_reschedule(napi))
iowrite32be(GVE_IRQ_MASK, irq_doorbell);
return 0;
}
static int gve_alloc_notify_blocks(struct gve_priv *priv)
{
int num_vecs_requested = priv->num_ntfy_blks + 1;
@@ -79,10 +150,23 @@ static int gve_alloc_notify_blocks(struct gve_priv *priv)
goto abort_with_msix_vectors;
}
if (vecs_enabled != num_vecs_requested) {
priv->num_ntfy_blks = (vecs_enabled - 1) & ~0x1;
int new_num_ntfy_blks = (vecs_enabled - 1) & ~0x1;
int vecs_per_type = new_num_ntfy_blks / 2;
int vecs_left = new_num_ntfy_blks % 2;
priv->num_ntfy_blks = new_num_ntfy_blks;
priv->tx_cfg.max_queues = min_t(int, priv->tx_cfg.max_queues,
vecs_per_type);
priv->rx_cfg.max_queues = min_t(int, priv->rx_cfg.max_queues,
vecs_per_type + vecs_left);
dev_err(&priv->pdev->dev,
"Only received %d msix. Lowering number of notification blocks to %d\n",
vecs_enabled, priv->num_ntfy_blks);
"Could not enable desired msix, only enabled %d, adjusting tx max queues to %d, and rx max queues to %d\n",
vecs_enabled, priv->tx_cfg.max_queues,
priv->rx_cfg.max_queues);
if (priv->tx_cfg.num_queues > priv->tx_cfg.max_queues)
priv->tx_cfg.num_queues = priv->tx_cfg.max_queues;
if (priv->rx_cfg.num_queues > priv->rx_cfg.max_queues)
priv->rx_cfg.num_queues = priv->rx_cfg.max_queues;
}
/* Half the notification blocks go to TX and half to RX */
active_cpus = min_t(int, priv->num_ntfy_blks / 2, num_online_cpus());
@@ -219,6 +303,463 @@ static void gve_teardown_device_resources(struct gve_priv *priv)
gve_clear_device_resources_ok(priv);
}
static void gve_add_napi(struct gve_priv *priv, int ntfy_idx)
{
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
netif_napi_add(priv->dev, &block->napi, gve_napi_poll,
NAPI_POLL_WEIGHT);
}
static void gve_remove_napi(struct gve_priv *priv, int ntfy_idx)
{
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
netif_napi_del(&block->napi);
}
static int gve_register_qpls(struct gve_priv *priv)
{
int num_qpls = gve_num_tx_qpls(priv) + gve_num_rx_qpls(priv);
int err;
int i;
for (i = 0; i < num_qpls; i++) {
err = gve_adminq_register_page_list(priv, &priv->qpls[i]);
if (err) {
netif_err(priv, drv, priv->dev,
"failed to register queue page list %d\n",
priv->qpls[i].id);
return err;
}
}
return 0;
}
static int gve_unregister_qpls(struct gve_priv *priv)
{
int num_qpls = gve_num_tx_qpls(priv) + gve_num_rx_qpls(priv);
int err;
int i;
for (i = 0; i < num_qpls; i++) {
err = gve_adminq_unregister_page_list(priv, priv->qpls[i].id);
if (err) {
netif_err(priv, drv, priv->dev,
"Failed to unregister queue page list %d\n",
priv->qpls[i].id);
return err;
}
}
return 0;
}
static int gve_create_rings(struct gve_priv *priv)
{
int err;
int i;
for (i = 0; i < priv->tx_cfg.num_queues; i++) {
err = gve_adminq_create_tx_queue(priv, i);
if (err) {
netif_err(priv, drv, priv->dev, "failed to create tx queue %d\n",
i);
return err;
}
netif_dbg(priv, drv, priv->dev, "created tx queue %d\n", i);
}
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
err = gve_adminq_create_rx_queue(priv, i);
if (err) {
netif_err(priv, drv, priv->dev, "failed to create rx queue %d\n",
i);
return err;
}
/* Rx data ring has been prefilled with packet buffers at
* queue allocation time.
* Write the doorbell to provide descriptor slots and packet
* buffers to the NIC.
*/
gve_rx_write_doorbell(priv, &priv->rx[i]);
netif_dbg(priv, drv, priv->dev, "created rx queue %d\n", i);
}
return 0;
}
static int gve_alloc_rings(struct gve_priv *priv)
{
int ntfy_idx;
int err;
int i;
/* Setup tx rings */
priv->tx = kvzalloc(priv->tx_cfg.num_queues * sizeof(*priv->tx),
GFP_KERNEL);
if (!priv->tx)
return -ENOMEM;
err = gve_tx_alloc_rings(priv);
if (err)
goto free_tx;
/* Setup rx rings */
priv->rx = kvzalloc(priv->rx_cfg.num_queues * sizeof(*priv->rx),
GFP_KERNEL);
if (!priv->rx) {
err = -ENOMEM;
goto free_tx_queue;
}
err = gve_rx_alloc_rings(priv);
if (err)
goto free_rx;
/* Add tx napi & init sync stats*/
for (i = 0; i < priv->tx_cfg.num_queues; i++) {
u64_stats_init(&priv->tx[i].statss);
ntfy_idx = gve_tx_idx_to_ntfy(priv, i);
gve_add_napi(priv, ntfy_idx);
}
/* Add rx napi & init sync stats*/
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
u64_stats_init(&priv->rx[i].statss);
ntfy_idx = gve_rx_idx_to_ntfy(priv, i);
gve_add_napi(priv, ntfy_idx);
}
return 0;
free_rx:
kfree(priv->rx);
priv->rx = NULL;
free_tx_queue:
gve_tx_free_rings(priv);
free_tx:
kfree(priv->tx);
priv->tx = NULL;
return err;
}
static int gve_destroy_rings(struct gve_priv *priv)
{
int err;
int i;
for (i = 0; i < priv->tx_cfg.num_queues; i++) {
err = gve_adminq_destroy_tx_queue(priv, i);
if (err) {
netif_err(priv, drv, priv->dev,
"failed to destroy tx queue %d\n",
i);
return err;
}
netif_dbg(priv, drv, priv->dev, "destroyed tx queue %d\n", i);
}
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
err = gve_adminq_destroy_rx_queue(priv, i);
if (err) {
netif_err(priv, drv, priv->dev,
"failed to destroy rx queue %d\n",
i);
return err;
}
netif_dbg(priv, drv, priv->dev, "destroyed rx queue %d\n", i);
}
return 0;
}
static void gve_free_rings(struct gve_priv *priv)
{
int ntfy_idx;
int i;
if (priv->tx) {
for (i = 0; i < priv->tx_cfg.num_queues; i++) {
ntfy_idx = gve_tx_idx_to_ntfy(priv, i);
gve_remove_napi(priv, ntfy_idx);
}
gve_tx_free_rings(priv);
kfree(priv->tx);
priv->tx = NULL;
}
if (priv->rx) {
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
ntfy_idx = gve_rx_idx_to_ntfy(priv, i);
gve_remove_napi(priv, ntfy_idx);
}
gve_rx_free_rings(priv);
kfree(priv->rx);
priv->rx = NULL;
}
}
int gve_alloc_page(struct device *dev, struct page **page, dma_addr_t *dma,
enum dma_data_direction dir)
{
*page = alloc_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
*dma = dma_map_page(dev, *page, 0, PAGE_SIZE, dir);
if (dma_mapping_error(dev, *dma)) {
put_page(*page);
return -ENOMEM;
}
return 0;
}
static int gve_alloc_queue_page_list(struct gve_priv *priv, u32 id,
int pages)
{
struct gve_queue_page_list *qpl = &priv->qpls[id];
int err;
int i;
if (pages + priv->num_registered_pages > priv->max_registered_pages) {
netif_err(priv, drv, priv->dev,
"Reached max number of registered pages %llu > %llu\n",
pages + priv->num_registered_pages,
priv->max_registered_pages);
return -EINVAL;
}
qpl->id = id;
qpl->num_entries = pages;
qpl->pages = kvzalloc(pages * sizeof(*qpl->pages), GFP_KERNEL);
/* caller handles clean up */
if (!qpl->pages)
return -ENOMEM;
qpl->page_buses = kvzalloc(pages * sizeof(*qpl->page_buses),
GFP_KERNEL);
/* caller handles clean up */
if (!qpl->page_buses)
return -ENOMEM;
for (i = 0; i < pages; i++) {
err = gve_alloc_page(&priv->pdev->dev, &qpl->pages[i],
&qpl->page_buses[i],
gve_qpl_dma_dir(priv, id));
/* caller handles clean up */
if (err)
return -ENOMEM;
}
priv->num_registered_pages += pages;
return 0;
}
void gve_free_page(struct device *dev, struct page *page, dma_addr_t dma,
enum dma_data_direction dir)
{
if (!dma_mapping_error(dev, dma))
dma_unmap_page(dev, dma, PAGE_SIZE, dir);
if (page)
put_page(page);
}
static void gve_free_queue_page_list(struct gve_priv *priv,
int id)
{
struct gve_queue_page_list *qpl = &priv->qpls[id];
int i;
if (!qpl->pages)
return;
if (!qpl->page_buses)
goto free_pages;
for (i = 0; i < qpl->num_entries; i++)
gve_free_page(&priv->pdev->dev, qpl->pages[i],
qpl->page_buses[i], gve_qpl_dma_dir(priv, id));
kfree(qpl->page_buses);
free_pages:
kfree(qpl->pages);
priv->num_registered_pages -= qpl->num_entries;
}
static int gve_alloc_qpls(struct gve_priv *priv)
{
int num_qpls = gve_num_tx_qpls(priv) + gve_num_rx_qpls(priv);
int i, j;
int err;
priv->qpls = kvzalloc(num_qpls * sizeof(*priv->qpls), GFP_KERNEL);
if (!priv->qpls)
return -ENOMEM;
for (i = 0; i < gve_num_tx_qpls(priv); i++) {
err = gve_alloc_queue_page_list(priv, i,
priv->tx_pages_per_qpl);
if (err)
goto free_qpls;
}
for (; i < num_qpls; i++) {
err = gve_alloc_queue_page_list(priv, i,
priv->rx_pages_per_qpl);
if (err)
goto free_qpls;
}
priv->qpl_cfg.qpl_map_size = BITS_TO_LONGS(num_qpls) *
sizeof(unsigned long) * BITS_PER_BYTE;
priv->qpl_cfg.qpl_id_map = kvzalloc(BITS_TO_LONGS(num_qpls) *
sizeof(unsigned long), GFP_KERNEL);
if (!priv->qpl_cfg.qpl_id_map)
goto free_qpls;
return 0;
free_qpls:
for (j = 0; j <= i; j++)
gve_free_queue_page_list(priv, j);
kfree(priv->qpls);
return err;
}
static void gve_free_qpls(struct gve_priv *priv)
{
int num_qpls = gve_num_tx_qpls(priv) + gve_num_rx_qpls(priv);
int i;
kfree(priv->qpl_cfg.qpl_id_map);
for (i = 0; i < num_qpls; i++)
gve_free_queue_page_list(priv, i);
kfree(priv->qpls);
}
static void gve_turndown(struct gve_priv *priv);
static void gve_turnup(struct gve_priv *priv);
static int gve_open(struct net_device *dev)
{
struct gve_priv *priv = netdev_priv(dev);
int err;
err = gve_alloc_qpls(priv);
if (err)
return err;
err = gve_alloc_rings(priv);
if (err)
goto free_qpls;
err = netif_set_real_num_tx_queues(dev, priv->tx_cfg.num_queues);
if (err)
goto free_rings;
err = netif_set_real_num_rx_queues(dev, priv->rx_cfg.num_queues);
if (err)
goto free_rings;
err = gve_register_qpls(priv);
if (err)
return err;
err = gve_create_rings(priv);
if (err)
return err;
gve_set_device_rings_ok(priv);
gve_turnup(priv);
netif_carrier_on(dev);
return 0;
free_rings:
gve_free_rings(priv);
free_qpls:
gve_free_qpls(priv);
return err;
}
static int gve_close(struct net_device *dev)
{
struct gve_priv *priv = netdev_priv(dev);
int err;
netif_carrier_off(dev);
if (gve_get_device_rings_ok(priv)) {
gve_turndown(priv);
err = gve_destroy_rings(priv);
if (err)
return err;
err = gve_unregister_qpls(priv);
if (err)
return err;
gve_clear_device_rings_ok(priv);
}
gve_free_rings(priv);
gve_free_qpls(priv);
return 0;
}
static void gve_turndown(struct gve_priv *priv)
{
int idx;
if (netif_carrier_ok(priv->dev))
netif_carrier_off(priv->dev);
if (!gve_get_napi_enabled(priv))
return;
/* Disable napi to prevent more work from coming in */
for (idx = 0; idx < priv->tx_cfg.num_queues; idx++) {
int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
napi_disable(&block->napi);
}
for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
napi_disable(&block->napi);
}
/* Stop tx queues */
netif_tx_disable(priv->dev);
gve_clear_napi_enabled(priv);
}
static void gve_turnup(struct gve_priv *priv)
{
int idx;
/* Start the tx queues */
netif_tx_start_all_queues(priv->dev);
/* Enable napi and unmask interrupts for all queues */
for (idx = 0; idx < priv->tx_cfg.num_queues; idx++) {
int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
napi_enable(&block->napi);
iowrite32be(0, gve_irq_doorbell(priv, block));
}
for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
napi_enable(&block->napi);
iowrite32be(0, gve_irq_doorbell(priv, block));
}
gve_set_napi_enabled(priv);
}
static void gve_tx_timeout(struct net_device *dev)
{
struct gve_priv *priv = netdev_priv(dev);
priv->tx_timeo_cnt++;
}
static const struct net_device_ops gve_netdev_ops = {
.ndo_start_xmit = gve_tx,
.ndo_open = gve_open,
.ndo_stop = gve_close,
.ndo_get_stats64 = gve_get_stats,
.ndo_tx_timeout = gve_tx_timeout,
};
static int gve_init_priv(struct gve_priv *priv, bool skip_describe_device)
{
int num_ntfy;
@@ -264,12 +805,33 @@ static int gve_init_priv(struct gve_priv *priv, bool skip_describe_device)
goto err;
}
priv->num_registered_pages = 0;
priv->rx_copybreak = GVE_DEFAULT_RX_COPYBREAK;
/* gvnic has one Notification Block per MSI-x vector, except for the
* management vector
*/
priv->num_ntfy_blks = (num_ntfy - 1) & ~0x1;
priv->mgmt_msix_idx = priv->num_ntfy_blks;
priv->tx_cfg.max_queues =
min_t(int, priv->tx_cfg.max_queues, priv->num_ntfy_blks / 2);
priv->rx_cfg.max_queues =
min_t(int, priv->rx_cfg.max_queues, priv->num_ntfy_blks / 2);
priv->tx_cfg.num_queues = priv->tx_cfg.max_queues;
priv->rx_cfg.num_queues = priv->rx_cfg.max_queues;
if (priv->default_num_queues > 0) {
priv->tx_cfg.num_queues = min_t(int, priv->default_num_queues,
priv->tx_cfg.num_queues);
priv->rx_cfg.num_queues = min_t(int, priv->default_num_queues,
priv->rx_cfg.num_queues);
}
netif_info(priv, drv, priv->dev, "TX queues %d, RX queues %d\n",
priv->tx_cfg.num_queues, priv->rx_cfg.num_queues);
netif_info(priv, drv, priv->dev, "Max TX queues %d, Max RX queues %d\n",
priv->tx_cfg.max_queues, priv->rx_cfg.max_queues);
setup_device:
err = gve_setup_device_resources(priv);
if (!err)
@@ -336,6 +898,7 @@ static int gve_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
reg_bar = pci_iomap(pdev, GVE_REGISTER_BAR, 0);
if (!reg_bar) {
dev_err(&pdev->dev, "Failed to map pci bar!\n");
err = -ENOMEM;
goto abort_with_pci_region;
}
@@ -359,6 +922,7 @@ static int gve_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
}
SET_NETDEV_DEV(dev, &pdev->dev);
pci_set_drvdata(pdev, dev);
dev->netdev_ops = &gve_netdev_ops;
/* advertise features */
dev->hw_features = NETIF_F_HIGHDMA;
dev->hw_features |= NETIF_F_SG;
@@ -369,6 +933,7 @@ static int gve_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
dev->hw_features |= NETIF_F_RXCSUM;
dev->hw_features |= NETIF_F_RXHASH;
dev->features = dev->hw_features;
dev->watchdog_timeo = 5 * HZ;
dev->min_mtu = ETH_MIN_MTU;
netif_carrier_off(dev);
@@ -379,6 +944,8 @@ static int gve_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
priv->reg_bar0 = reg_bar;
priv->db_bar2 = db_bar;
priv->state_flags = 0x0;
priv->tx_cfg.max_queues = max_tx_queues;
priv->rx_cfg.max_queues = max_rx_queues;
err = gve_init_priv(priv, false);
if (err)

مشاهده پرونده

@@ -0,0 +1,443 @@
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Google virtual Ethernet (gve) driver
*
* Copyright (C) 2015-2019 Google, Inc.
*/
#include "gve.h"
#include "gve_adminq.h"
#include <linux/etherdevice.h>
static void gve_rx_remove_from_block(struct gve_priv *priv, int queue_idx)
{
struct gve_notify_block *block =
&priv->ntfy_blocks[gve_rx_idx_to_ntfy(priv, queue_idx)];
block->rx = NULL;
}
static void gve_rx_free_ring(struct gve_priv *priv, int idx)
{
struct gve_rx_ring *rx = &priv->rx[idx];
struct device *dev = &priv->pdev->dev;
size_t bytes;
u32 slots;
gve_rx_remove_from_block(priv, idx);
bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
rx->desc.desc_ring = NULL;
dma_free_coherent(dev, sizeof(*rx->q_resources),
rx->q_resources, rx->q_resources_bus);
rx->q_resources = NULL;
gve_unassign_qpl(priv, rx->data.qpl->id);
rx->data.qpl = NULL;
kfree(rx->data.page_info);
slots = rx->data.mask + 1;
bytes = sizeof(*rx->data.data_ring) * slots;
dma_free_coherent(dev, bytes, rx->data.data_ring,
rx->data.data_bus);
rx->data.data_ring = NULL;
netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
}
static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info,
struct gve_rx_data_slot *slot,
dma_addr_t addr, struct page *page)
{
page_info->page = page;
page_info->page_offset = 0;
page_info->page_address = page_address(page);
slot->qpl_offset = cpu_to_be64(addr);
}
static int gve_prefill_rx_pages(struct gve_rx_ring *rx)
{
struct gve_priv *priv = rx->gve;
u32 slots;
int i;
/* Allocate one page per Rx queue slot. Each page is split into two
* packet buffers, when possible we "page flip" between the two.
*/
slots = rx->data.mask + 1;
rx->data.page_info = kvzalloc(slots *
sizeof(*rx->data.page_info), GFP_KERNEL);
if (!rx->data.page_info)
return -ENOMEM;
rx->data.qpl = gve_assign_rx_qpl(priv);
for (i = 0; i < slots; i++) {
struct page *page = rx->data.qpl->pages[i];
dma_addr_t addr = i * PAGE_SIZE;
gve_setup_rx_buffer(&rx->data.page_info[i],
&rx->data.data_ring[i], addr, page);
}
return slots;
}
static void gve_rx_add_to_block(struct gve_priv *priv, int queue_idx)
{
u32 ntfy_idx = gve_rx_idx_to_ntfy(priv, queue_idx);
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
struct gve_rx_ring *rx = &priv->rx[queue_idx];
block->rx = rx;
rx->ntfy_id = ntfy_idx;
}
static int gve_rx_alloc_ring(struct gve_priv *priv, int idx)
{
struct gve_rx_ring *rx = &priv->rx[idx];
struct device *hdev = &priv->pdev->dev;
u32 slots, npages;
int filled_pages;
size_t bytes;
int err;
netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
/* Make sure everything is zeroed to start with */
memset(rx, 0, sizeof(*rx));
rx->gve = priv;
rx->q_num = idx;
slots = priv->rx_pages_per_qpl;
rx->data.mask = slots - 1;
/* alloc rx data ring */
bytes = sizeof(*rx->data.data_ring) * slots;
rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
&rx->data.data_bus,
GFP_KERNEL);
if (!rx->data.data_ring)
return -ENOMEM;
filled_pages = gve_prefill_rx_pages(rx);
if (filled_pages < 0) {
err = -ENOMEM;
goto abort_with_slots;
}
rx->desc.fill_cnt = filled_pages;
/* Ensure data ring slots (packet buffers) are visible. */
dma_wmb();
/* Alloc gve_queue_resources */
rx->q_resources =
dma_alloc_coherent(hdev,
sizeof(*rx->q_resources),
&rx->q_resources_bus,
GFP_KERNEL);
if (!rx->q_resources) {
err = -ENOMEM;
goto abort_filled;
}
netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
(unsigned long)rx->data.data_bus);
/* alloc rx desc ring */
bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
npages = bytes / PAGE_SIZE;
if (npages * PAGE_SIZE != bytes) {
err = -EIO;
goto abort_with_q_resources;
}
rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
GFP_KERNEL);
if (!rx->desc.desc_ring) {
err = -ENOMEM;
goto abort_with_q_resources;
}
rx->desc.mask = slots - 1;
rx->desc.cnt = 0;
rx->desc.seqno = 1;
gve_rx_add_to_block(priv, idx);
return 0;
abort_with_q_resources:
dma_free_coherent(hdev, sizeof(*rx->q_resources),
rx->q_resources, rx->q_resources_bus);
rx->q_resources = NULL;
abort_filled:
kfree(rx->data.page_info);
abort_with_slots:
bytes = sizeof(*rx->data.data_ring) * slots;
dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
rx->data.data_ring = NULL;
return err;
}
int gve_rx_alloc_rings(struct gve_priv *priv)
{
int err = 0;
int i;
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
err = gve_rx_alloc_ring(priv, i);
if (err) {
netif_err(priv, drv, priv->dev,
"Failed to alloc rx ring=%d: err=%d\n",
i, err);
break;
}
}
/* Unallocate if there was an error */
if (err) {
int j;
for (j = 0; j < i; j++)
gve_rx_free_ring(priv, j);
}
return err;
}
void gve_rx_free_rings(struct gve_priv *priv)
{
int i;
for (i = 0; i < priv->rx_cfg.num_queues; i++)
gve_rx_free_ring(priv, i);
}
void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
{
u32 db_idx = be32_to_cpu(rx->q_resources->db_index);
iowrite32be(rx->desc.fill_cnt, &priv->db_bar2[db_idx]);
}
static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
{
if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
return PKT_HASH_TYPE_L4;
if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
return PKT_HASH_TYPE_L3;
return PKT_HASH_TYPE_L2;
}
static struct sk_buff *gve_rx_copy(struct net_device *dev,
struct napi_struct *napi,
struct gve_rx_slot_page_info *page_info,
u16 len)
{
struct sk_buff *skb = napi_alloc_skb(napi, len);
void *va = page_info->page_address + GVE_RX_PAD +
page_info->page_offset;
if (unlikely(!skb))
return NULL;
__skb_put(skb, len);
skb_copy_to_linear_data(skb, va, len);
skb->protocol = eth_type_trans(skb, dev);
return skb;
}
static struct sk_buff *gve_rx_add_frags(struct net_device *dev,
struct napi_struct *napi,
struct gve_rx_slot_page_info *page_info,
u16 len)
{
struct sk_buff *skb = napi_get_frags(napi);
if (unlikely(!skb))
return NULL;
skb_add_rx_frag(skb, 0, page_info->page,
page_info->page_offset +
GVE_RX_PAD, len, PAGE_SIZE / 2);
return skb;
}
static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info,
struct gve_rx_data_slot *data_ring)
{
u64 addr = be64_to_cpu(data_ring->qpl_offset);
page_info->page_offset ^= PAGE_SIZE / 2;
addr ^= PAGE_SIZE / 2;
data_ring->qpl_offset = cpu_to_be64(addr);
}
static bool gve_rx(struct gve_rx_ring *rx, struct gve_rx_desc *rx_desc,
netdev_features_t feat)
{
struct gve_rx_slot_page_info *page_info;
struct gve_priv *priv = rx->gve;
struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
struct net_device *dev = priv->dev;
struct sk_buff *skb;
int pagecount;
u16 len;
u32 idx;
/* drop this packet */
if (unlikely(rx_desc->flags_seq & GVE_RXF_ERR))
return true;
len = be16_to_cpu(rx_desc->len) - GVE_RX_PAD;
idx = rx->data.cnt & rx->data.mask;
page_info = &rx->data.page_info[idx];
/* gvnic can only receive into registered segments. If the buffer
* can't be recycled, our only choice is to copy the data out of
* it so that we can return it to the device.
*/
#if PAGE_SIZE == 4096
if (len <= priv->rx_copybreak) {
/* Just copy small packets */
skb = gve_rx_copy(dev, napi, page_info, len);
goto have_skb;
}
if (unlikely(!gve_can_recycle_pages(dev))) {
skb = gve_rx_copy(dev, napi, page_info, len);
goto have_skb;
}
pagecount = page_count(page_info->page);
if (pagecount == 1) {
/* No part of this page is used by any SKBs; we attach
* the page fragment to a new SKB and pass it up the
* stack.
*/
skb = gve_rx_add_frags(dev, napi, page_info, len);
if (!skb)
return true;
/* Make sure the kernel stack can't release the page */
get_page(page_info->page);
/* "flip" to other packet buffer on this page */
gve_rx_flip_buff(page_info, &rx->data.data_ring[idx]);
} else if (pagecount >= 2) {
/* We have previously passed the other half of this
* page up the stack, but it has not yet been freed.
*/
skb = gve_rx_copy(dev, napi, page_info, len);
} else {
WARN(pagecount < 1, "Pagecount should never be < 1");
return false;
}
#else
skb = gve_rx_copy(dev, napi, page_info, len);
#endif
have_skb:
if (!skb)
return true;
rx->data.cnt++;
if (likely(feat & NETIF_F_RXCSUM)) {
/* NIC passes up the partial sum */
if (rx_desc->csum)
skb->ip_summed = CHECKSUM_COMPLETE;
else
skb->ip_summed = CHECKSUM_NONE;
skb->csum = csum_unfold(rx_desc->csum);
}
/* parse flags & pass relevant info up */
if (likely(feat & NETIF_F_RXHASH) &&
gve_needs_rss(rx_desc->flags_seq))
skb_set_hash(skb, be32_to_cpu(rx_desc->rss_hash),
gve_rss_type(rx_desc->flags_seq));
if (skb_is_nonlinear(skb))
napi_gro_frags(napi);
else
napi_gro_receive(napi, skb);
return true;
}
static bool gve_rx_work_pending(struct gve_rx_ring *rx)
{
struct gve_rx_desc *desc;
__be16 flags_seq;
u32 next_idx;
next_idx = rx->desc.cnt & rx->desc.mask;
desc = rx->desc.desc_ring + next_idx;
flags_seq = desc->flags_seq;
/* Make sure we have synchronized the seq no with the device */
smp_rmb();
return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
}
bool gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
netdev_features_t feat)
{
struct gve_priv *priv = rx->gve;
struct gve_rx_desc *desc;
u32 cnt = rx->desc.cnt;
u32 idx = cnt & rx->desc.mask;
u32 work_done = 0;
u64 bytes = 0;
desc = rx->desc.desc_ring + idx;
while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
work_done < budget) {
netif_info(priv, rx_status, priv->dev,
"[%d] idx=%d desc=%p desc->flags_seq=0x%x\n",
rx->q_num, idx, desc, desc->flags_seq);
netif_info(priv, rx_status, priv->dev,
"[%d] seqno=%d rx->desc.seqno=%d\n",
rx->q_num, GVE_SEQNO(desc->flags_seq),
rx->desc.seqno);
bytes += be16_to_cpu(desc->len) - GVE_RX_PAD;
if (!gve_rx(rx, desc, feat))
return false;
cnt++;
idx = cnt & rx->desc.mask;
desc = rx->desc.desc_ring + idx;
rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
work_done++;
}
if (!work_done)
return false;
u64_stats_update_begin(&rx->statss);
rx->rpackets += work_done;
rx->rbytes += bytes;
u64_stats_update_end(&rx->statss);
rx->desc.cnt = cnt;
rx->desc.fill_cnt += work_done;
/* restock desc ring slots */
dma_wmb(); /* Ensure descs are visible before ringing doorbell */
gve_rx_write_doorbell(priv, rx);
return gve_rx_work_pending(rx);
}
bool gve_rx_poll(struct gve_notify_block *block, int budget)
{
struct gve_rx_ring *rx = block->rx;
netdev_features_t feat;
bool repoll = false;
feat = block->napi.dev->features;
/* If budget is 0, do all the work */
if (budget == 0)
budget = INT_MAX;
if (budget > 0)
repoll |= gve_clean_rx_done(rx, budget, feat);
else
repoll |= gve_rx_work_pending(rx);
return repoll;
}

مشاهده پرونده

@@ -0,0 +1,584 @@
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Google virtual Ethernet (gve) driver
*
* Copyright (C) 2015-2019 Google, Inc.
*/
#include "gve.h"
#include "gve_adminq.h"
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/vmalloc.h>
#include <linux/skbuff.h>
static inline void gve_tx_put_doorbell(struct gve_priv *priv,
struct gve_queue_resources *q_resources,
u32 val)
{
iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
}
/* gvnic can only transmit from a Registered Segment.
* We copy skb payloads into the registered segment before writing Tx
* descriptors and ringing the Tx doorbell.
*
* gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
* free allocations in the order they were allocated.
*/
static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
{
fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
PAGE_KERNEL);
if (unlikely(!fifo->base)) {
netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
fifo->qpl->id);
return -ENOMEM;
}
fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
atomic_set(&fifo->available, fifo->size);
fifo->head = 0;
return 0;
}
static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
{
WARN(atomic_read(&fifo->available) != fifo->size,
"Releasing non-empty fifo");
vunmap(fifo->base);
}
static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
size_t bytes)
{
return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
}
static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
{
return (atomic_read(&fifo->available) <= bytes) ? false : true;
}
/* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
* @fifo: FIFO to allocate from
* @bytes: Allocation size
* @iov: Scatter-gather elements to fill with allocation fragment base/len
*
* Returns number of valid elements in iov[] or negative on error.
*
* Allocations from a given FIFO must be externally synchronized but concurrent
* allocation and frees are allowed.
*/
static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
struct gve_tx_iovec iov[2])
{
size_t overflow, padding;
u32 aligned_head;
int nfrags = 0;
if (!bytes)
return 0;
/* This check happens before we know how much padding is needed to
* align to a cacheline boundary for the payload, but that is fine,
* because the FIFO head always start aligned, and the FIFO's boundaries
* are aligned, so if there is space for the data, there is space for
* the padding to the next alignment.
*/
WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
"Reached %s when there's not enough space in the fifo", __func__);
nfrags++;
iov[0].iov_offset = fifo->head;
iov[0].iov_len = bytes;
fifo->head += bytes;
if (fifo->head > fifo->size) {
/* If the allocation did not fit in the tail fragment of the
* FIFO, also use the head fragment.
*/
nfrags++;
overflow = fifo->head - fifo->size;
iov[0].iov_len -= overflow;
iov[1].iov_offset = 0; /* Start of fifo*/
iov[1].iov_len = overflow;
fifo->head = overflow;
}
/* Re-align to a cacheline boundary */
aligned_head = L1_CACHE_ALIGN(fifo->head);
padding = aligned_head - fifo->head;
iov[nfrags - 1].iov_padding = padding;
atomic_sub(bytes + padding, &fifo->available);
fifo->head = aligned_head;
if (fifo->head == fifo->size)
fifo->head = 0;
return nfrags;
}
/* gve_tx_free_fifo - Return space to Tx FIFO
* @fifo: FIFO to return fragments to
* @bytes: Bytes to free
*/
static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
{
atomic_add(bytes, &fifo->available);
}
static void gve_tx_remove_from_block(struct gve_priv *priv, int queue_idx)
{
struct gve_notify_block *block =
&priv->ntfy_blocks[gve_tx_idx_to_ntfy(priv, queue_idx)];
block->tx = NULL;
}
static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
u32 to_do, bool try_to_wake);
static void gve_tx_free_ring(struct gve_priv *priv, int idx)
{
struct gve_tx_ring *tx = &priv->tx[idx];
struct device *hdev = &priv->pdev->dev;
size_t bytes;
u32 slots;
gve_tx_remove_from_block(priv, idx);
slots = tx->mask + 1;
gve_clean_tx_done(priv, tx, tx->req, false);
netdev_tx_reset_queue(tx->netdev_txq);
dma_free_coherent(hdev, sizeof(*tx->q_resources),
tx->q_resources, tx->q_resources_bus);
tx->q_resources = NULL;
gve_tx_fifo_release(priv, &tx->tx_fifo);
gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
tx->tx_fifo.qpl = NULL;
bytes = sizeof(*tx->desc) * slots;
dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
tx->desc = NULL;
vfree(tx->info);
tx->info = NULL;
netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
}
static void gve_tx_add_to_block(struct gve_priv *priv, int queue_idx)
{
int ntfy_idx = gve_tx_idx_to_ntfy(priv, queue_idx);
struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
struct gve_tx_ring *tx = &priv->tx[queue_idx];
block->tx = tx;
tx->ntfy_id = ntfy_idx;
}
static int gve_tx_alloc_ring(struct gve_priv *priv, int idx)
{
struct gve_tx_ring *tx = &priv->tx[idx];
struct device *hdev = &priv->pdev->dev;
u32 slots = priv->tx_desc_cnt;
size_t bytes;
/* Make sure everything is zeroed to start */
memset(tx, 0, sizeof(*tx));
tx->q_num = idx;
tx->mask = slots - 1;
/* alloc metadata */
tx->info = vzalloc(sizeof(*tx->info) * slots);
if (!tx->info)
return -ENOMEM;
/* alloc tx queue */
bytes = sizeof(*tx->desc) * slots;
tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
if (!tx->desc)
goto abort_with_info;
tx->tx_fifo.qpl = gve_assign_tx_qpl(priv);
/* map Tx FIFO */
if (gve_tx_fifo_init(priv, &tx->tx_fifo))
goto abort_with_desc;
tx->q_resources =
dma_alloc_coherent(hdev,
sizeof(*tx->q_resources),
&tx->q_resources_bus,
GFP_KERNEL);
if (!tx->q_resources)
goto abort_with_fifo;
netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx,
(unsigned long)tx->bus);
tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
gve_tx_add_to_block(priv, idx);
return 0;
abort_with_fifo:
gve_tx_fifo_release(priv, &tx->tx_fifo);
abort_with_desc:
dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
tx->desc = NULL;
abort_with_info:
vfree(tx->info);
tx->info = NULL;
return -ENOMEM;
}
int gve_tx_alloc_rings(struct gve_priv *priv)
{
int err = 0;
int i;
for (i = 0; i < priv->tx_cfg.num_queues; i++) {
err = gve_tx_alloc_ring(priv, i);
if (err) {
netif_err(priv, drv, priv->dev,
"Failed to alloc tx ring=%d: err=%d\n",
i, err);
break;
}
}
/* Unallocate if there was an error */
if (err) {
int j;
for (j = 0; j < i; j++)
gve_tx_free_ring(priv, j);
}
return err;
}
void gve_tx_free_rings(struct gve_priv *priv)
{
int i;
for (i = 0; i < priv->tx_cfg.num_queues; i++)
gve_tx_free_ring(priv, i);
}
/* gve_tx_avail - Calculates the number of slots available in the ring
* @tx: tx ring to check
*
* Returns the number of slots available
*
* The capacity of the queue is mask + 1. We don't need to reserve an entry.
**/
static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
{
return tx->mask + 1 - (tx->req - tx->done);
}
static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
struct sk_buff *skb)
{
int pad_bytes, align_hdr_pad;
int bytes;
int hlen;
hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) +
tcp_hdrlen(skb) : skb_headlen(skb);
pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
hlen);
/* We need to take into account the header alignment padding. */
align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
bytes = align_hdr_pad + pad_bytes + skb->len;
return bytes;
}
/* The most descriptors we could need are 3 - 1 for the headers, 1 for
* the beginning of the payload at the end of the FIFO, and 1 if the
* payload wraps to the beginning of the FIFO.
*/
#define MAX_TX_DESC_NEEDED 3
/* Check if sufficient resources (descriptor ring space, FIFO space) are
* available to transmit the given number of bytes.
*/
static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
{
return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED &&
gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required));
}
/* Stops the queue if the skb cannot be transmitted. */
static int gve_maybe_stop_tx(struct gve_tx_ring *tx, struct sk_buff *skb)
{
int bytes_required;
bytes_required = gve_skb_fifo_bytes_required(tx, skb);
if (likely(gve_can_tx(tx, bytes_required)))
return 0;
/* No space, so stop the queue */
tx->stop_queue++;
netif_tx_stop_queue(tx->netdev_txq);
smp_mb(); /* sync with restarting queue in gve_clean_tx_done() */
/* Now check for resources again, in case gve_clean_tx_done() freed
* resources after we checked and we stopped the queue after
* gve_clean_tx_done() checked.
*
* gve_maybe_stop_tx() gve_clean_tx_done()
* nsegs/can_alloc test failed
* gve_tx_free_fifo()
* if (tx queue stopped)
* netif_tx_queue_wake()
* netif_tx_stop_queue()
* Need to check again for space here!
*/
if (likely(!gve_can_tx(tx, bytes_required)))
return -EBUSY;
netif_tx_start_queue(tx->netdev_txq);
tx->wake_queue++;
return 0;
}
static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
struct sk_buff *skb, bool is_gso,
int l4_hdr_offset, u32 desc_cnt,
u16 hlen, u64 addr)
{
/* l4_hdr_offset and csum_offset are in units of 16-bit words */
if (is_gso) {
pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1;
pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
} else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1;
pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
} else {
pkt_desc->pkt.type_flags = GVE_TXD_STD;
pkt_desc->pkt.l4_csum_offset = 0;
pkt_desc->pkt.l4_hdr_offset = 0;
}
pkt_desc->pkt.desc_cnt = desc_cnt;
pkt_desc->pkt.len = cpu_to_be16(skb->len);
pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
}
static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
struct sk_buff *skb, bool is_gso,
u16 len, u64 addr)
{
seg_desc->seg.type_flags = GVE_TXD_SEG;
if (is_gso) {
if (skb_is_gso_v6(skb))
seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
seg_desc->seg.l3_offset = skb_network_offset(skb) >> 1;
seg_desc->seg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
}
seg_desc->seg.seg_len = cpu_to_be16(len);
seg_desc->seg.seg_addr = cpu_to_be64(addr);
}
static int gve_tx_add_skb(struct gve_tx_ring *tx, struct sk_buff *skb)
{
int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
union gve_tx_desc *pkt_desc, *seg_desc;
struct gve_tx_buffer_state *info;
bool is_gso = skb_is_gso(skb);
u32 idx = tx->req & tx->mask;
int payload_iov = 2;
int copy_offset;
u32 next_idx;
int i;
info = &tx->info[idx];
pkt_desc = &tx->desc[idx];
l4_hdr_offset = skb_checksum_start_offset(skb);
/* If the skb is gso, then we want the tcp header in the first segment
* otherwise we want the linear portion of the skb (which will contain
* the checksum because skb->csum_start and skb->csum_offset are given
* relative to skb->head) in the first segment.
*/
hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
skb_headlen(skb);
info->skb = skb;
/* We don't want to split the header, so if necessary, pad to the end
* of the fifo and then put the header at the beginning of the fifo.
*/
pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
&info->iov[0]);
WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
&info->iov[payload_iov]);
gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
1 + payload_nfrags, hlen,
info->iov[hdr_nfrags - 1].iov_offset);
skb_copy_bits(skb, 0,
tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
hlen);
copy_offset = hlen;
for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
next_idx = (tx->req + 1 + i - payload_iov) & tx->mask;
seg_desc = &tx->desc[next_idx];
gve_tx_fill_seg_desc(seg_desc, skb, is_gso,
info->iov[i].iov_len,
info->iov[i].iov_offset);
skb_copy_bits(skb, copy_offset,
tx->tx_fifo.base + info->iov[i].iov_offset,
info->iov[i].iov_len);
copy_offset += info->iov[i].iov_len;
}
return 1 + payload_nfrags;
}
netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
{
struct gve_priv *priv = netdev_priv(dev);
struct gve_tx_ring *tx;
int nsegs;
WARN(skb_get_queue_mapping(skb) > priv->tx_cfg.num_queues,
"skb queue index out of range");
tx = &priv->tx[skb_get_queue_mapping(skb)];
if (unlikely(gve_maybe_stop_tx(tx, skb))) {
/* We need to ring the txq doorbell -- we have stopped the Tx
* queue for want of resources, but prior calls to gve_tx()
* may have added descriptors without ringing the doorbell.
*/
/* Ensure tx descs from a prior gve_tx are visible before
* ringing doorbell.
*/
dma_wmb();
gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
return NETDEV_TX_BUSY;
}
nsegs = gve_tx_add_skb(tx, skb);
netdev_tx_sent_queue(tx->netdev_txq, skb->len);
skb_tx_timestamp(skb);
/* give packets to NIC */
tx->req += nsegs;
if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
return NETDEV_TX_OK;
/* Ensure tx descs are visible before ringing doorbell */
dma_wmb();
gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
return NETDEV_TX_OK;
}
#define GVE_TX_START_THRESH PAGE_SIZE
static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
u32 to_do, bool try_to_wake)
{
struct gve_tx_buffer_state *info;
u64 pkts = 0, bytes = 0;
size_t space_freed = 0;
struct sk_buff *skb;
int i, j;
u32 idx;
for (j = 0; j < to_do; j++) {
idx = tx->done & tx->mask;
netif_info(priv, tx_done, priv->dev,
"[%d] %s: idx=%d (req=%u done=%u)\n",
tx->q_num, __func__, idx, tx->req, tx->done);
info = &tx->info[idx];
skb = info->skb;
/* Mark as free */
if (skb) {
info->skb = NULL;
bytes += skb->len;
pkts++;
dev_consume_skb_any(skb);
/* FIFO free */
for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
space_freed += info->iov[i].iov_len +
info->iov[i].iov_padding;
info->iov[i].iov_len = 0;
info->iov[i].iov_padding = 0;
}
}
tx->done++;
}
gve_tx_free_fifo(&tx->tx_fifo, space_freed);
u64_stats_update_begin(&tx->statss);
tx->bytes_done += bytes;
tx->pkt_done += pkts;
u64_stats_update_end(&tx->statss);
netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
/* start the queue if we've stopped it */
#ifndef CONFIG_BQL
/* Make sure that the doorbells are synced */
smp_mb();
#endif
if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
tx->wake_queue++;
netif_tx_wake_queue(tx->netdev_txq);
}
return pkts;
}
__be32 gve_tx_load_event_counter(struct gve_priv *priv,
struct gve_tx_ring *tx)
{
u32 counter_index = be32_to_cpu((tx->q_resources->counter_index));
return READ_ONCE(priv->counter_array[counter_index]);
}
bool gve_tx_poll(struct gve_notify_block *block, int budget)
{
struct gve_priv *priv = block->priv;
struct gve_tx_ring *tx = block->tx;
bool repoll = false;
u32 nic_done;
u32 to_do;
/* If budget is 0, do all the work */
if (budget == 0)
budget = INT_MAX;
/* Find out how much work there is to be done */
tx->last_nic_done = gve_tx_load_event_counter(priv, tx);
nic_done = be32_to_cpu(tx->last_nic_done);
if (budget > 0) {
/* Do as much work as we have that the budget will
* allow
*/
to_do = min_t(u32, (nic_done - tx->done), budget);
gve_clean_tx_done(priv, tx, to_do, true);
}
/* If we still have work we want to repoll */
repoll |= (nic_done != tx->done);
return repoll;
}