Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas: - struct thread_info moved off-stack (also touching include/linux/thread_info.h and include/linux/restart_block.h) - cpus_have_cap() reworked to avoid __builtin_constant_p() for static key use (also touching drivers/irqchip/irq-gic-v3.c) - uprobes support (currently only for native 64-bit tasks) - Emulation of kernel Privileged Access Never (PAN) using TTBR0_EL1 switching to a reserved page table - CPU capacity information passing via DT or sysfs (used by the scheduler) - support for systems without FP/SIMD (IOW, kernel avoids touching these registers; there is no soft-float ABI, nor kernel emulation for AArch64 FP/SIMD) - handling of hardware watchpoint with unaligned addresses, varied lengths and offsets from base - use of the page table contiguous hint for kernel mappings - hugetlb fixes for sizes involving the contiguous hint - remove unnecessary I-cache invalidation in flush_cache_range() - CNTHCTL_EL2 access fix for CPUs with VHE support (ARMv8.1) - boot-time checks for writable+executable kernel mappings - simplify asm/opcodes.h and avoid including the 32-bit ARM counterpart and make the arm64 kernel headers self-consistent (Xen headers patch merged separately) - Workaround for broken .inst support in certain binutils versions * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (60 commits) arm64: Disable PAN on uaccess_enable() arm64: Work around broken .inst when defective gas is detected arm64: Add detection code for broken .inst support in binutils arm64: Remove reference to asm/opcodes.h arm64: Get rid of asm/opcodes.h arm64: smp: Prevent raw_smp_processor_id() recursion arm64: head.S: Fix CNTHCTL_EL2 access on VHE system arm64: Remove I-cache invalidation from flush_cache_range() arm64: Enable HIBERNATION in defconfig arm64: Enable CONFIG_ARM64_SW_TTBR0_PAN arm64: xen: Enable user access before a privcmd hvc call arm64: Handle faults caused by inadvertent user access with PAN enabled arm64: Disable TTBR0_EL1 during normal kernel execution arm64: Introduce uaccess_{disable,enable} functionality based on TTBR0_EL1 arm64: Factor out TTBR0_EL1 post-update workaround into a specific asm macro arm64: Factor out PAN enabling/disabling into separate uaccess_* macros arm64: Update the synchronous external abort fault description selftests: arm64: add test for unaligned/inexact watchpoint handling arm64: Allow hw watchpoint of length 3,5,6 and 7 arm64: hw_breakpoint: Handle inexact watchpoint addresses ...
This commit is contained in:
236
Documentation/devicetree/bindings/arm/cpu-capacity.txt
Normal file
236
Documentation/devicetree/bindings/arm/cpu-capacity.txt
Normal file
@@ -0,0 +1,236 @@
|
||||
==========================================
|
||||
ARM CPUs capacity bindings
|
||||
==========================================
|
||||
|
||||
==========================================
|
||||
1 - Introduction
|
||||
==========================================
|
||||
|
||||
ARM systems may be configured to have cpus with different power/performance
|
||||
characteristics within the same chip. In this case, additional information has
|
||||
to be made available to the kernel for it to be aware of such differences and
|
||||
take decisions accordingly.
|
||||
|
||||
==========================================
|
||||
2 - CPU capacity definition
|
||||
==========================================
|
||||
|
||||
CPU capacity is a number that provides the scheduler information about CPUs
|
||||
heterogeneity. Such heterogeneity can come from micro-architectural differences
|
||||
(e.g., ARM big.LITTLE systems) or maximum frequency at which CPUs can run
|
||||
(e.g., SMP systems with multiple frequency domains). Heterogeneity in this
|
||||
context is about differing performance characteristics; this binding tries to
|
||||
capture a first-order approximation of the relative performance of CPUs.
|
||||
|
||||
CPU capacities are obtained by running a suitable benchmark. This binding makes
|
||||
no guarantees on the validity or suitability of any particular benchmark, the
|
||||
final capacity should, however, be:
|
||||
|
||||
* A "single-threaded" or CPU affine benchmark
|
||||
* Divided by the running frequency of the CPU executing the benchmark
|
||||
* Not subject to dynamic frequency scaling of the CPU
|
||||
|
||||
For the time being we however advise usage of the Dhrystone benchmark. What
|
||||
above thus becomes:
|
||||
|
||||
CPU capacities are obtained by running the Dhrystone benchmark on each CPU at
|
||||
max frequency (with caches enabled). The obtained DMIPS score is then divided
|
||||
by the frequency (in MHz) at which the benchmark has been run, so that
|
||||
DMIPS/MHz are obtained. Such values are then normalized w.r.t. the highest
|
||||
score obtained in the system.
|
||||
|
||||
==========================================
|
||||
3 - capacity-dmips-mhz
|
||||
==========================================
|
||||
|
||||
capacity-dmips-mhz is an optional cpu node [1] property: u32 value
|
||||
representing CPU capacity expressed in normalized DMIPS/MHz. At boot time, the
|
||||
maximum frequency available to the cpu is then used to calculate the capacity
|
||||
value internally used by the kernel.
|
||||
|
||||
capacity-dmips-mhz property is all-or-nothing: if it is specified for a cpu
|
||||
node, it has to be specified for every other cpu nodes, or the system will
|
||||
fall back to the default capacity value for every CPU. If cpufreq is not
|
||||
available, final capacities are calculated by directly using capacity-dmips-
|
||||
mhz values (normalized w.r.t. the highest value found while parsing the DT).
|
||||
|
||||
===========================================
|
||||
4 - Examples
|
||||
===========================================
|
||||
|
||||
Example 1 (ARM 64-bit, 6-cpu system, two clusters):
|
||||
capacities-dmips-mhz are scaled w.r.t. 1024 (cpu@0 and cpu@1)
|
||||
supposing cluster0@max-freq=1100 and custer1@max-freq=850,
|
||||
final capacities are 1024 for cluster0 and 446 for cluster1
|
||||
|
||||
cpus {
|
||||
#address-cells = <2>;
|
||||
#size-cells = <0>;
|
||||
|
||||
cpu-map {
|
||||
cluster0 {
|
||||
core0 {
|
||||
cpu = <&A57_0>;
|
||||
};
|
||||
core1 {
|
||||
cpu = <&A57_1>;
|
||||
};
|
||||
};
|
||||
|
||||
cluster1 {
|
||||
core0 {
|
||||
cpu = <&A53_0>;
|
||||
};
|
||||
core1 {
|
||||
cpu = <&A53_1>;
|
||||
};
|
||||
core2 {
|
||||
cpu = <&A53_2>;
|
||||
};
|
||||
core3 {
|
||||
cpu = <&A53_3>;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
idle-states {
|
||||
entry-method = "arm,psci";
|
||||
|
||||
CPU_SLEEP_0: cpu-sleep-0 {
|
||||
compatible = "arm,idle-state";
|
||||
arm,psci-suspend-param = <0x0010000>;
|
||||
local-timer-stop;
|
||||
entry-latency-us = <100>;
|
||||
exit-latency-us = <250>;
|
||||
min-residency-us = <150>;
|
||||
};
|
||||
|
||||
CLUSTER_SLEEP_0: cluster-sleep-0 {
|
||||
compatible = "arm,idle-state";
|
||||
arm,psci-suspend-param = <0x1010000>;
|
||||
local-timer-stop;
|
||||
entry-latency-us = <800>;
|
||||
exit-latency-us = <700>;
|
||||
min-residency-us = <2500>;
|
||||
};
|
||||
};
|
||||
|
||||
A57_0: cpu@0 {
|
||||
compatible = "arm,cortex-a57","arm,armv8";
|
||||
reg = <0x0 0x0>;
|
||||
device_type = "cpu";
|
||||
enable-method = "psci";
|
||||
next-level-cache = <&A57_L2>;
|
||||
clocks = <&scpi_dvfs 0>;
|
||||
cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
|
||||
capacity-dmips-mhz = <1024>;
|
||||
};
|
||||
|
||||
A57_1: cpu@1 {
|
||||
compatible = "arm,cortex-a57","arm,armv8";
|
||||
reg = <0x0 0x1>;
|
||||
device_type = "cpu";
|
||||
enable-method = "psci";
|
||||
next-level-cache = <&A57_L2>;
|
||||
clocks = <&scpi_dvfs 0>;
|
||||
cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
|
||||
capacity-dmips-mhz = <1024>;
|
||||
};
|
||||
|
||||
A53_0: cpu@100 {
|
||||
compatible = "arm,cortex-a53","arm,armv8";
|
||||
reg = <0x0 0x100>;
|
||||
device_type = "cpu";
|
||||
enable-method = "psci";
|
||||
next-level-cache = <&A53_L2>;
|
||||
clocks = <&scpi_dvfs 1>;
|
||||
cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
|
||||
capacity-dmips-mhz = <578>;
|
||||
};
|
||||
|
||||
A53_1: cpu@101 {
|
||||
compatible = "arm,cortex-a53","arm,armv8";
|
||||
reg = <0x0 0x101>;
|
||||
device_type = "cpu";
|
||||
enable-method = "psci";
|
||||
next-level-cache = <&A53_L2>;
|
||||
clocks = <&scpi_dvfs 1>;
|
||||
cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
|
||||
capacity-dmips-mhz = <578>;
|
||||
};
|
||||
|
||||
A53_2: cpu@102 {
|
||||
compatible = "arm,cortex-a53","arm,armv8";
|
||||
reg = <0x0 0x102>;
|
||||
device_type = "cpu";
|
||||
enable-method = "psci";
|
||||
next-level-cache = <&A53_L2>;
|
||||
clocks = <&scpi_dvfs 1>;
|
||||
cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
|
||||
capacity-dmips-mhz = <578>;
|
||||
};
|
||||
|
||||
A53_3: cpu@103 {
|
||||
compatible = "arm,cortex-a53","arm,armv8";
|
||||
reg = <0x0 0x103>;
|
||||
device_type = "cpu";
|
||||
enable-method = "psci";
|
||||
next-level-cache = <&A53_L2>;
|
||||
clocks = <&scpi_dvfs 1>;
|
||||
cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
|
||||
capacity-dmips-mhz = <578>;
|
||||
};
|
||||
|
||||
A57_L2: l2-cache0 {
|
||||
compatible = "cache";
|
||||
};
|
||||
|
||||
A53_L2: l2-cache1 {
|
||||
compatible = "cache";
|
||||
};
|
||||
};
|
||||
|
||||
Example 2 (ARM 32-bit, 4-cpu system, two clusters,
|
||||
cpus 0,1@1GHz, cpus 2,3@500MHz):
|
||||
capacities-dmips-mhz are scaled w.r.t. 2 (cpu@0 and cpu@1), this means that first
|
||||
cpu@0 and cpu@1 are twice fast than cpu@2 and cpu@3 (at the same frequency)
|
||||
|
||||
cpus {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
cpu0: cpu@0 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a15";
|
||||
reg = <0>;
|
||||
capacity-dmips-mhz = <2>;
|
||||
};
|
||||
|
||||
cpu1: cpu@1 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a15";
|
||||
reg = <1>;
|
||||
capacity-dmips-mhz = <2>;
|
||||
};
|
||||
|
||||
cpu2: cpu@2 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a15";
|
||||
reg = <0x100>;
|
||||
capacity-dmips-mhz = <1>;
|
||||
};
|
||||
|
||||
cpu3: cpu@3 {
|
||||
device_type = "cpu";
|
||||
compatible = "arm,cortex-a15";
|
||||
reg = <0x101>;
|
||||
capacity-dmips-mhz = <1>;
|
||||
};
|
||||
};
|
||||
|
||||
===========================================
|
||||
5 - References
|
||||
===========================================
|
||||
|
||||
[1] ARM Linux Kernel documentation - CPUs bindings
|
||||
Documentation/devicetree/bindings/arm/cpus.txt
|
@@ -241,6 +241,14 @@ nodes to be present and contain the properties described below.
|
||||
# List of phandles to idle state nodes supported
|
||||
by this cpu [3].
|
||||
|
||||
- capacity-dmips-mhz
|
||||
Usage: Optional
|
||||
Value type: <u32>
|
||||
Definition:
|
||||
# u32 value representing CPU capacity [3] in
|
||||
DMIPS/MHz, relative to highest capacity-dmips-mhz
|
||||
in the system.
|
||||
|
||||
- rockchip,pmu
|
||||
Usage: optional for systems that have an "enable-method"
|
||||
property value of "rockchip,rk3066-smp"
|
||||
@@ -464,3 +472,5 @@ cpus {
|
||||
[2] arm/msm/qcom,kpss-acc.txt
|
||||
[3] ARM Linux kernel documentation - idle states bindings
|
||||
Documentation/devicetree/bindings/arm/idle-states.txt
|
||||
[3] ARM Linux kernel documentation - cpu capacity bindings
|
||||
Documentation/devicetree/bindings/arm/cpu-capacity.txt
|
||||
|
Fai riferimento in un nuovo problema
Block a user