V4L/DVB (5062): SN9C102 driver updates

- Add support for SN9C105 and SN9C120
- Add some more USB device identifiers
- Add support for OV7660
- Implement audio ioctl's and VIDIOC_ENUM_FRAMESIZES
- Add preliminary support for 0x0c45/0x6007
- Documentation updates
- Generic improvements
Signed-off-by: Luca Risolia <luca.risolia@studio.unibo.it>
Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
This commit is contained in:
Luca Risolia
2007-01-08 10:43:56 -03:00
committed by Mauro Carvalho Chehab
parent 19790db00b
commit f327ebbd00
17 changed files with 1905 additions and 841 deletions

View File

@@ -1,5 +1,5 @@
SN9C10x PC Camera Controllers
SN9C1xx PC Camera Controllers
Driver for Linux
=============================
@@ -53,20 +53,14 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
4. Overview and features
========================
This driver attempts to support the video interface of the devices mounting the
SONiX SN9C101, SN9C102 and SN9C103 PC Camera Controllers.
It's worth to note that SONiX has never collaborated with the author during the
development of this project, despite several requests for enough detailed
specifications of the register tables, compression engine and video data format
of the above chips. Nevertheless, these informations are no longer necessary,
because all the aspects related to these chips are known and have been
described in detail in this documentation.
This driver attempts to support the video interface of the devices assembling
the SONiX SN9C101, SN9C102, SN9C103, SN9C105 and SN9C120 PC Camera Controllers
("SN9C1xx" from now on).
The driver relies on the Video4Linux2 and USB core modules. It has been
designed to run properly on SMP systems as well.
The latest version of the SN9C10x driver can be found at the following URL:
The latest version of the SN9C1xx driver can be found at the following URL:
http://www.linux-projects.org/
Some of the features of the driver are:
@@ -85,11 +79,11 @@ Some of the features of the driver are:
high compression quality (see also "Notes for V4L2 application developers"
and "Video frame formats" paragraphs);
- full support for the capabilities of many of the possible image sensors that
can be connected to the SN9C10x bridges, including, for instance, red, green,
can be connected to the SN9C1xx bridges, including, for instance, red, green,
blue and global gain adjustments and exposure (see "Supported devices"
paragraph for details);
- use of default color settings for sunlight conditions;
- dynamic I/O interface for both SN9C10x and image sensor control and
- dynamic I/O interface for both SN9C1xx and image sensor control and
monitoring (see "Optional device control through 'sysfs'" paragraph);
- dynamic driver control thanks to various module parameters (see "Module
parameters" paragraph);
@@ -130,8 +124,8 @@ necessary:
CONFIG_USB_UHCI_HCD=m
CONFIG_USB_OHCI_HCD=m
The SN9C103 controller also provides a built-in microphone interface. It is
supported by the USB Audio driver thanks to the ALSA API:
The SN9C103, SN9c105 and SN9C120 controllers also provide a built-in microphone
interface. It is supported by the USB Audio driver thanks to the ALSA API:
# Sound
#
@@ -155,18 +149,27 @@ And finally:
6. Module loading
=================
To use the driver, it is necessary to load the "sn9c102" module into memory
after every other module required: "videodev", "usbcore" and, depending on
the USB host controller you have, "ehci-hcd", "uhci-hcd" or "ohci-hcd".
after every other module required: "videodev", "v4l2_common", "compat_ioctl32",
"usbcore" and, depending on the USB host controller you have, "ehci-hcd",
"uhci-hcd" or "ohci-hcd".
Loading can be done as shown below:
[root@localhost home]# modprobe sn9c102
At this point the devices should be recognized. You can invoke "dmesg" to
analyze kernel messages and verify that the loading process has gone well:
Note that the module is called "sn9c102" for historic reasons, althought it
does not just support the SN9C102.
At this point all the devices supported by the driver and connected to the USB
ports should be recognized. You can invoke "dmesg" to analyze kernel messages
and verify that the loading process has gone well:
[user@localhost home]$ dmesg
or, to isolate all the kernel messages generated by the driver:
[user@localhost home]$ dmesg | grep sn9c102
7. Module parameters
====================
@@ -198,10 +201,11 @@ Default: 0
-------------------------------------------------------------------------------
Name: frame_timeout
Type: uint array (min = 0, max = 64)
Syntax: <n[,...]>
Description: Timeout for a video frame in seconds. This parameter is
specific for each detected camera. This parameter can be
changed at runtime thanks to the /sys filesystem interface.
Syntax: <0|n[,...]>
Description: Timeout for a video frame in seconds before returning an I/O
error; 0 for infinity. This parameter is specific for each
detected camera and can be changed at runtime thanks to the
/sys filesystem interface.
Default: 2
-------------------------------------------------------------------------------
Name: debug
@@ -223,20 +227,21 @@ Default: 2
8. Optional device control through "sysfs" [1]
==========================================
If the kernel has been compiled with the CONFIG_VIDEO_ADV_DEBUG option enabled,
it is possible to read and write both the SN9C10x and the image sensor
it is possible to read and write both the SN9C1xx and the image sensor
registers by using the "sysfs" filesystem interface.
Every time a supported device is recognized, a write-only file named "green" is
created in the /sys/class/video4linux/videoX directory. You can set the green
channel's gain by writing the desired value to it. The value may range from 0
to 15 for SN9C101 or SN9C102 bridges, from 0 to 127 for SN9C103 bridges.
Similarly, only for SN9C103 controllers, blue and red gain control files are
available in the same directory, for which accepted values may range from 0 to
127.
to 15 for the SN9C101 or SN9C102 bridges, from 0 to 127 for the SN9C103,
SN9C105 and SN9C120 bridges.
Similarly, only for the SN9C103, SN9C105 and SN9120 controllers, blue and red
gain control files are available in the same directory, for which accepted
values may range from 0 to 127.
There are other four entries in the directory above for each registered camera:
"reg", "val", "i2c_reg" and "i2c_val". The first two files control the
SN9C10x bridge, while the other two control the sensor chip. "reg" and
SN9C1xx bridge, while the other two control the sensor chip. "reg" and
"i2c_reg" hold the values of the current register index where the following
reading/writing operations are addressed at through "val" and "i2c_val". Their
use is not intended for end-users. Note that "i2c_reg" and "i2c_val" will not
@@ -259,61 +264,84 @@ Now let's set the green gain's register of the SN9C101 or SN9C102 chips to 2:
[root@localhost #] echo 0x11 > reg
[root@localhost #] echo 2 > val
Note that the SN9C10x always returns 0 when some of its registers are read.
Note that the SN9C1xx always returns 0 when some of its registers are read.
To avoid race conditions, all the I/O accesses to the above files are
serialized.
The sysfs interface also provides the "frame_header" entry, which exports the
frame header of the most recent requested and captured video frame. The header
is always 18-bytes long and is appended to every video frame by the SN9C10x
is always 18-bytes long and is appended to every video frame by the SN9C1xx
controllers. As an example, this additional information can be used by the user
application for implementing auto-exposure features via software.
The following table describes the frame header:
The following table describes the frame header exported by the SN9C101 and
SN9C102:
Byte # Value Description
------ ----- -----------
0x00 0xFF Frame synchronisation pattern.
0x01 0xFF Frame synchronisation pattern.
0x02 0x00 Frame synchronisation pattern.
0x03 0xC4 Frame synchronisation pattern.
0x04 0xC4 Frame synchronisation pattern.
0x05 0x96 Frame synchronisation pattern.
0x06 0xXX Unknown meaning. The exact value depends on the chip;
possible values are 0x00, 0x01 and 0x20.
0x07 0xXX Variable value, whose bits are ff00uzzc, where ff is a
frame counter, u is unknown, zz is a size indicator
(00 = VGA, 01 = SIF, 10 = QSIF) and c stands for
"compression enabled" (1 = yes, 0 = no).
0x08 0xXX Brightness sum inside Auto-Exposure area (low-byte).
0x09 0xXX Brightness sum inside Auto-Exposure area (high-byte).
For a pure white image, this number will be equal to 500
times the area of the specified AE area. For images
that are not pure white, the value scales down according
to relative whiteness.
0x0A 0xXX Brightness sum outside Auto-Exposure area (low-byte).
0x0B 0xXX Brightness sum outside Auto-Exposure area (high-byte).
For a pure white image, this number will be equal to 125
times the area outside of the specified AE area. For
images that are not pure white, the value scales down
according to relative whiteness.
according to relative whiteness.
Byte # Value or bits Description
------ ------------- -----------
0x00 0xFF Frame synchronisation pattern
0x01 0xFF Frame synchronisation pattern
0x02 0x00 Frame synchronisation pattern
0x03 0xC4 Frame synchronisation pattern
0x04 0xC4 Frame synchronisation pattern
0x05 0x96 Frame synchronisation pattern
0x06 [3:0] Read channel gain control = (1+R_GAIN/8)
[7:4] Blue channel gain control = (1+B_GAIN/8)
0x07 [ 0 ] Compression mode. 0=No compression, 1=Compression enabled
[2:1] Maximum scale factor for compression
[ 3 ] 1 = USB fifo(2K bytes) is full
[ 4 ] 1 = Digital gain is finish
[ 5 ] 1 = Exposure is finish
[7:6] Frame index
0x08 [7:0] Y sum inside Auto-Exposure area (low-byte)
0x09 [7:0] Y sum inside Auto-Exposure area (high-byte)
where Y sum = (R/4 + 5G/16 + B/8) / 32
0x0A [7:0] Y sum outside Auto-Exposure area (low-byte)
0x0B [7:0] Y sum outside Auto-Exposure area (high-byte)
where Y sum = (R/4 + 5G/16 + B/8) / 128
0x0C 0xXX Not used
0x0D 0xXX Not used
0x0E 0xXX Not used
0x0F 0xXX Not used
0x10 0xXX Not used
0x11 0xXX Not used
The following bytes are used by the SN9C103 bridge only:
The following table describes the frame header exported by the SN9C103:
0x0C 0xXX Unknown meaning
0x0D 0xXX Unknown meaning
0x0E 0xXX Unknown meaning
0x0F 0xXX Unknown meaning
0x10 0xXX Unknown meaning
0x11 0xXX Unknown meaning
Byte # Value or bits Description
------ ------------- -----------
0x00 0xFF Frame synchronisation pattern
0x01 0xFF Frame synchronisation pattern
0x02 0x00 Frame synchronisation pattern
0x03 0xC4 Frame synchronisation pattern
0x04 0xC4 Frame synchronisation pattern
0x05 0x96 Frame synchronisation pattern
0x06 [6:0] Read channel gain control = (1/2+R_GAIN/64)
0x07 [6:0] Blue channel gain control = (1/2+B_GAIN/64)
[7:4]
0x08 [ 0 ] Compression mode. 0=No compression, 1=Compression enabled
[2:1] Maximum scale factor for compression
[ 3 ] 1 = USB fifo(2K bytes) is full
[ 4 ] 1 = Digital gain is finish
[ 5 ] 1 = Exposure is finish
[7:6] Frame index
0x09 [7:0] Y sum inside Auto-Exposure area (low-byte)
0x0A [7:0] Y sum inside Auto-Exposure area (high-byte)
where Y sum = (R/4 + 5G/16 + B/8) / 32
0x0B [7:0] Y sum outside Auto-Exposure area (low-byte)
0x0C [7:0] Y sum outside Auto-Exposure area (high-byte)
where Y sum = (R/4 + 5G/16 + B/8) / 128
0x0D [1:0] Audio frame number
[ 2 ] 1 = Audio is recording
0x0E [7:0] Audio summation (low-byte)
0x0F [7:0] Audio summation (high-byte)
0x10 [7:0] Audio sample count
0x11 [7:0] Audio peak data in audio frame
The AE area (sx, sy, ex, ey) in the active window can be set by programming the
registers 0x1c, 0x1d, 0x1e and 0x1f of the SN9C10x controllers, where one unit
registers 0x1c, 0x1d, 0x1e and 0x1f of the SN9C1xx controllers, where one unit
corresponds to 32 pixels.
[1] Part of the meaning of the frame header has been documented by Bertrik
Sikken.
[1] The frame headers exported by the SN9C105 and SN9C120 are not described.
9. Supported devices
@@ -323,15 +351,19 @@ here. They have never collaborated with the author, so no advertising.
From the point of view of a driver, what unambiguously identify a device are
its vendor and product USB identifiers. Below is a list of known identifiers of
devices mounting the SN9C10x PC camera controllers:
devices assembling the SN9C1xx PC camera controllers:
Vendor ID Product ID
--------- ----------
0x0471 0x0327
0x0471 0x0328
0x0c45 0x6001
0x0c45 0x6005
0x0c45 0x6007
0x0c45 0x6009
0x0c45 0x600d
0x0c45 0x6011
0x0c45 0x6019
0x0c45 0x6024
0x0c45 0x6025
0x0c45 0x6028
@@ -342,6 +374,7 @@ Vendor ID Product ID
0x0c45 0x602d
0x0c45 0x602e
0x0c45 0x6030
0x0c45 0x603f
0x0c45 0x6080
0x0c45 0x6082
0x0c45 0x6083
@@ -368,24 +401,40 @@ Vendor ID Product ID
0x0c45 0x60bb
0x0c45 0x60bc
0x0c45 0x60be
0x0c45 0x60c0
0x0c45 0x60c8
0x0c45 0x60cc
0x0c45 0x60ea
0x0c45 0x60ec
0x0c45 0x60fa
0x0c45 0x60fb
0x0c45 0x60fc
0x0c45 0x60fe
0x0c45 0x6130
0x0c45 0x613a
0x0c45 0x613b
0x0c45 0x613c
0x0c45 0x613e
The list above does not imply that all those devices work with this driver: up
until now only the ones that mount the following image sensors are supported;
kernel messages will always tell you whether this is the case:
until now only the ones that assemble the following image sensors are
supported; kernel messages will always tell you whether this is the case (see
"Module loading" paragraph):
Model Manufacturer
----- ------------
HV7131D Hynix Semiconductor, Inc.
MI-0343 Micron Technology, Inc.
OV7630 OmniVision Technologies, Inc.
OV7660 OmniVision Technologies, Inc.
PAS106B PixArt Imaging, Inc.
PAS202BCA PixArt Imaging, Inc.
PAS202BCB PixArt Imaging, Inc.
TAS5110C1B Taiwan Advanced Sensor Corporation
TAS5130D1B Taiwan Advanced Sensor Corporation
All the available control settings of each image sensor are supported through
the V4L2 interface.
Some of the available control settings of each image sensor are supported
through the V4L2 interface.
Donations of new models for further testing and support would be much
appreciated. Non-available hardware will not be supported by the author of this
@@ -429,12 +478,15 @@ supplied by this driver).
11. Video frame formats [1]
=======================
The SN9C10x PC Camera Controllers can send images in two possible video
formats over the USB: either native "Sequential RGB Bayer" or Huffman
compressed. The latter is used to achieve high frame rates. The current video
format may be selected or queried from the user application by calling the
VIDIOC_S_FMT or VIDIOC_G_FMT ioctl's, as described in the V4L2 API
specifications.
The SN9C1xx PC Camera Controllers can send images in two possible video
formats over the USB: either native "Sequential RGB Bayer" or compressed.
The compression is used to achieve high frame rates. With regard to the
SN9C101, SN9C102 and SN9C103, the compression is based on the Huffman encoding
algorithm described below, while the SN9C105 and SN9C120 the compression is
based on the JPEG standard.
The current video format may be selected or queried from the user application
by calling the VIDIOC_S_FMT or VIDIOC_G_FMT ioctl's, as described in the V4L2
API specifications.
The name "Sequential Bayer" indicates the organization of the red, green and
blue pixels in one video frame. Each pixel is associated with a 8-bit long
@@ -447,14 +499,14 @@ G[m] R[m+1] G[m+2] R[m+2] ... G[2m-2] R[2m-1]
... G[n(m-2)] R[n(m-1)]
The above matrix also represents the sequential or progressive read-out mode of
the (n, m) Bayer color filter array used in many CCD/CMOS image sensors.
the (n, m) Bayer color filter array used in many CCD or CMOS image sensors.
One compressed video frame consists of a bitstream that encodes for every R, G,
or B pixel the difference between the value of the pixel itself and some
reference pixel value. Pixels are organised in the Bayer pattern and the Bayer
sub-pixels are tracked individually and alternatingly. For example, in the
first line values for the B and G1 pixels are alternatingly encoded, while in
the second line values for the G2 and R pixels are alternatingly encoded.
The Huffman compressed video frame consists of a bitstream that encodes for
every R, G, or B pixel the difference between the value of the pixel itself and
some reference pixel value. Pixels are organised in the Bayer pattern and the
Bayer sub-pixels are tracked individually and alternatingly. For example, in
the first line values for the B and G1 pixels are alternatingly encoded, while
in the second line values for the G2 and R pixels are alternatingly encoded.
The pixel reference value is calculated as follows:
- the 4 top left pixels are encoded in raw uncompressed 8-bit format;
@@ -470,8 +522,9 @@ The pixel reference value is calculated as follows:
decoding.
The algorithm purely describes the conversion from compressed Bayer code used
in the SN9C10x chips to uncompressed Bayer. Additional steps are required to
convert this to a color image (i.e. a color interpolation algorithm).
in the SN9C101, SN9C102 and SN9C103 chips to uncompressed Bayer. Additional
steps are required to convert this to a color image (i.e. a color interpolation
algorithm).
The following Huffman codes have been found:
0: +0 (relative to reference pixel value)
@@ -506,13 +559,18 @@ order):
- Philippe Coval for having helped testing the PAS202BCA image sensor;
- Joao Rodrigo Fuzaro, Joao Limirio, Claudio Filho and Caio Begotti for the
donation of a webcam;
- Dennis Heitmann for the donation of a webcam;
- Jon Hollstrom for the donation of a webcam;
- Nick McGill for the donation of a webcam;
- Carlos Eduardo Medaglia Dyonisio, who added the support for the PAS202BCB
image sensor;
- Stefano Mozzi, who donated 45 EU;
- Andrew Pearce for the donation of a webcam;
- John Pullan for the donation of a webcam;
- Bertrik Sikken, who reverse-engineered and documented the Huffman compression
algorithm used in the SN9C10x controllers and implemented the first decoder;
algorithm used in the SN9C101, SN9C102 and SN9C103 controllers and
implemented the first decoder;
- Mizuno Takafumi for the donation of a webcam;
- an "anonymous" donator (who didn't want his name to be revealed) for the
donation of a webcam.
- an anonymous donator for the donation of four webcams.