pci root complex: support for tile architecture
This change enables PCI root complex support for TILEPro. Unlike TILE-Gx, TILEPro has no support for memory-mapped I/O, so the PCI support consists of hypervisor upcalls for PIO, DMA, etc. However, the performance is fine for the devices we have tested with so far (1Gb Ethernet, SATA, etc.). The <asm/io.h> header was tweaked to be a little bit more aggressive about disabling attempts to map/unmap IO port space. The hacky <asm/pci-bridge.h> header was rolled into the <asm/pci.h> header and the result was simplified. Both of the latter two headers were preliminary versions not meant for release before now - oh well. There is one quirk for our TILEmpower platform, which accidentally negotiates up to 5GT and needs to be kicked down to 2.5GT. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
This commit is contained in:
621
arch/tile/kernel/pci.c
Normal file
621
arch/tile/kernel/pci.c
Normal file
@@ -0,0 +1,621 @@
|
||||
/*
|
||||
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation, version 2.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
||||
* NON INFRINGEMENT. See the GNU General Public License for
|
||||
* more details.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/capability.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/bootmem.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/uaccess.h>
|
||||
|
||||
#include <asm/processor.h>
|
||||
#include <asm/sections.h>
|
||||
#include <asm/byteorder.h>
|
||||
#include <asm/hv_driver.h>
|
||||
#include <hv/drv_pcie_rc_intf.h>
|
||||
|
||||
|
||||
/*
|
||||
* Initialization flow and process
|
||||
* -------------------------------
|
||||
*
|
||||
* This files containes the routines to search for PCI buses,
|
||||
* enumerate the buses, and configure any attached devices.
|
||||
*
|
||||
* There are two entry points here:
|
||||
* 1) tile_pci_init
|
||||
* This sets up the pci_controller structs, and opens the
|
||||
* FDs to the hypervisor. This is called from setup_arch() early
|
||||
* in the boot process.
|
||||
* 2) pcibios_init
|
||||
* This probes the PCI bus(es) for any attached hardware. It's
|
||||
* called by subsys_initcall. All of the real work is done by the
|
||||
* generic Linux PCI layer.
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* This flag tells if the platform is TILEmpower that needs
|
||||
* special configuration for the PLX switch chip.
|
||||
*/
|
||||
int __write_once tile_plx_gen1;
|
||||
|
||||
static struct pci_controller controllers[TILE_NUM_PCIE];
|
||||
static int num_controllers;
|
||||
|
||||
static struct pci_ops tile_cfg_ops;
|
||||
|
||||
|
||||
/*
|
||||
* We don't need to worry about the alignment of resources.
|
||||
*/
|
||||
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
|
||||
resource_size_t size, resource_size_t align)
|
||||
{
|
||||
return res->start;
|
||||
}
|
||||
EXPORT_SYMBOL(pcibios_align_resource);
|
||||
|
||||
/*
|
||||
* Open a FD to the hypervisor PCI device.
|
||||
*
|
||||
* controller_id is the controller number, config type is 0 or 1 for
|
||||
* config0 or config1 operations.
|
||||
*/
|
||||
static int __init tile_pcie_open(int controller_id, int config_type)
|
||||
{
|
||||
char filename[32];
|
||||
int fd;
|
||||
|
||||
sprintf(filename, "pcie/%d/config%d", controller_id, config_type);
|
||||
|
||||
fd = hv_dev_open((HV_VirtAddr)filename, 0);
|
||||
|
||||
return fd;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Get the IRQ numbers from the HV and set up the handlers for them.
|
||||
*/
|
||||
static int __init tile_init_irqs(int controller_id,
|
||||
struct pci_controller *controller)
|
||||
{
|
||||
char filename[32];
|
||||
int fd;
|
||||
int ret;
|
||||
int x;
|
||||
struct pcie_rc_config rc_config;
|
||||
|
||||
sprintf(filename, "pcie/%d/ctl", controller_id);
|
||||
fd = hv_dev_open((HV_VirtAddr)filename, 0);
|
||||
if (fd < 0) {
|
||||
pr_err("PCI: hv_dev_open(%s) failed\n", filename);
|
||||
return -1;
|
||||
}
|
||||
ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config),
|
||||
sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF);
|
||||
hv_dev_close(fd);
|
||||
if (ret != sizeof(rc_config)) {
|
||||
pr_err("PCI: wanted %zd bytes, got %d\n",
|
||||
sizeof(rc_config), ret);
|
||||
return -1;
|
||||
}
|
||||
/* Record irq_base so that we can map INTx to IRQ # later. */
|
||||
controller->irq_base = rc_config.intr;
|
||||
|
||||
for (x = 0; x < 4; x++)
|
||||
tile_irq_activate(rc_config.intr + x,
|
||||
TILE_IRQ_HW_CLEAR);
|
||||
|
||||
if (rc_config.plx_gen1)
|
||||
controller->plx_gen1 = 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* First initialization entry point, called from setup_arch().
|
||||
*
|
||||
* Find valid controllers and fill in pci_controller structs for each
|
||||
* of them.
|
||||
*
|
||||
* Returns the number of controllers discovered.
|
||||
*/
|
||||
int __init tile_pci_init(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
pr_info("PCI: Searching for controllers...\n");
|
||||
|
||||
/* Do any configuration we need before using the PCIe */
|
||||
|
||||
for (i = 0; i < TILE_NUM_PCIE; i++) {
|
||||
int hv_cfg_fd0 = -1;
|
||||
int hv_cfg_fd1 = -1;
|
||||
int hv_mem_fd = -1;
|
||||
char name[32];
|
||||
struct pci_controller *controller;
|
||||
|
||||
/*
|
||||
* Open the fd to the HV. If it fails then this
|
||||
* device doesn't exist.
|
||||
*/
|
||||
hv_cfg_fd0 = tile_pcie_open(i, 0);
|
||||
if (hv_cfg_fd0 < 0)
|
||||
continue;
|
||||
hv_cfg_fd1 = tile_pcie_open(i, 1);
|
||||
if (hv_cfg_fd1 < 0) {
|
||||
pr_err("PCI: Couldn't open config fd to HV "
|
||||
"for controller %d\n", i);
|
||||
goto err_cont;
|
||||
}
|
||||
|
||||
sprintf(name, "pcie/%d/mem", i);
|
||||
hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0);
|
||||
if (hv_mem_fd < 0) {
|
||||
pr_err("PCI: Could not open mem fd to HV!\n");
|
||||
goto err_cont;
|
||||
}
|
||||
|
||||
pr_info("PCI: Found PCI controller #%d\n", i);
|
||||
|
||||
controller = &controllers[num_controllers];
|
||||
|
||||
if (tile_init_irqs(i, controller)) {
|
||||
pr_err("PCI: Could not initialize "
|
||||
"IRQs, aborting.\n");
|
||||
goto err_cont;
|
||||
}
|
||||
|
||||
controller->index = num_controllers;
|
||||
controller->hv_cfg_fd[0] = hv_cfg_fd0;
|
||||
controller->hv_cfg_fd[1] = hv_cfg_fd1;
|
||||
controller->hv_mem_fd = hv_mem_fd;
|
||||
controller->first_busno = 0;
|
||||
controller->last_busno = 0xff;
|
||||
controller->ops = &tile_cfg_ops;
|
||||
|
||||
num_controllers++;
|
||||
continue;
|
||||
|
||||
err_cont:
|
||||
if (hv_cfg_fd0 >= 0)
|
||||
hv_dev_close(hv_cfg_fd0);
|
||||
if (hv_cfg_fd1 >= 0)
|
||||
hv_dev_close(hv_cfg_fd1);
|
||||
if (hv_mem_fd >= 0)
|
||||
hv_dev_close(hv_mem_fd);
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* Before using the PCIe, see if we need to do any platform-specific
|
||||
* configuration, such as the PLX switch Gen 1 issue on TILEmpower.
|
||||
*/
|
||||
for (i = 0; i < num_controllers; i++) {
|
||||
struct pci_controller *controller = &controllers[i];
|
||||
|
||||
if (controller->plx_gen1)
|
||||
tile_plx_gen1 = 1;
|
||||
}
|
||||
|
||||
return num_controllers;
|
||||
}
|
||||
|
||||
/*
|
||||
* (pin - 1) converts from the PCI standard's [1:4] convention to
|
||||
* a normal [0:3] range.
|
||||
*/
|
||||
static int tile_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
|
||||
{
|
||||
struct pci_controller *controller =
|
||||
(struct pci_controller *)dev->sysdata;
|
||||
return (pin - 1) + controller->irq_base;
|
||||
}
|
||||
|
||||
|
||||
static void __init fixup_read_and_payload_sizes(void)
|
||||
{
|
||||
struct pci_dev *dev = NULL;
|
||||
int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */
|
||||
int max_read_size = 0x2; /* Limit to 512 byte reads. */
|
||||
u16 new_values;
|
||||
|
||||
/* Scan for the smallest maximum payload size. */
|
||||
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
|
||||
int pcie_caps_offset;
|
||||
u32 devcap;
|
||||
int max_payload;
|
||||
|
||||
pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
|
||||
if (pcie_caps_offset == 0)
|
||||
continue;
|
||||
|
||||
pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP,
|
||||
&devcap);
|
||||
max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD;
|
||||
if (max_payload < smallest_max_payload)
|
||||
smallest_max_payload = max_payload;
|
||||
}
|
||||
|
||||
/* Now, set the max_payload_size for all devices to that value. */
|
||||
new_values = (max_read_size << 12) | (smallest_max_payload << 5);
|
||||
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
|
||||
int pcie_caps_offset;
|
||||
u16 devctl;
|
||||
|
||||
pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP);
|
||||
if (pcie_caps_offset == 0)
|
||||
continue;
|
||||
|
||||
pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
|
||||
&devctl);
|
||||
devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ);
|
||||
devctl |= new_values;
|
||||
pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL,
|
||||
devctl);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Second PCI initialization entry point, called by subsys_initcall.
|
||||
*
|
||||
* The controllers have been set up by the time we get here, by a call to
|
||||
* tile_pci_init.
|
||||
*/
|
||||
static int __init pcibios_init(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
pr_info("PCI: Probing PCI hardware\n");
|
||||
|
||||
/*
|
||||
* Delay a bit in case devices aren't ready. Some devices are
|
||||
* known to require at least 20ms here, but we use a more
|
||||
* conservative value.
|
||||
*/
|
||||
mdelay(250);
|
||||
|
||||
/* Scan all of the recorded PCI controllers. */
|
||||
for (i = 0; i < num_controllers; i++) {
|
||||
struct pci_controller *controller = &controllers[i];
|
||||
struct pci_bus *bus;
|
||||
|
||||
pr_info("PCI: initializing controller #%d\n", i);
|
||||
|
||||
/*
|
||||
* This comes from the generic Linux PCI driver.
|
||||
*
|
||||
* It reads the PCI tree for this bus into the Linux
|
||||
* data structures.
|
||||
*
|
||||
* This is inlined in linux/pci.h and calls into
|
||||
* pci_scan_bus_parented() in probe.c.
|
||||
*/
|
||||
bus = pci_scan_bus(0, controller->ops, controller);
|
||||
controller->root_bus = bus;
|
||||
controller->last_busno = bus->subordinate;
|
||||
|
||||
}
|
||||
|
||||
/* Do machine dependent PCI interrupt routing */
|
||||
pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
|
||||
|
||||
/*
|
||||
* This comes from the generic Linux PCI driver.
|
||||
*
|
||||
* It allocates all of the resources (I/O memory, etc)
|
||||
* associated with the devices read in above.
|
||||
*/
|
||||
|
||||
pci_assign_unassigned_resources();
|
||||
|
||||
/* Configure the max_read_size and max_payload_size values. */
|
||||
fixup_read_and_payload_sizes();
|
||||
|
||||
/* Record the I/O resources in the PCI controller structure. */
|
||||
for (i = 0; i < num_controllers; i++) {
|
||||
struct pci_bus *root_bus = controllers[i].root_bus;
|
||||
struct pci_bus *next_bus;
|
||||
struct pci_dev *dev;
|
||||
|
||||
list_for_each_entry(dev, &root_bus->devices, bus_list) {
|
||||
/* Find the PCI host controller, ie. the 1st bridge. */
|
||||
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
|
||||
(PCI_SLOT(dev->devfn) == 0)) {
|
||||
next_bus = dev->subordinate;
|
||||
controllers[i].mem_resources[0] =
|
||||
*next_bus->resource[0];
|
||||
controllers[i].mem_resources[1] =
|
||||
*next_bus->resource[1];
|
||||
controllers[i].mem_resources[2] =
|
||||
*next_bus->resource[2];
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
subsys_initcall(pcibios_init);
|
||||
|
||||
/*
|
||||
* No bus fixups needed.
|
||||
*/
|
||||
void __devinit pcibios_fixup_bus(struct pci_bus *bus)
|
||||
{
|
||||
/* Nothing needs to be done. */
|
||||
}
|
||||
|
||||
/*
|
||||
* This can be called from the generic PCI layer, but doesn't need to
|
||||
* do anything.
|
||||
*/
|
||||
char __devinit *pcibios_setup(char *str)
|
||||
{
|
||||
/* Nothing needs to be done. */
|
||||
return str;
|
||||
}
|
||||
|
||||
/*
|
||||
* This is called from the generic Linux layer.
|
||||
*/
|
||||
void __init pcibios_update_irq(struct pci_dev *dev, int irq)
|
||||
{
|
||||
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Enable memory and/or address decoding, as appropriate, for the
|
||||
* device described by the 'dev' struct.
|
||||
*
|
||||
* This is called from the generic PCI layer, and can be called
|
||||
* for bridges or endpoints.
|
||||
*/
|
||||
int pcibios_enable_device(struct pci_dev *dev, int mask)
|
||||
{
|
||||
u16 cmd, old_cmd;
|
||||
u8 header_type;
|
||||
int i;
|
||||
struct resource *r;
|
||||
|
||||
pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
|
||||
|
||||
pci_read_config_word(dev, PCI_COMMAND, &cmd);
|
||||
old_cmd = cmd;
|
||||
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
|
||||
/*
|
||||
* For bridges, we enable both memory and I/O decoding
|
||||
* in call cases.
|
||||
*/
|
||||
cmd |= PCI_COMMAND_IO;
|
||||
cmd |= PCI_COMMAND_MEMORY;
|
||||
} else {
|
||||
/*
|
||||
* For endpoints, we enable memory and/or I/O decoding
|
||||
* only if they have a memory resource of that type.
|
||||
*/
|
||||
for (i = 0; i < 6; i++) {
|
||||
r = &dev->resource[i];
|
||||
if (r->flags & IORESOURCE_UNSET) {
|
||||
pr_err("PCI: Device %s not available "
|
||||
"because of resource collisions\n",
|
||||
pci_name(dev));
|
||||
return -EINVAL;
|
||||
}
|
||||
if (r->flags & IORESOURCE_IO)
|
||||
cmd |= PCI_COMMAND_IO;
|
||||
if (r->flags & IORESOURCE_MEM)
|
||||
cmd |= PCI_COMMAND_MEMORY;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* We only write the command if it changed.
|
||||
*/
|
||||
if (cmd != old_cmd)
|
||||
pci_write_config_word(dev, PCI_COMMAND, cmd);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max)
|
||||
{
|
||||
unsigned long start = pci_resource_start(dev, bar);
|
||||
unsigned long len = pci_resource_len(dev, bar);
|
||||
unsigned long flags = pci_resource_flags(dev, bar);
|
||||
|
||||
if (!len)
|
||||
return NULL;
|
||||
if (max && len > max)
|
||||
len = max;
|
||||
|
||||
if (!(flags & IORESOURCE_MEM)) {
|
||||
pr_info("PCI: Trying to map invalid resource %#lx\n", flags);
|
||||
start = 0;
|
||||
}
|
||||
|
||||
return (void __iomem *)start;
|
||||
}
|
||||
EXPORT_SYMBOL(pci_iomap);
|
||||
|
||||
|
||||
/****************************************************************
|
||||
*
|
||||
* Tile PCI config space read/write routines
|
||||
*
|
||||
****************************************************************/
|
||||
|
||||
/*
|
||||
* These are the normal read and write ops
|
||||
* These are expanded with macros from pci_bus_read_config_byte() etc.
|
||||
*
|
||||
* devfn is the combined PCI slot & function.
|
||||
*
|
||||
* offset is in bytes, from the start of config space for the
|
||||
* specified bus & slot.
|
||||
*/
|
||||
|
||||
static int __devinit tile_cfg_read(struct pci_bus *bus,
|
||||
unsigned int devfn,
|
||||
int offset,
|
||||
int size,
|
||||
u32 *val)
|
||||
{
|
||||
struct pci_controller *controller = bus->sysdata;
|
||||
int busnum = bus->number & 0xff;
|
||||
int slot = (devfn >> 3) & 0x1f;
|
||||
int function = devfn & 0x7;
|
||||
u32 addr;
|
||||
int config_mode = 1;
|
||||
|
||||
/*
|
||||
* There is no bridge between the Tile and bus 0, so we
|
||||
* use config0 to talk to bus 0.
|
||||
*
|
||||
* If we're talking to a bus other than zero then we
|
||||
* must have found a bridge.
|
||||
*/
|
||||
if (busnum == 0) {
|
||||
/*
|
||||
* We fake an empty slot for (busnum == 0) && (slot > 0),
|
||||
* since there is only one slot on bus 0.
|
||||
*/
|
||||
if (slot) {
|
||||
*val = 0xFFFFFFFF;
|
||||
return 0;
|
||||
}
|
||||
config_mode = 0;
|
||||
}
|
||||
|
||||
addr = busnum << 20; /* Bus in 27:20 */
|
||||
addr |= slot << 15; /* Slot (device) in 19:15 */
|
||||
addr |= function << 12; /* Function is in 14:12 */
|
||||
addr |= (offset & 0xFFF); /* byte address in 0:11 */
|
||||
|
||||
return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0,
|
||||
(HV_VirtAddr)(val), size, addr);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* See tile_cfg_read() for relevent comments.
|
||||
* Note that "val" is the value to write, not a pointer to that value.
|
||||
*/
|
||||
static int __devinit tile_cfg_write(struct pci_bus *bus,
|
||||
unsigned int devfn,
|
||||
int offset,
|
||||
int size,
|
||||
u32 val)
|
||||
{
|
||||
struct pci_controller *controller = bus->sysdata;
|
||||
int busnum = bus->number & 0xff;
|
||||
int slot = (devfn >> 3) & 0x1f;
|
||||
int function = devfn & 0x7;
|
||||
u32 addr;
|
||||
int config_mode = 1;
|
||||
HV_VirtAddr valp = (HV_VirtAddr)&val;
|
||||
|
||||
/*
|
||||
* For bus 0 slot 0 we use config 0 accesses.
|
||||
*/
|
||||
if (busnum == 0) {
|
||||
/*
|
||||
* We fake an empty slot for (busnum == 0) && (slot > 0),
|
||||
* since there is only one slot on bus 0.
|
||||
*/
|
||||
if (slot)
|
||||
return 0;
|
||||
config_mode = 0;
|
||||
}
|
||||
|
||||
addr = busnum << 20; /* Bus in 27:20 */
|
||||
addr |= slot << 15; /* Slot (device) in 19:15 */
|
||||
addr |= function << 12; /* Function is in 14:12 */
|
||||
addr |= (offset & 0xFFF); /* byte address in 0:11 */
|
||||
|
||||
#ifdef __BIG_ENDIAN
|
||||
/* Point to the correct part of the 32-bit "val". */
|
||||
valp += 4 - size;
|
||||
#endif
|
||||
|
||||
return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0,
|
||||
valp, size, addr);
|
||||
}
|
||||
|
||||
|
||||
static struct pci_ops tile_cfg_ops = {
|
||||
.read = tile_cfg_read,
|
||||
.write = tile_cfg_write,
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* In the following, each PCI controller's mem_resources[1]
|
||||
* represents its (non-prefetchable) PCI memory resource.
|
||||
* mem_resources[0] and mem_resources[2] refer to its PCI I/O and
|
||||
* prefetchable PCI memory resources, respectively.
|
||||
* For more details, see pci_setup_bridge() in setup-bus.c.
|
||||
* By comparing the target PCI memory address against the
|
||||
* end address of controller 0, we can determine the controller
|
||||
* that should accept the PCI memory access.
|
||||
*/
|
||||
#define TILE_READ(size, type) \
|
||||
type _tile_read##size(unsigned long addr) \
|
||||
{ \
|
||||
type val; \
|
||||
int idx = 0; \
|
||||
if (addr > controllers[0].mem_resources[1].end && \
|
||||
addr > controllers[0].mem_resources[2].end) \
|
||||
idx = 1; \
|
||||
if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \
|
||||
(HV_VirtAddr)(&val), sizeof(type), addr)) \
|
||||
pr_err("PCI: read %zd bytes at 0x%lX failed\n", \
|
||||
sizeof(type), addr); \
|
||||
return val; \
|
||||
} \
|
||||
EXPORT_SYMBOL(_tile_read##size)
|
||||
|
||||
TILE_READ(b, u8);
|
||||
TILE_READ(w, u16);
|
||||
TILE_READ(l, u32);
|
||||
TILE_READ(q, u64);
|
||||
|
||||
#define TILE_WRITE(size, type) \
|
||||
void _tile_write##size(type val, unsigned long addr) \
|
||||
{ \
|
||||
int idx = 0; \
|
||||
if (addr > controllers[0].mem_resources[1].end && \
|
||||
addr > controllers[0].mem_resources[2].end) \
|
||||
idx = 1; \
|
||||
if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \
|
||||
(HV_VirtAddr)(&val), sizeof(type), addr)) \
|
||||
pr_err("PCI: write %zd bytes at 0x%lX failed\n", \
|
||||
sizeof(type), addr); \
|
||||
} \
|
||||
EXPORT_SYMBOL(_tile_write##size)
|
||||
|
||||
TILE_WRITE(b, u8);
|
||||
TILE_WRITE(w, u16);
|
||||
TILE_WRITE(l, u32);
|
||||
TILE_WRITE(q, u64);
|
Reference in New Issue
Block a user