IB: Refactor umem to use linear SG table

This patch refactors the IB core umem code and vendor drivers to use a
linear (chained) SG table instead of chunk list.  With this change the
relevant code becomes clearer—no need for nested loops to build and
use umem.

Signed-off-by: Shachar Raindel <raindel@mellanox.com>
Signed-off-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Roland Dreier <roland@purestorage.com>
This commit is contained in:
Yishai Hadas
2014-01-28 13:40:15 +02:00
committed by Roland Dreier
parent cfbf8d4857
commit eeb8461e36
16 changed files with 446 additions and 550 deletions

View File

@@ -42,29 +42,29 @@
#include "uverbs.h"
#define IB_UMEM_MAX_PAGE_CHUNK \
((PAGE_SIZE - offsetof(struct ib_umem_chunk, page_list)) / \
((void *) &((struct ib_umem_chunk *) 0)->page_list[1] - \
(void *) &((struct ib_umem_chunk *) 0)->page_list[0]))
static void __ib_umem_release(struct ib_device *dev, struct ib_umem *umem, int dirty)
{
struct ib_umem_chunk *chunk, *tmp;
struct scatterlist *sg;
struct page *page;
int i;
list_for_each_entry_safe(chunk, tmp, &umem->chunk_list, list) {
ib_dma_unmap_sg(dev, chunk->page_list,
chunk->nents, DMA_BIDIRECTIONAL);
for (i = 0; i < chunk->nents; ++i) {
struct page *page = sg_page(&chunk->page_list[i]);
if (umem->nmap > 0)
ib_dma_unmap_sg(dev, umem->sg_head.sgl,
umem->nmap,
DMA_BIDIRECTIONAL);
if (umem->writable && dirty)
set_page_dirty_lock(page);
put_page(page);
}
for_each_sg(umem->sg_head.sgl, sg, umem->npages, i) {
kfree(chunk);
page = sg_page(sg);
if (umem->writable && dirty)
set_page_dirty_lock(page);
put_page(page);
}
sg_free_table(&umem->sg_head);
return;
}
/**
@@ -81,15 +81,15 @@ struct ib_umem *ib_umem_get(struct ib_ucontext *context, unsigned long addr,
struct ib_umem *umem;
struct page **page_list;
struct vm_area_struct **vma_list;
struct ib_umem_chunk *chunk;
unsigned long locked;
unsigned long lock_limit;
unsigned long cur_base;
unsigned long npages;
int ret;
int off;
int i;
DEFINE_DMA_ATTRS(attrs);
struct scatterlist *sg, *sg_list_start;
int need_release = 0;
if (dmasync)
dma_set_attr(DMA_ATTR_WRITE_BARRIER, &attrs);
@@ -97,7 +97,7 @@ struct ib_umem *ib_umem_get(struct ib_ucontext *context, unsigned long addr,
if (!can_do_mlock())
return ERR_PTR(-EPERM);
umem = kmalloc(sizeof *umem, GFP_KERNEL);
umem = kzalloc(sizeof *umem, GFP_KERNEL);
if (!umem)
return ERR_PTR(-ENOMEM);
@@ -117,8 +117,6 @@ struct ib_umem *ib_umem_get(struct ib_ucontext *context, unsigned long addr,
/* We assume the memory is from hugetlb until proved otherwise */
umem->hugetlb = 1;
INIT_LIST_HEAD(&umem->chunk_list);
page_list = (struct page **) __get_free_page(GFP_KERNEL);
if (!page_list) {
kfree(umem);
@@ -147,7 +145,18 @@ struct ib_umem *ib_umem_get(struct ib_ucontext *context, unsigned long addr,
cur_base = addr & PAGE_MASK;
ret = 0;
if (npages == 0) {
ret = -EINVAL;
goto out;
}
ret = sg_alloc_table(&umem->sg_head, npages, GFP_KERNEL);
if (ret)
goto out;
need_release = 1;
sg_list_start = umem->sg_head.sgl;
while (npages) {
ret = get_user_pages(current, current->mm, cur_base,
min_t(unsigned long, npages,
@@ -157,54 +166,38 @@ struct ib_umem *ib_umem_get(struct ib_ucontext *context, unsigned long addr,
if (ret < 0)
goto out;
umem->npages += ret;
cur_base += ret * PAGE_SIZE;
npages -= ret;
off = 0;
for_each_sg(sg_list_start, sg, ret, i) {
if (vma_list && !is_vm_hugetlb_page(vma_list[i]))
umem->hugetlb = 0;
while (ret) {
chunk = kmalloc(sizeof *chunk + sizeof (struct scatterlist) *
min_t(int, ret, IB_UMEM_MAX_PAGE_CHUNK),
GFP_KERNEL);
if (!chunk) {
ret = -ENOMEM;
goto out;
}
chunk->nents = min_t(int, ret, IB_UMEM_MAX_PAGE_CHUNK);
sg_init_table(chunk->page_list, chunk->nents);
for (i = 0; i < chunk->nents; ++i) {
if (vma_list &&
!is_vm_hugetlb_page(vma_list[i + off]))
umem->hugetlb = 0;
sg_set_page(&chunk->page_list[i], page_list[i + off], PAGE_SIZE, 0);
}
chunk->nmap = ib_dma_map_sg_attrs(context->device,
&chunk->page_list[0],
chunk->nents,
DMA_BIDIRECTIONAL,
&attrs);
if (chunk->nmap <= 0) {
for (i = 0; i < chunk->nents; ++i)
put_page(sg_page(&chunk->page_list[i]));
kfree(chunk);
ret = -ENOMEM;
goto out;
}
ret -= chunk->nents;
off += chunk->nents;
list_add_tail(&chunk->list, &umem->chunk_list);
sg_set_page(sg, page_list[i], PAGE_SIZE, 0);
}
ret = 0;
/* preparing for next loop */
sg_list_start = sg;
}
umem->nmap = ib_dma_map_sg_attrs(context->device,
umem->sg_head.sgl,
umem->npages,
DMA_BIDIRECTIONAL,
&attrs);
if (umem->nmap <= 0) {
ret = -ENOMEM;
goto out;
}
ret = 0;
out:
if (ret < 0) {
__ib_umem_release(context->device, umem, 0);
if (need_release)
__ib_umem_release(context->device, umem, 0);
kfree(umem);
} else
current->mm->pinned_vm = locked;
@@ -278,17 +271,16 @@ EXPORT_SYMBOL(ib_umem_release);
int ib_umem_page_count(struct ib_umem *umem)
{
struct ib_umem_chunk *chunk;
int shift;
int i;
int n;
struct scatterlist *sg;
shift = ilog2(umem->page_size);
n = 0;
list_for_each_entry(chunk, &umem->chunk_list, list)
for (i = 0; i < chunk->nmap; ++i)
n += sg_dma_len(&chunk->page_list[i]) >> shift;
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i)
n += sg_dma_len(sg) >> shift;
return n;
}