[PATCH] I2C: Move hwmon drivers (3/3)
Part 3: Move the drivers documentation, plus two general documentation files. Note that the patch "adds trailing whitespace", because it does move the files as-is, and some files happen to have trailing whitespace. Signed-off-by: Jean Delvare <khali@linux-fr.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:

committed by
Greg Kroah-Hartman

parent
8d5d45fb14
commit
ede7fbdf52
189
Documentation/hwmon/pc87360
Normal file
189
Documentation/hwmon/pc87360
Normal file
@@ -0,0 +1,189 @@
|
||||
Kernel driver pc87360
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor PC87360, PC87363, PC87364, PC87365 and PC87366
|
||||
Prefixes: 'pc87360', 'pc87363', 'pc87364', 'pc87365', 'pc87366'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheets:
|
||||
http://www.national.com/pf/PC/PC87360.html
|
||||
http://www.national.com/pf/PC/PC87363.html
|
||||
http://www.national.com/pf/PC/PC87364.html
|
||||
http://www.national.com/pf/PC/PC87365.html
|
||||
http://www.national.com/pf/PC/PC87366.html
|
||||
|
||||
Authors: Jean Delvare <khali@linux-fr.org>
|
||||
|
||||
Thanks to Sandeep Mehta, Tonko de Rooy and Daniel Ceregatti for testing.
|
||||
Thanks to Rudolf Marek for helping me investigate conversion issues.
|
||||
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* init int
|
||||
Chip initialization level:
|
||||
0: None
|
||||
*1: Forcibly enable internal voltage and temperature channels, except in9
|
||||
2: Forcibly enable all voltage and temperature channels, except in9
|
||||
3: Forcibly enable all voltage and temperature channels, including in9
|
||||
|
||||
Note that this parameter has no effect for the PC87360, PC87363 and PC87364
|
||||
chips.
|
||||
|
||||
Also note that for the PC87366, initialization levels 2 and 3 don't enable
|
||||
all temperature channels, because some of them share pins with each other,
|
||||
so they can't be used at the same time.
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The National Semiconductor PC87360 Super I/O chip contains monitoring and
|
||||
PWM control circuitry for two fans. The PC87363 chip is similar, and the
|
||||
PC87364 chip has monitoring and PWM control for a third fan.
|
||||
|
||||
The National Semiconductor PC87365 and PC87366 Super I/O chips are complete
|
||||
hardware monitoring chipsets, not only controlling and monitoring three fans,
|
||||
but also monitoring eleven voltage inputs and two (PC87365) or up to four
|
||||
(PC87366) temperatures.
|
||||
|
||||
Chip #vin #fan #pwm #temp devid
|
||||
|
||||
PC87360 - 2 2 - 0xE1
|
||||
PC87363 - 2 2 - 0xE8
|
||||
PC87364 - 3 3 - 0xE4
|
||||
PC87365 11 3 3 2 0xE5
|
||||
PC87366 11 3 3 3-4 0xE9
|
||||
|
||||
The driver assumes that no more than one chip is present, and one of the
|
||||
standard Super I/O addresses is used (0x2E/0x2F or 0x4E/0x4F)
|
||||
|
||||
Fan Monitoring
|
||||
--------------
|
||||
|
||||
Fan rotation speeds are reported in RPM (revolutions per minute). An alarm
|
||||
is triggered if the rotation speed has dropped below a programmable limit.
|
||||
A different alarm is triggered if the fan speed is too low to be measured.
|
||||
|
||||
Fan readings are affected by a programmable clock divider, giving the
|
||||
readings more range or accuracy. Usually, users have to learn how it works,
|
||||
but this driver implements dynamic clock divider selection, so you don't
|
||||
have to care no more.
|
||||
|
||||
For reference, here are a few values about clock dividers:
|
||||
|
||||
slowest accuracy highest
|
||||
measurable around 3000 accurate
|
||||
divider speed (RPM) RPM (RPM) speed (RPM)
|
||||
1 1882 18 6928
|
||||
2 941 37 4898
|
||||
4 470 74 3464
|
||||
8 235 150 2449
|
||||
|
||||
For the curious, here is how the values above were computed:
|
||||
* slowest measurable speed: clock/(255*divider)
|
||||
* accuracy around 3000 RPM: 3000^2/clock
|
||||
* highest accurate speed: sqrt(clock*100)
|
||||
The clock speed for the PC87360 family is 480 kHz. I arbitrarily chose 100
|
||||
RPM as the lowest acceptable accuracy.
|
||||
|
||||
As mentioned above, you don't have to care about this no more.
|
||||
|
||||
Note that not all RPM values can be represented, even when the best clock
|
||||
divider is selected. This is not only true for the measured speeds, but
|
||||
also for the programmable low limits, so don't be surprised if you try to
|
||||
set, say, fan1_min to 2900 and it finally reads 2909.
|
||||
|
||||
|
||||
Fan Control
|
||||
-----------
|
||||
|
||||
PWM (pulse width modulation) values range from 0 to 255, with 0 meaning
|
||||
that the fan is stopped, and 255 meaning that the fan goes at full speed.
|
||||
|
||||
Be extremely careful when changing PWM values. Low PWM values, even
|
||||
non-zero, can stop the fan, which may cause irreversible damage to your
|
||||
hardware if temperature increases too much. When changing PWM values, go
|
||||
step by step and keep an eye on temperatures.
|
||||
|
||||
One user reported problems with PWM. Changing PWM values would break fan
|
||||
speed readings. No explanation nor fix could be found.
|
||||
|
||||
|
||||
Temperature Monitoring
|
||||
----------------------
|
||||
|
||||
Temperatures are reported in degrees Celsius. Each temperature measured has
|
||||
associated low, high and overtemperature limits, each of which triggers an
|
||||
alarm when crossed.
|
||||
|
||||
The first two temperature channels are external. The third one (PC87366
|
||||
only) is internal.
|
||||
|
||||
The PC87366 has three additional temperature channels, based on
|
||||
thermistors (as opposed to thermal diodes for the first three temperature
|
||||
channels). For technical reasons, these channels are held by the VLM
|
||||
(voltage level monitor) logical device, not the TMS (temperature
|
||||
measurement) one. As a consequence, these temperatures are exported as
|
||||
voltages, and converted into temperatures in user-space.
|
||||
|
||||
Note that these three additional channels share their pins with the
|
||||
external thermal diode channels, so you (physically) can't use them all at
|
||||
the same time. Although it should be possible to mix the two sensor types,
|
||||
the documents from National Semiconductor suggest that motherboard
|
||||
manufacturers should choose one type and stick to it. So you will more
|
||||
likely have either channels 1 to 3 (thermal diodes) or 3 to 6 (internal
|
||||
thermal diode, and thermistors).
|
||||
|
||||
|
||||
Voltage Monitoring
|
||||
------------------
|
||||
|
||||
Voltages are reported relatively to a reference voltage, either internal or
|
||||
external. Some of them (in7:Vsb, in8:Vdd and in10:AVdd) are divided by two
|
||||
internally, you will have to compensate in sensors.conf. Others (in0 to in6)
|
||||
are likely to be divided externally. The meaning of each of these inputs as
|
||||
well as the values of the resistors used for division is left to the
|
||||
motherboard manufacturers, so you will have to document yourself and edit
|
||||
sensors.conf accordingly. National Semiconductor has a document with
|
||||
recommended resistor values for some voltages, but this still leaves much
|
||||
room for per motherboard specificities, unfortunately. Even worse,
|
||||
motherboard manufacturers don't seem to care about National Semiconductor's
|
||||
recommendations.
|
||||
|
||||
Each voltage measured has associated low and high limits, each of which
|
||||
triggers an alarm when crossed.
|
||||
|
||||
When available, VID inputs are used to provide the nominal CPU Core voltage.
|
||||
The driver will default to VRM 9.0, but this can be changed from user-space.
|
||||
The chipsets can handle two sets of VID inputs (on dual-CPU systems), but
|
||||
the driver will only export one for now. This may change later if there is
|
||||
a need.
|
||||
|
||||
|
||||
General Remarks
|
||||
---------------
|
||||
|
||||
If an alarm triggers, it will remain triggered until the hardware register
|
||||
is read at least once. This means that the cause for the alarm may already
|
||||
have disappeared! Note that all hardware registers are read whenever any
|
||||
data is read (unless it is less than 2 seconds since the last update, in
|
||||
which case cached values are returned instead). As a consequence, when
|
||||
a once-only alarm triggers, it may take 2 seconds for it to show, and 2
|
||||
more seconds for it to disappear.
|
||||
|
||||
Monitoring of in9 isn't enabled at lower init levels (<3) because that
|
||||
channel measures the battery voltage (Vbat). It is a known fact that
|
||||
repeatedly sampling the battery voltage reduces its lifetime. National
|
||||
Semiconductor smartly designed their chipset so that in9 is sampled only
|
||||
once every 1024 sampling cycles (that is every 34 minutes at the default
|
||||
sampling rate), so the effect is attenuated, but still present.
|
||||
|
||||
|
||||
Limitations
|
||||
-----------
|
||||
|
||||
The datasheets suggests that some values (fan mins, fan dividers)
|
||||
shouldn't be changed once the monitoring has started, but we ignore that
|
||||
recommendation. We'll reconsider if it actually causes trouble.
|
Reference in New Issue
Block a user