Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
Conflicts: arch/sh/kernel/vmlinux.lds.S
This commit is contained in:
@@ -82,6 +82,8 @@ block/
|
||||
- info on the Block I/O (BIO) layer.
|
||||
blockdev/
|
||||
- info on block devices & drivers
|
||||
btmrvl.txt
|
||||
- info on Marvell Bluetooth driver usage.
|
||||
cachetlb.txt
|
||||
- describes the cache/TLB flushing interfaces Linux uses.
|
||||
cdrom/
|
||||
|
@@ -743,3 +743,80 @@ Revised:
|
||||
RCU, realtime RCU, sleepable RCU, performance.
|
||||
"
|
||||
}
|
||||
|
||||
@article{PaulEMcKenney2008RCUOSR
|
||||
,author="Paul E. McKenney and Jonathan Walpole"
|
||||
,title="Introducing technology into the {Linux} kernel: a case study"
|
||||
,Year="2008"
|
||||
,journal="SIGOPS Oper. Syst. Rev."
|
||||
,volume="42"
|
||||
,number="5"
|
||||
,pages="4--17"
|
||||
,issn="0163-5980"
|
||||
,doi={http://doi.acm.org/10.1145/1400097.1400099}
|
||||
,publisher="ACM"
|
||||
,address="New York, NY, USA"
|
||||
,annotation={
|
||||
Linux changed RCU to a far greater degree than RCU has changed Linux.
|
||||
}
|
||||
}
|
||||
|
||||
@unpublished{PaulEMcKenney2008HierarchicalRCU
|
||||
,Author="Paul E. McKenney"
|
||||
,Title="Hierarchical {RCU}"
|
||||
,month="November"
|
||||
,day="3"
|
||||
,year="2008"
|
||||
,note="Available:
|
||||
\url{http://lwn.net/Articles/305782/}
|
||||
[Viewed November 6, 2008]"
|
||||
,annotation="
|
||||
RCU with combining-tree-based grace-period detection,
|
||||
permitting it to handle thousands of CPUs.
|
||||
"
|
||||
}
|
||||
|
||||
@conference{PaulEMcKenney2009MaliciousURCU
|
||||
,Author="Paul E. McKenney"
|
||||
,Title="Using a Malicious User-Level {RCU} to Torture {RCU}-Based Algorithms"
|
||||
,Booktitle="linux.conf.au 2009"
|
||||
,month="January"
|
||||
,year="2009"
|
||||
,address="Hobart, Australia"
|
||||
,note="Available:
|
||||
\url{http://www.rdrop.com/users/paulmck/RCU/urcutorture.2009.01.22a.pdf}
|
||||
[Viewed February 2, 2009]"
|
||||
,annotation="
|
||||
Realtime RCU and torture-testing RCU uses.
|
||||
"
|
||||
}
|
||||
|
||||
@unpublished{MathieuDesnoyers2009URCU
|
||||
,Author="Mathieu Desnoyers"
|
||||
,Title="[{RFC} git tree] Userspace {RCU} (urcu) for {Linux}"
|
||||
,month="February"
|
||||
,day="5"
|
||||
,year="2009"
|
||||
,note="Available:
|
||||
\url{http://lkml.org/lkml/2009/2/5/572}
|
||||
\url{git://lttng.org/userspace-rcu.git}
|
||||
[Viewed February 20, 2009]"
|
||||
,annotation="
|
||||
Mathieu Desnoyers's user-space RCU implementation.
|
||||
git://lttng.org/userspace-rcu.git
|
||||
"
|
||||
}
|
||||
|
||||
@unpublished{PaulEMcKenney2009BloatWatchRCU
|
||||
,Author="Paul E. McKenney"
|
||||
,Title="{RCU}: The {Bloatwatch} Edition"
|
||||
,month="March"
|
||||
,day="17"
|
||||
,year="2009"
|
||||
,note="Available:
|
||||
\url{http://lwn.net/Articles/323929/}
|
||||
[Viewed March 20, 2009]"
|
||||
,annotation="
|
||||
Uniprocessor assumptions allow simplified RCU implementation.
|
||||
"
|
||||
}
|
||||
|
@@ -2,14 +2,13 @@ RCU on Uniprocessor Systems
|
||||
|
||||
|
||||
A common misconception is that, on UP systems, the call_rcu() primitive
|
||||
may immediately invoke its function, and that the synchronize_rcu()
|
||||
primitive may return immediately. The basis of this misconception
|
||||
may immediately invoke its function. The basis of this misconception
|
||||
is that since there is only one CPU, it should not be necessary to
|
||||
wait for anything else to get done, since there are no other CPUs for
|
||||
anything else to be happening on. Although this approach will -sort- -of-
|
||||
work a surprising amount of the time, it is a very bad idea in general.
|
||||
This document presents three examples that demonstrate exactly how bad an
|
||||
idea this is.
|
||||
This document presents three examples that demonstrate exactly how bad
|
||||
an idea this is.
|
||||
|
||||
|
||||
Example 1: softirq Suicide
|
||||
@@ -82,11 +81,18 @@ Quick Quiz #2: What locking restriction must RCU callbacks respect?
|
||||
|
||||
Summary
|
||||
|
||||
Permitting call_rcu() to immediately invoke its arguments or permitting
|
||||
synchronize_rcu() to immediately return breaks RCU, even on a UP system.
|
||||
So do not do it! Even on a UP system, the RCU infrastructure -must-
|
||||
respect grace periods, and -must- invoke callbacks from a known environment
|
||||
in which no locks are held.
|
||||
Permitting call_rcu() to immediately invoke its arguments breaks RCU,
|
||||
even on a UP system. So do not do it! Even on a UP system, the RCU
|
||||
infrastructure -must- respect grace periods, and -must- invoke callbacks
|
||||
from a known environment in which no locks are held.
|
||||
|
||||
It -is- safe for synchronize_sched() and synchronize_rcu_bh() to return
|
||||
immediately on an UP system. It is also safe for synchronize_rcu()
|
||||
to return immediately on UP systems, except when running preemptable
|
||||
RCU.
|
||||
|
||||
Quick Quiz #3: Why can't synchronize_rcu() return immediately on
|
||||
UP systems running preemptable RCU?
|
||||
|
||||
|
||||
Answer to Quick Quiz #1:
|
||||
@@ -117,3 +123,13 @@ Answer to Quick Quiz #2:
|
||||
callbacks acquire locks directly. However, a great many RCU
|
||||
callbacks do acquire locks -indirectly-, for example, via
|
||||
the kfree() primitive.
|
||||
|
||||
Answer to Quick Quiz #3:
|
||||
Why can't synchronize_rcu() return immediately on UP systems
|
||||
running preemptable RCU?
|
||||
|
||||
Because some other task might have been preempted in the middle
|
||||
of an RCU read-side critical section. If synchronize_rcu()
|
||||
simply immediately returned, it would prematurely signal the
|
||||
end of the grace period, which would come as a nasty shock to
|
||||
that other thread when it started running again.
|
||||
|
@@ -11,7 +11,10 @@ over a rather long period of time, but improvements are always welcome!
|
||||
structure is updated more than about 10% of the time, then
|
||||
you should strongly consider some other approach, unless
|
||||
detailed performance measurements show that RCU is nonetheless
|
||||
the right tool for the job.
|
||||
the right tool for the job. Yes, you might think of RCU
|
||||
as simply cutting overhead off of the readers and imposing it
|
||||
on the writers. That is exactly why normal uses of RCU will
|
||||
do much more reading than updating.
|
||||
|
||||
Another exception is where performance is not an issue, and RCU
|
||||
provides a simpler implementation. An example of this situation
|
||||
@@ -240,10 +243,11 @@ over a rather long period of time, but improvements are always welcome!
|
||||
instead need to use synchronize_irq() or synchronize_sched().
|
||||
|
||||
12. Any lock acquired by an RCU callback must be acquired elsewhere
|
||||
with irq disabled, e.g., via spin_lock_irqsave(). Failing to
|
||||
disable irq on a given acquisition of that lock will result in
|
||||
deadlock as soon as the RCU callback happens to interrupt that
|
||||
acquisition's critical section.
|
||||
with softirq disabled, e.g., via spin_lock_irqsave(),
|
||||
spin_lock_bh(), etc. Failing to disable irq on a given
|
||||
acquisition of that lock will result in deadlock as soon as the
|
||||
RCU callback happens to interrupt that acquisition's critical
|
||||
section.
|
||||
|
||||
13. RCU callbacks can be and are executed in parallel. In many cases,
|
||||
the callback code simply wrappers around kfree(), so that this
|
||||
@@ -310,3 +314,9 @@ over a rather long period of time, but improvements are always welcome!
|
||||
Because these primitives only wait for pre-existing readers,
|
||||
it is the caller's responsibility to guarantee safety to
|
||||
any subsequent readers.
|
||||
|
||||
16. The various RCU read-side primitives do -not- contain memory
|
||||
barriers. The CPU (and in some cases, the compiler) is free
|
||||
to reorder code into and out of RCU read-side critical sections.
|
||||
It is the responsibility of the RCU update-side primitives to
|
||||
deal with this.
|
||||
|
@@ -36,7 +36,7 @@ o How can the updater tell when a grace period has completed
|
||||
executed in user mode, or executed in the idle loop, we can
|
||||
safely free up that item.
|
||||
|
||||
Preemptible variants of RCU (CONFIG_PREEMPT_RCU) get the
|
||||
Preemptible variants of RCU (CONFIG_TREE_PREEMPT_RCU) get the
|
||||
same effect, but require that the readers manipulate CPU-local
|
||||
counters. These counters allow limited types of blocking
|
||||
within RCU read-side critical sections. SRCU also uses
|
||||
@@ -79,10 +79,10 @@ o I hear that RCU is patented? What is with that?
|
||||
o I hear that RCU needs work in order to support realtime kernels?
|
||||
|
||||
This work is largely completed. Realtime-friendly RCU can be
|
||||
enabled via the CONFIG_PREEMPT_RCU kernel configuration parameter.
|
||||
However, work is in progress for enabling priority boosting of
|
||||
preempted RCU read-side critical sections. This is needed if you
|
||||
have CPU-bound realtime threads.
|
||||
enabled via the CONFIG_TREE_PREEMPT_RCU kernel configuration
|
||||
parameter. However, work is in progress for enabling priority
|
||||
boosting of preempted RCU read-side critical sections. This is
|
||||
needed if you have CPU-bound realtime threads.
|
||||
|
||||
o Where can I find more information on RCU?
|
||||
|
||||
|
@@ -170,6 +170,13 @@ module invokes call_rcu() from timers, you will need to first cancel all
|
||||
the timers, and only then invoke rcu_barrier() to wait for any remaining
|
||||
RCU callbacks to complete.
|
||||
|
||||
Of course, if you module uses call_rcu_bh(), you will need to invoke
|
||||
rcu_barrier_bh() before unloading. Similarly, if your module uses
|
||||
call_rcu_sched(), you will need to invoke rcu_barrier_sched() before
|
||||
unloading. If your module uses call_rcu(), call_rcu_bh(), -and-
|
||||
call_rcu_sched(), then you will need to invoke each of rcu_barrier(),
|
||||
rcu_barrier_bh(), and rcu_barrier_sched().
|
||||
|
||||
|
||||
Implementing rcu_barrier()
|
||||
|
||||
|
@@ -76,8 +76,10 @@ torture_type The type of RCU to test: "rcu" for the rcu_read_lock() API,
|
||||
"rcu_sync" for rcu_read_lock() with synchronous reclamation,
|
||||
"rcu_bh" for the rcu_read_lock_bh() API, "rcu_bh_sync" for
|
||||
rcu_read_lock_bh() with synchronous reclamation, "srcu" for
|
||||
the "srcu_read_lock()" API, and "sched" for the use of
|
||||
preempt_disable() together with synchronize_sched().
|
||||
the "srcu_read_lock()" API, "sched" for the use of
|
||||
preempt_disable() together with synchronize_sched(),
|
||||
and "sched_expedited" for the use of preempt_disable()
|
||||
with synchronize_sched_expedited().
|
||||
|
||||
verbose Enable debug printk()s. Default is disabled.
|
||||
|
||||
@@ -162,6 +164,23 @@ of the "old" and "current" counters for the corresponding CPU. The
|
||||
"idx" value maps the "old" and "current" values to the underlying array,
|
||||
and is useful for debugging.
|
||||
|
||||
Similarly, sched_expedited RCU provides the following:
|
||||
|
||||
sched_expedited-torture: rtc: d0000000016c1880 ver: 1090796 tfle: 0 rta: 1090796 rtaf: 0 rtf: 1090787 rtmbe: 0 nt: 27713319
|
||||
sched_expedited-torture: Reader Pipe: 12660320201 95875 0 0 0 0 0 0 0 0 0
|
||||
sched_expedited-torture: Reader Batch: 12660424885 0 0 0 0 0 0 0 0 0 0
|
||||
sched_expedited-torture: Free-Block Circulation: 1090795 1090795 1090794 1090793 1090792 1090791 1090790 1090789 1090788 1090787 0
|
||||
state: -1 / 0:0 3:0 4:0
|
||||
|
||||
As before, the first four lines are similar to those for RCU.
|
||||
The last line shows the task-migration state. The first number is
|
||||
-1 if synchronize_sched_expedited() is idle, -2 if in the process of
|
||||
posting wakeups to the migration kthreads, and N when waiting on CPU N.
|
||||
Each of the colon-separated fields following the "/" is a CPU:state pair.
|
||||
Valid states are "0" for idle, "1" for waiting for quiescent state,
|
||||
"2" for passed through quiescent state, and "3" when a race with a
|
||||
CPU-hotplug event forces use of the synchronize_sched() primitive.
|
||||
|
||||
|
||||
USAGE
|
||||
|
||||
|
@@ -191,8 +191,7 @@ rcu/rcuhier (which displays the struct rcu_node hierarchy).
|
||||
|
||||
The output of "cat rcu/rcudata" looks as follows:
|
||||
|
||||
rcu:
|
||||
rcu:
|
||||
rcu_sched:
|
||||
0 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=10951/1 dn=0 df=1101 of=0 ri=36 ql=0 b=10
|
||||
1 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=16117/1 dn=0 df=1015 of=0 ri=0 ql=0 b=10
|
||||
2 c=17829 g=17829 pq=1 pqc=17829 qp=0 dt=1445/1 dn=0 df=1839 of=0 ri=0 ql=0 b=10
|
||||
@@ -306,7 +305,7 @@ comma-separated-variable spreadsheet format.
|
||||
|
||||
The output of "cat rcu/rcugp" looks as follows:
|
||||
|
||||
rcu: completed=33062 gpnum=33063
|
||||
rcu_sched: completed=33062 gpnum=33063
|
||||
rcu_bh: completed=464 gpnum=464
|
||||
|
||||
Again, this output is for both "rcu" and "rcu_bh". The fields are
|
||||
@@ -413,7 +412,7 @@ o Each element of the form "1/1 0:127 ^0" represents one struct
|
||||
|
||||
The output of "cat rcu/rcu_pending" looks as follows:
|
||||
|
||||
rcu:
|
||||
rcu_sched:
|
||||
0 np=255892 qsp=53936 cbr=0 cng=14417 gpc=10033 gps=24320 nf=6445 nn=146741
|
||||
1 np=261224 qsp=54638 cbr=0 cng=25723 gpc=16310 gps=2849 nf=5912 nn=155792
|
||||
2 np=237496 qsp=49664 cbr=0 cng=2762 gpc=45478 gps=1762 nf=1201 nn=136629
|
||||
|
@@ -136,10 +136,10 @@ rcu_read_lock()
|
||||
Used by a reader to inform the reclaimer that the reader is
|
||||
entering an RCU read-side critical section. It is illegal
|
||||
to block while in an RCU read-side critical section, though
|
||||
kernels built with CONFIG_PREEMPT_RCU can preempt RCU read-side
|
||||
critical sections. Any RCU-protected data structure accessed
|
||||
during an RCU read-side critical section is guaranteed to remain
|
||||
unreclaimed for the full duration of that critical section.
|
||||
kernels built with CONFIG_TREE_PREEMPT_RCU can preempt RCU
|
||||
read-side critical sections. Any RCU-protected data structure
|
||||
accessed during an RCU read-side critical section is guaranteed to
|
||||
remain unreclaimed for the full duration of that critical section.
|
||||
Reference counts may be used in conjunction with RCU to maintain
|
||||
longer-term references to data structures.
|
||||
|
||||
@@ -785,6 +785,7 @@ RCU pointer/list traversal:
|
||||
rcu_dereference
|
||||
list_for_each_entry_rcu
|
||||
hlist_for_each_entry_rcu
|
||||
hlist_nulls_for_each_entry_rcu
|
||||
|
||||
list_for_each_continue_rcu (to be deprecated in favor of new
|
||||
list_for_each_entry_continue_rcu)
|
||||
@@ -807,19 +808,23 @@ RCU: Critical sections Grace period Barrier
|
||||
|
||||
rcu_read_lock synchronize_net rcu_barrier
|
||||
rcu_read_unlock synchronize_rcu
|
||||
synchronize_rcu_expedited
|
||||
call_rcu
|
||||
|
||||
|
||||
bh: Critical sections Grace period Barrier
|
||||
|
||||
rcu_read_lock_bh call_rcu_bh rcu_barrier_bh
|
||||
rcu_read_unlock_bh
|
||||
rcu_read_unlock_bh synchronize_rcu_bh
|
||||
synchronize_rcu_bh_expedited
|
||||
|
||||
|
||||
sched: Critical sections Grace period Barrier
|
||||
|
||||
[preempt_disable] synchronize_sched rcu_barrier_sched
|
||||
[and friends] call_rcu_sched
|
||||
rcu_read_lock_sched synchronize_sched rcu_barrier_sched
|
||||
rcu_read_unlock_sched call_rcu_sched
|
||||
[preempt_disable] synchronize_sched_expedited
|
||||
[and friends]
|
||||
|
||||
|
||||
SRCU: Critical sections Grace period Barrier
|
||||
@@ -827,6 +832,9 @@ SRCU: Critical sections Grace period Barrier
|
||||
srcu_read_lock synchronize_srcu N/A
|
||||
srcu_read_unlock
|
||||
|
||||
SRCU: Initialization/cleanup
|
||||
init_srcu_struct
|
||||
cleanup_srcu_struct
|
||||
|
||||
See the comment headers in the source code (or the docbook generated
|
||||
from them) for more information.
|
||||
|
@@ -40,4 +40,4 @@ Notes:
|
||||
mode, the timing is off so the image is corrupted. This will be
|
||||
fixed soon.
|
||||
|
||||
Any contribution can be sent to nico@cam.org and will be greatly welcome!
|
||||
Any contribution can be sent to nico@fluxnic.net and will be greatly welcome!
|
||||
|
@@ -240,7 +240,7 @@ Then, rebooting the Assabet is just a matter of waiting for the login prompt.
|
||||
|
||||
|
||||
Nicolas Pitre
|
||||
nico@cam.org
|
||||
nico@fluxnic.net
|
||||
June 12, 2001
|
||||
|
||||
|
||||
|
@@ -60,7 +60,7 @@ little modifications.
|
||||
|
||||
Any contribution is welcome.
|
||||
|
||||
Please send patches to nico@cam.org
|
||||
Please send patches to nico@fluxnic.net
|
||||
|
||||
Have Fun !
|
||||
|
||||
|
@@ -4,7 +4,7 @@ For more details, contact Applied Data Systems or see
|
||||
http://www.applieddata.net/products.html
|
||||
|
||||
The original Linux support for this product has been provided by
|
||||
Nicolas Pitre <nico@cam.org>. Continued development work by
|
||||
Nicolas Pitre <nico@fluxnic.net>. Continued development work by
|
||||
Woojung Huh <whuh@applieddata.net>
|
||||
|
||||
It's currently possible to mount a root filesystem via NFS providing a
|
||||
@@ -94,5 +94,5 @@ Notes:
|
||||
mode, the timing is off so the image is corrupted. This will be
|
||||
fixed soon.
|
||||
|
||||
Any contribution can be sent to nico@cam.org and will be greatly welcome!
|
||||
Any contribution can be sent to nico@fluxnic.net and will be greatly welcome!
|
||||
|
||||
|
@@ -4,7 +4,7 @@ For more details, contact Applied Data Systems or see
|
||||
http://www.applieddata.net/products.html
|
||||
|
||||
The original Linux support for this product has been provided by
|
||||
Nicolas Pitre <nico@cam.org>. Continued development work by
|
||||
Nicolas Pitre <nico@fluxnic.net>. Continued development work by
|
||||
Woojung Huh <whuh@applieddata.net>
|
||||
|
||||
Use 'make graphicsmaster_config' before any 'make config'.
|
||||
@@ -50,4 +50,4 @@ Notes:
|
||||
mode, the timing is off so the image is corrupted. This will be
|
||||
fixed soon.
|
||||
|
||||
Any contribution can be sent to nico@cam.org and will be greatly welcome!
|
||||
Any contribution can be sent to nico@fluxnic.net and will be greatly welcome!
|
||||
|
@@ -9,7 +9,7 @@ Of course Victor is using Linux as its main operating system.
|
||||
The Victor implementation for Linux is maintained by Nicolas Pitre:
|
||||
|
||||
nico@visuaide.com
|
||||
nico@cam.org
|
||||
nico@fluxnic.net
|
||||
|
||||
For any comments, please feel free to contact me through the above
|
||||
addresses.
|
||||
|
75
Documentation/arm/Samsung-S3C24XX/CPUfreq.txt
Normal file
75
Documentation/arm/Samsung-S3C24XX/CPUfreq.txt
Normal file
@@ -0,0 +1,75 @@
|
||||
S3C24XX CPUfreq support
|
||||
=======================
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
The S3C24XX series support a number of power saving systems, such as
|
||||
the ability to change the core, memory and peripheral operating
|
||||
frequencies. The core control is exported via the CPUFreq driver
|
||||
which has a number of different manual or automatic controls over the
|
||||
rate the core is running at.
|
||||
|
||||
There are two forms of the driver depending on the specific CPU and
|
||||
how the clocks are arranged. The first implementation used as single
|
||||
PLL to feed the ARM, memory and peripherals via a series of dividers
|
||||
and muxes and this is the implementation that is documented here. A
|
||||
newer version where there is a seperate PLL and clock divider for the
|
||||
ARM core is available as a seperate driver.
|
||||
|
||||
|
||||
Layout
|
||||
------
|
||||
|
||||
The code core manages the CPU specific drivers, any data that they
|
||||
need to register and the interface to the generic drivers/cpufreq
|
||||
system. Each CPU registers a driver to control the PLL, clock dividers
|
||||
and anything else associated with it. Any board that wants to use this
|
||||
framework needs to supply at least basic details of what is required.
|
||||
|
||||
The core registers with drivers/cpufreq at init time if all the data
|
||||
necessary has been supplied.
|
||||
|
||||
|
||||
CPU support
|
||||
-----------
|
||||
|
||||
The support for each CPU depends on the facilities provided by the
|
||||
SoC and the driver as each device has different PLL and clock chains
|
||||
associated with it.
|
||||
|
||||
|
||||
Slow Mode
|
||||
---------
|
||||
|
||||
The SLOW mode where the PLL is turned off altogether and the
|
||||
system is fed by the external crystal input is currently not
|
||||
supported.
|
||||
|
||||
|
||||
sysfs
|
||||
-----
|
||||
|
||||
The core code exports extra information via sysfs in the directory
|
||||
devices/system/cpu/cpu0/arch-freq.
|
||||
|
||||
|
||||
Board Support
|
||||
-------------
|
||||
|
||||
Each board that wants to use the cpufreq code must register some basic
|
||||
information with the core driver to provide information about what the
|
||||
board requires and any restrictions being placed on it.
|
||||
|
||||
The board needs to supply information about whether it needs the IO bank
|
||||
timings changing, any maximum frequency limits and information about the
|
||||
SDRAM refresh rate.
|
||||
|
||||
|
||||
|
||||
|
||||
Document Author
|
||||
---------------
|
||||
|
||||
Ben Dooks, Copyright 2009 Simtec Electronics
|
||||
Licensed under GPLv2
|
119
Documentation/btmrvl.txt
Normal file
119
Documentation/btmrvl.txt
Normal file
@@ -0,0 +1,119 @@
|
||||
=======================================================================
|
||||
README for btmrvl driver
|
||||
=======================================================================
|
||||
|
||||
|
||||
All commands are used via debugfs interface.
|
||||
|
||||
=====================
|
||||
Set/get driver configurations:
|
||||
|
||||
Path: /debug/btmrvl/config/
|
||||
|
||||
gpiogap=[n]
|
||||
hscfgcmd
|
||||
These commands are used to configure the host sleep parameters.
|
||||
bit 8:0 -- Gap
|
||||
bit 16:8 -- GPIO
|
||||
|
||||
where GPIO is the pin number of GPIO used to wake up the host.
|
||||
It could be any valid GPIO pin# (e.g. 0-7) or 0xff (SDIO interface
|
||||
wakeup will be used instead).
|
||||
|
||||
where Gap is the gap in milli seconds between wakeup signal and
|
||||
wakeup event, or 0xff for special host sleep setting.
|
||||
|
||||
Usage:
|
||||
# Use SDIO interface to wake up the host and set GAP to 0x80:
|
||||
echo 0xff80 > /debug/btmrvl/config/gpiogap
|
||||
echo 1 > /debug/btmrvl/config/hscfgcmd
|
||||
|
||||
# Use GPIO pin #3 to wake up the host and set GAP to 0xff:
|
||||
echo 0x03ff > /debug/btmrvl/config/gpiogap
|
||||
echo 1 > /debug/btmrvl/config/hscfgcmd
|
||||
|
||||
psmode=[n]
|
||||
pscmd
|
||||
These commands are used to enable/disable auto sleep mode
|
||||
|
||||
where the option is:
|
||||
1 -- Enable auto sleep mode
|
||||
0 -- Disable auto sleep mode
|
||||
|
||||
Usage:
|
||||
# Enable auto sleep mode
|
||||
echo 1 > /debug/btmrvl/config/psmode
|
||||
echo 1 > /debug/btmrvl/config/pscmd
|
||||
|
||||
# Disable auto sleep mode
|
||||
echo 0 > /debug/btmrvl/config/psmode
|
||||
echo 1 > /debug/btmrvl/config/pscmd
|
||||
|
||||
|
||||
hsmode=[n]
|
||||
hscmd
|
||||
These commands are used to enable host sleep or wake up firmware
|
||||
|
||||
where the option is:
|
||||
1 -- Enable host sleep
|
||||
0 -- Wake up firmware
|
||||
|
||||
Usage:
|
||||
# Enable host sleep
|
||||
echo 1 > /debug/btmrvl/config/hsmode
|
||||
echo 1 > /debug/btmrvl/config/hscmd
|
||||
|
||||
# Wake up firmware
|
||||
echo 0 > /debug/btmrvl/config/hsmode
|
||||
echo 1 > /debug/btmrvl/config/hscmd
|
||||
|
||||
|
||||
======================
|
||||
Get driver status:
|
||||
|
||||
Path: /debug/btmrvl/status/
|
||||
|
||||
Usage:
|
||||
cat /debug/btmrvl/status/<args>
|
||||
|
||||
where the args are:
|
||||
|
||||
curpsmode
|
||||
This command displays current auto sleep status.
|
||||
|
||||
psstate
|
||||
This command display the power save state.
|
||||
|
||||
hsstate
|
||||
This command display the host sleep state.
|
||||
|
||||
txdnldrdy
|
||||
This command displays the value of Tx download ready flag.
|
||||
|
||||
|
||||
=====================
|
||||
|
||||
Use hcitool to issue raw hci command, refer to hcitool manual
|
||||
|
||||
Usage: Hcitool cmd <ogf> <ocf> [Parameters]
|
||||
|
||||
Interface Control Command
|
||||
hcitool cmd 0x3f 0x5b 0xf5 0x01 0x00 --Enable All interface
|
||||
hcitool cmd 0x3f 0x5b 0xf5 0x01 0x01 --Enable Wlan interface
|
||||
hcitool cmd 0x3f 0x5b 0xf5 0x01 0x02 --Enable BT interface
|
||||
hcitool cmd 0x3f 0x5b 0xf5 0x00 0x00 --Disable All interface
|
||||
hcitool cmd 0x3f 0x5b 0xf5 0x00 0x01 --Disable Wlan interface
|
||||
hcitool cmd 0x3f 0x5b 0xf5 0x00 0x02 --Disable BT interface
|
||||
|
||||
=======================================================================
|
||||
|
||||
|
||||
SD8688 firmware:
|
||||
|
||||
/lib/firmware/sd8688_helper.bin
|
||||
/lib/firmware/sd8688.bin
|
||||
|
||||
|
||||
The images can be downloaded from:
|
||||
|
||||
git.infradead.org/users/dwmw2/linux-firmware.git/libertas/
|
@@ -9,3 +9,8 @@ hostprogs-y := ucon
|
||||
always := $(hostprogs-y)
|
||||
|
||||
HOSTCFLAGS_ucon.o += -I$(objtree)/usr/include
|
||||
|
||||
all: modules
|
||||
|
||||
modules clean:
|
||||
$(MAKE) -C ../.. SUBDIRS=$(PWD) $@
|
||||
|
@@ -19,6 +19,8 @@
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) "cn_test: " fmt
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/moduleparam.h>
|
||||
@@ -27,18 +29,17 @@
|
||||
|
||||
#include <linux/connector.h>
|
||||
|
||||
static struct cb_id cn_test_id = { 0x123, 0x456 };
|
||||
static struct cb_id cn_test_id = { CN_NETLINK_USERS + 3, 0x456 };
|
||||
static char cn_test_name[] = "cn_test";
|
||||
static struct sock *nls;
|
||||
static struct timer_list cn_test_timer;
|
||||
|
||||
void cn_test_callback(void *data)
|
||||
static void cn_test_callback(struct cn_msg *msg)
|
||||
{
|
||||
struct cn_msg *msg = (struct cn_msg *)data;
|
||||
|
||||
printk("%s: %lu: idx=%x, val=%x, seq=%u, ack=%u, len=%d: %s.\n",
|
||||
__func__, jiffies, msg->id.idx, msg->id.val,
|
||||
msg->seq, msg->ack, msg->len, (char *)msg->data);
|
||||
pr_info("%s: %lu: idx=%x, val=%x, seq=%u, ack=%u, len=%d: %s.\n",
|
||||
__func__, jiffies, msg->id.idx, msg->id.val,
|
||||
msg->seq, msg->ack, msg->len,
|
||||
msg->len ? (char *)msg->data : "");
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -63,9 +64,7 @@ static int cn_test_want_notify(void)
|
||||
|
||||
skb = alloc_skb(size, GFP_ATOMIC);
|
||||
if (!skb) {
|
||||
printk(KERN_ERR "Failed to allocate new skb with size=%u.\n",
|
||||
size);
|
||||
|
||||
pr_err("failed to allocate new skb with size=%u\n", size);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
@@ -114,12 +113,12 @@ static int cn_test_want_notify(void)
|
||||
//netlink_broadcast(nls, skb, 0, ctl->group, GFP_ATOMIC);
|
||||
netlink_unicast(nls, skb, 0, 0);
|
||||
|
||||
printk(KERN_INFO "Request was sent. Group=0x%x.\n", ctl->group);
|
||||
pr_info("request was sent: group=0x%x\n", ctl->group);
|
||||
|
||||
return 0;
|
||||
|
||||
nlmsg_failure:
|
||||
printk(KERN_ERR "Failed to send %u.%u\n", msg->seq, msg->ack);
|
||||
pr_err("failed to send %u.%u\n", msg->seq, msg->ack);
|
||||
kfree_skb(skb);
|
||||
return -EINVAL;
|
||||
}
|
||||
@@ -131,6 +130,8 @@ static void cn_test_timer_func(unsigned long __data)
|
||||
struct cn_msg *m;
|
||||
char data[32];
|
||||
|
||||
pr_debug("%s: timer fired with data %lu\n", __func__, __data);
|
||||
|
||||
m = kzalloc(sizeof(*m) + sizeof(data), GFP_ATOMIC);
|
||||
if (m) {
|
||||
|
||||
@@ -150,7 +151,7 @@ static void cn_test_timer_func(unsigned long __data)
|
||||
|
||||
cn_test_timer_counter++;
|
||||
|
||||
mod_timer(&cn_test_timer, jiffies + HZ);
|
||||
mod_timer(&cn_test_timer, jiffies + msecs_to_jiffies(1000));
|
||||
}
|
||||
|
||||
static int cn_test_init(void)
|
||||
@@ -168,8 +169,10 @@ static int cn_test_init(void)
|
||||
}
|
||||
|
||||
setup_timer(&cn_test_timer, cn_test_timer_func, 0);
|
||||
cn_test_timer.expires = jiffies + HZ;
|
||||
add_timer(&cn_test_timer);
|
||||
mod_timer(&cn_test_timer, jiffies + msecs_to_jiffies(1000));
|
||||
|
||||
pr_info("initialized with id={%u.%u}\n",
|
||||
cn_test_id.idx, cn_test_id.val);
|
||||
|
||||
return 0;
|
||||
|
||||
|
@@ -5,10 +5,10 @@ Kernel Connector.
|
||||
Kernel connector - new netlink based userspace <-> kernel space easy
|
||||
to use communication module.
|
||||
|
||||
Connector driver adds possibility to connect various agents using
|
||||
netlink based network. One must register callback and
|
||||
identifier. When driver receives special netlink message with
|
||||
appropriate identifier, appropriate callback will be called.
|
||||
The Connector driver makes it easy to connect various agents using a
|
||||
netlink based network. One must register a callback and an identifier.
|
||||
When the driver receives a special netlink message with the appropriate
|
||||
identifier, the appropriate callback will be called.
|
||||
|
||||
From the userspace point of view it's quite straightforward:
|
||||
|
||||
@@ -17,10 +17,10 @@ From the userspace point of view it's quite straightforward:
|
||||
send();
|
||||
recv();
|
||||
|
||||
But if kernelspace want to use full power of such connections, driver
|
||||
writer must create special sockets, must know about struct sk_buff
|
||||
handling... Connector allows any kernelspace agents to use netlink
|
||||
based networking for inter-process communication in a significantly
|
||||
But if kernelspace wants to use the full power of such connections, the
|
||||
driver writer must create special sockets, must know about struct sk_buff
|
||||
handling, etc... The Connector driver allows any kernelspace agents to use
|
||||
netlink based networking for inter-process communication in a significantly
|
||||
easier way:
|
||||
|
||||
int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *));
|
||||
@@ -32,15 +32,15 @@ struct cb_id
|
||||
__u32 val;
|
||||
};
|
||||
|
||||
idx and val are unique identifiers which must be registered in
|
||||
connector.h for in-kernel usage. void (*callback) (void *) - is a
|
||||
callback function which will be called when message with above idx.val
|
||||
will be received by connector core. Argument for that function must
|
||||
idx and val are unique identifiers which must be registered in the
|
||||
connector.h header for in-kernel usage. void (*callback) (void *) is a
|
||||
callback function which will be called when a message with above idx.val
|
||||
is received by the connector core. The argument for that function must
|
||||
be dereferenced to struct cn_msg *.
|
||||
|
||||
struct cn_msg
|
||||
{
|
||||
struct cb_id id;
|
||||
struct cb_id id;
|
||||
|
||||
__u32 seq;
|
||||
__u32 ack;
|
||||
@@ -55,92 +55,95 @@ Connector interfaces.
|
||||
|
||||
int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *));
|
||||
|
||||
Registers new callback with connector core.
|
||||
Registers new callback with connector core.
|
||||
|
||||
struct cb_id *id - unique connector's user identifier.
|
||||
It must be registered in connector.h for legal in-kernel users.
|
||||
char *name - connector's callback symbolic name.
|
||||
void (*callback) (void *) - connector's callback.
|
||||
struct cb_id *id - unique connector's user identifier.
|
||||
It must be registered in connector.h for legal in-kernel users.
|
||||
char *name - connector's callback symbolic name.
|
||||
void (*callback) (void *) - connector's callback.
|
||||
Argument must be dereferenced to struct cn_msg *.
|
||||
|
||||
|
||||
void cn_del_callback(struct cb_id *id);
|
||||
|
||||
Unregisters new callback with connector core.
|
||||
Unregisters new callback with connector core.
|
||||
|
||||
struct cb_id *id - unique connector's user identifier.
|
||||
|
||||
struct cb_id *id - unique connector's user identifier.
|
||||
|
||||
int cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask);
|
||||
|
||||
Sends message to the specified groups. It can be safely called from
|
||||
softirq context, but may silently fail under strong memory pressure.
|
||||
If there are no listeners for given group -ESRCH can be returned.
|
||||
Sends message to the specified groups. It can be safely called from
|
||||
softirq context, but may silently fail under strong memory pressure.
|
||||
If there are no listeners for given group -ESRCH can be returned.
|
||||
|
||||
struct cn_msg * - message header(with attached data).
|
||||
u32 __group - destination group.
|
||||
struct cn_msg * - message header(with attached data).
|
||||
u32 __group - destination group.
|
||||
If __group is zero, then appropriate group will
|
||||
be searched through all registered connector users,
|
||||
and message will be delivered to the group which was
|
||||
created for user with the same ID as in msg.
|
||||
If __group is not zero, then message will be delivered
|
||||
to the specified group.
|
||||
int gfp_mask - GFP mask.
|
||||
int gfp_mask - GFP mask.
|
||||
|
||||
Note: When registering new callback user, connector core assigns
|
||||
netlink group to the user which is equal to it's id.idx.
|
||||
Note: When registering new callback user, connector core assigns
|
||||
netlink group to the user which is equal to it's id.idx.
|
||||
|
||||
/*****************************************/
|
||||
Protocol description.
|
||||
/*****************************************/
|
||||
|
||||
Current offers transport layer with fixed header. Recommended
|
||||
protocol which uses such header is following:
|
||||
The current framework offers a transport layer with fixed headers. The
|
||||
recommended protocol which uses such a header is as following:
|
||||
|
||||
msg->seq and msg->ack are used to determine message genealogy. When
|
||||
someone sends message it puts there locally unique sequence and random
|
||||
acknowledge numbers. Sequence number may be copied into
|
||||
someone sends a message, they use a locally unique sequence and random
|
||||
acknowledge number. The sequence number may be copied into
|
||||
nlmsghdr->nlmsg_seq too.
|
||||
|
||||
Sequence number is incremented with each message to be sent.
|
||||
The sequence number is incremented with each message sent.
|
||||
|
||||
If we expect reply to our message, then sequence number in received
|
||||
message MUST be the same as in original message, and acknowledge
|
||||
number MUST be the same + 1.
|
||||
If you expect a reply to the message, then the sequence number in the
|
||||
received message MUST be the same as in the original message, and the
|
||||
acknowledge number MUST be the same + 1.
|
||||
|
||||
If we receive message and it's sequence number is not equal to one we
|
||||
are expecting, then it is new message. If we receive message and it's
|
||||
sequence number is the same as one we are expecting, but it's
|
||||
acknowledge is not equal acknowledge number in original message + 1,
|
||||
then it is new message.
|
||||
If we receive a message and its sequence number is not equal to one we
|
||||
are expecting, then it is a new message. If we receive a message and
|
||||
its sequence number is the same as one we are expecting, but its
|
||||
acknowledge is not equal to the acknowledge number in the original
|
||||
message + 1, then it is a new message.
|
||||
|
||||
Obviously, protocol header contains above id.
|
||||
Obviously, the protocol header contains the above id.
|
||||
|
||||
connector allows event notification in the following form: kernel
|
||||
The connector allows event notification in the following form: kernel
|
||||
driver or userspace process can ask connector to notify it when
|
||||
selected id's will be turned on or off(registered or unregistered it's
|
||||
callback). It is done by sending special command to connector
|
||||
driver(it also registers itself with id={-1, -1}).
|
||||
selected ids will be turned on or off (registered or unregistered its
|
||||
callback). It is done by sending a special command to the connector
|
||||
driver (it also registers itself with id={-1, -1}).
|
||||
|
||||
As example of usage Documentation/connector now contains cn_test.c -
|
||||
testing module which uses connector to request notification and to
|
||||
send messages.
|
||||
As example of this usage can be found in the cn_test.c module which
|
||||
uses the connector to request notification and to send messages.
|
||||
|
||||
/*****************************************/
|
||||
Reliability.
|
||||
/*****************************************/
|
||||
|
||||
Netlink itself is not reliable protocol, that means that messages can
|
||||
Netlink itself is not a reliable protocol. That means that messages can
|
||||
be lost due to memory pressure or process' receiving queue overflowed,
|
||||
so caller is warned must be prepared. That is why struct cn_msg [main
|
||||
connector's message header] contains u32 seq and u32 ack fields.
|
||||
so caller is warned that it must be prepared. That is why the struct
|
||||
cn_msg [main connector's message header] contains u32 seq and u32 ack
|
||||
fields.
|
||||
|
||||
/*****************************************/
|
||||
Userspace usage.
|
||||
/*****************************************/
|
||||
|
||||
2.6.14 has a new netlink socket implementation, which by default does not
|
||||
allow to send data to netlink groups other than 1.
|
||||
So, if to use netlink socket (for example using connector)
|
||||
with different group number userspace application must subscribe to
|
||||
that group. It can be achieved by following pseudocode:
|
||||
allow people to send data to netlink groups other than 1.
|
||||
So, if you wish to use a netlink socket (for example using connector)
|
||||
with a different group number, the userspace application must subscribe to
|
||||
that group first. It can be achieved by the following pseudocode:
|
||||
|
||||
s = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
|
||||
|
||||
@@ -160,8 +163,8 @@ if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) {
|
||||
}
|
||||
|
||||
Where 270 above is SOL_NETLINK, and 1 is a NETLINK_ADD_MEMBERSHIP socket
|
||||
option. To drop multicast subscription one should call above socket option
|
||||
with NETLINK_DROP_MEMBERSHIP parameter which is defined as 0.
|
||||
option. To drop a multicast subscription, one should call the above socket
|
||||
option with the NETLINK_DROP_MEMBERSHIP parameter which is defined as 0.
|
||||
|
||||
2.6.14 netlink code only allows to select a group which is less or equal to
|
||||
the maximum group number, which is used at netlink_kernel_create() time.
|
||||
|
@@ -30,18 +30,24 @@
|
||||
|
||||
#include <arpa/inet.h>
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
#include <string.h>
|
||||
#include <errno.h>
|
||||
#include <time.h>
|
||||
#include <getopt.h>
|
||||
|
||||
#include <linux/connector.h>
|
||||
|
||||
#define DEBUG
|
||||
#define NETLINK_CONNECTOR 11
|
||||
|
||||
/* Hopefully your userspace connector.h matches this kernel */
|
||||
#define CN_TEST_IDX CN_NETLINK_USERS + 3
|
||||
#define CN_TEST_VAL 0x456
|
||||
|
||||
#ifdef DEBUG
|
||||
#define ulog(f, a...) fprintf(stdout, f, ##a)
|
||||
#else
|
||||
@@ -83,6 +89,25 @@ static int netlink_send(int s, struct cn_msg *msg)
|
||||
return err;
|
||||
}
|
||||
|
||||
static void usage(void)
|
||||
{
|
||||
printf(
|
||||
"Usage: ucon [options] [output file]\n"
|
||||
"\n"
|
||||
"\t-h\tthis help screen\n"
|
||||
"\t-s\tsend buffers to the test module\n"
|
||||
"\n"
|
||||
"The default behavior of ucon is to subscribe to the test module\n"
|
||||
"and wait for state messages. Any ones received are dumped to the\n"
|
||||
"specified output file (or stdout). The test module is assumed to\n"
|
||||
"have an id of {%u.%u}\n"
|
||||
"\n"
|
||||
"If you get no output, then verify the cn_test module id matches\n"
|
||||
"the expected id above.\n"
|
||||
, CN_TEST_IDX, CN_TEST_VAL
|
||||
);
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
int s;
|
||||
@@ -94,17 +119,34 @@ int main(int argc, char *argv[])
|
||||
FILE *out;
|
||||
time_t tm;
|
||||
struct pollfd pfd;
|
||||
bool send_msgs = false;
|
||||
|
||||
if (argc < 2)
|
||||
out = stdout;
|
||||
else {
|
||||
out = fopen(argv[1], "a+");
|
||||
while ((s = getopt(argc, argv, "hs")) != -1) {
|
||||
switch (s) {
|
||||
case 's':
|
||||
send_msgs = true;
|
||||
break;
|
||||
|
||||
case 'h':
|
||||
usage();
|
||||
return 0;
|
||||
|
||||
default:
|
||||
/* getopt() outputs an error for us */
|
||||
usage();
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (argc != optind) {
|
||||
out = fopen(argv[optind], "a+");
|
||||
if (!out) {
|
||||
ulog("Unable to open %s for writing: %s\n",
|
||||
argv[1], strerror(errno));
|
||||
out = stdout;
|
||||
}
|
||||
}
|
||||
} else
|
||||
out = stdout;
|
||||
|
||||
memset(buf, 0, sizeof(buf));
|
||||
|
||||
@@ -115,9 +157,11 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
|
||||
l_local.nl_family = AF_NETLINK;
|
||||
l_local.nl_groups = 0x123; /* bitmask of requested groups */
|
||||
l_local.nl_groups = -1; /* bitmask of requested groups */
|
||||
l_local.nl_pid = 0;
|
||||
|
||||
ulog("subscribing to %u.%u\n", CN_TEST_IDX, CN_TEST_VAL);
|
||||
|
||||
if (bind(s, (struct sockaddr *)&l_local, sizeof(struct sockaddr_nl)) == -1) {
|
||||
perror("bind");
|
||||
close(s);
|
||||
@@ -130,15 +174,15 @@ int main(int argc, char *argv[])
|
||||
setsockopt(s, SOL_NETLINK, NETLINK_ADD_MEMBERSHIP, &on, sizeof(on));
|
||||
}
|
||||
#endif
|
||||
if (0) {
|
||||
if (send_msgs) {
|
||||
int i, j;
|
||||
|
||||
memset(buf, 0, sizeof(buf));
|
||||
|
||||
data = (struct cn_msg *)buf;
|
||||
|
||||
data->id.idx = 0x123;
|
||||
data->id.val = 0x456;
|
||||
data->id.idx = CN_TEST_IDX;
|
||||
data->id.val = CN_TEST_VAL;
|
||||
data->seq = seq++;
|
||||
data->ack = 0;
|
||||
data->len = 0;
|
||||
|
@@ -6,6 +6,35 @@ be removed from this file.
|
||||
|
||||
---------------------------
|
||||
|
||||
What: PRISM54
|
||||
When: 2.6.34
|
||||
|
||||
Why: prism54 FullMAC PCI / Cardbus devices used to be supported only by the
|
||||
prism54 wireless driver. After Intersil stopped selling these
|
||||
devices in preference for the newer more flexible SoftMAC devices
|
||||
a SoftMAC device driver was required and prism54 did not support
|
||||
them. The p54pci driver now exists and has been present in the kernel for
|
||||
a while. This driver supports both SoftMAC devices and FullMAC devices.
|
||||
The main difference between these devices was the amount of memory which
|
||||
could be used for the firmware. The SoftMAC devices support a smaller
|
||||
amount of memory. Because of this the SoftMAC firmware fits into FullMAC
|
||||
devices's memory. p54pci supports not only PCI / Cardbus but also USB
|
||||
and SPI. Since p54pci supports all devices prism54 supports
|
||||
you will have a conflict. I'm not quite sure how distributions are
|
||||
handling this conflict right now. prism54 was kept around due to
|
||||
claims users may experience issues when using the SoftMAC driver.
|
||||
Time has passed users have not reported issues. If you use prism54
|
||||
and for whatever reason you cannot use p54pci please let us know!
|
||||
E-mail us at: linux-wireless@vger.kernel.org
|
||||
|
||||
For more information see the p54 wiki page:
|
||||
|
||||
http://wireless.kernel.org/en/users/Drivers/p54
|
||||
|
||||
Who: Luis R. Rodriguez <lrodriguez@atheros.com>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: IRQF_SAMPLE_RANDOM
|
||||
Check: IRQF_SAMPLE_RANDOM
|
||||
When: July 2009
|
||||
@@ -206,24 +235,6 @@ Who: Len Brown <len.brown@intel.com>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: libata spindown skipping and warning
|
||||
When: Dec 2008
|
||||
Why: Some halt(8) implementations synchronize caches for and spin
|
||||
down libata disks because libata didn't use to spin down disk on
|
||||
system halt (only synchronized caches).
|
||||
Spin down on system halt is now implemented. sysfs node
|
||||
/sys/class/scsi_disk/h:c:i:l/manage_start_stop is present if
|
||||
spin down support is available.
|
||||
Because issuing spin down command to an already spun down disk
|
||||
makes some disks spin up just to spin down again, libata tracks
|
||||
device spindown status to skip the extra spindown command and
|
||||
warn about it.
|
||||
This is to give userspace tools the time to get updated and will
|
||||
be removed after userspace is reasonably updated.
|
||||
Who: Tejun Heo <htejun@gmail.com>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: i386/x86_64 bzImage symlinks
|
||||
When: April 2010
|
||||
|
||||
@@ -235,31 +246,6 @@ Who: Thomas Gleixner <tglx@linutronix.de>
|
||||
---------------------------
|
||||
|
||||
What (Why):
|
||||
- include/linux/netfilter_ipv4/ipt_TOS.h ipt_tos.h header files
|
||||
(superseded by xt_TOS/xt_tos target & match)
|
||||
|
||||
- "forwarding" header files like ipt_mac.h in
|
||||
include/linux/netfilter_ipv4/ and include/linux/netfilter_ipv6/
|
||||
|
||||
- xt_CONNMARK match revision 0
|
||||
(superseded by xt_CONNMARK match revision 1)
|
||||
|
||||
- xt_MARK target revisions 0 and 1
|
||||
(superseded by xt_MARK match revision 2)
|
||||
|
||||
- xt_connmark match revision 0
|
||||
(superseded by xt_connmark match revision 1)
|
||||
|
||||
- xt_conntrack match revision 0
|
||||
(superseded by xt_conntrack match revision 1)
|
||||
|
||||
- xt_iprange match revision 0,
|
||||
include/linux/netfilter_ipv4/ipt_iprange.h
|
||||
(superseded by xt_iprange match revision 1)
|
||||
|
||||
- xt_mark match revision 0
|
||||
(superseded by xt_mark match revision 1)
|
||||
|
||||
- xt_recent: the old ipt_recent proc dir
|
||||
(superseded by /proc/net/xt_recent)
|
||||
|
||||
@@ -394,15 +380,6 @@ Who: Thomas Gleixner <tglx@linutronix.de>
|
||||
|
||||
-----------------------------
|
||||
|
||||
What: obsolete generic irq defines and typedefs
|
||||
When: 2.6.30
|
||||
Why: The defines and typedefs (hw_interrupt_type, no_irq_type, irq_desc_t)
|
||||
have been kept around for migration reasons. After more than two years
|
||||
it's time to remove them finally
|
||||
Who: Thomas Gleixner <tglx@linutronix.de>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: fakephp and associated sysfs files in /sys/bus/pci/slots/
|
||||
When: 2011
|
||||
Why: In 2.6.27, the semantics of /sys/bus/pci/slots was redefined to
|
||||
@@ -468,3 +445,27 @@ Why: cpu_policy_rwsem has a new cleaner definition making it local to
|
||||
cpufreq core and contained inside cpufreq.c. Other dependent
|
||||
drivers should not use it in order to safely avoid lockdep issues.
|
||||
Who: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
||||
|
||||
----------------------------
|
||||
|
||||
What: sound-slot/service-* module aliases and related clutters in
|
||||
sound/sound_core.c
|
||||
When: August 2010
|
||||
Why: OSS sound_core grabs all legacy minors (0-255) of SOUND_MAJOR
|
||||
(14) and requests modules using custom sound-slot/service-*
|
||||
module aliases. The only benefit of doing this is allowing
|
||||
use of custom module aliases which might as well be considered
|
||||
a bug at this point. This preemptive claiming prevents
|
||||
alternative OSS implementations.
|
||||
|
||||
Till the feature is removed, the kernel will be requesting
|
||||
both sound-slot/service-* and the standard char-major-* module
|
||||
aliases and allow turning off the pre-claiming selectively via
|
||||
CONFIG_SOUND_OSS_CORE_PRECLAIM and soundcore.preclaim_oss
|
||||
kernel parameter.
|
||||
|
||||
After the transition phase is complete, both the custom module
|
||||
aliases and switches to disable it will go away. This removal
|
||||
will also allow making ALSA OSS emulation independent of
|
||||
sound_core. The dependency will be broken then too.
|
||||
Who: Tejun Heo <tj@kernel.org>
|
||||
|
100
Documentation/filesystems/gfs2-uevents.txt
Normal file
100
Documentation/filesystems/gfs2-uevents.txt
Normal file
@@ -0,0 +1,100 @@
|
||||
uevents and GFS2
|
||||
==================
|
||||
|
||||
During the lifetime of a GFS2 mount, a number of uevents are generated.
|
||||
This document explains what the events are and what they are used
|
||||
for (by gfs_controld in gfs2-utils).
|
||||
|
||||
A list of GFS2 uevents
|
||||
-----------------------
|
||||
|
||||
1. ADD
|
||||
|
||||
The ADD event occurs at mount time. It will always be the first
|
||||
uevent generated by the newly created filesystem. If the mount
|
||||
is successful, an ONLINE uevent will follow. If it is not successful
|
||||
then a REMOVE uevent will follow.
|
||||
|
||||
The ADD uevent has two environment variables: SPECTATOR=[0|1]
|
||||
and RDONLY=[0|1] that specify the spectator status (a read-only mount
|
||||
with no journal assigned), and read-only (with journal assigned) status
|
||||
of the filesystem respectively.
|
||||
|
||||
2. ONLINE
|
||||
|
||||
The ONLINE uevent is generated after a successful mount or remount. It
|
||||
has the same environment variables as the ADD uevent. The ONLINE
|
||||
uevent, along with the two environment variables for spectator and
|
||||
RDONLY are a relatively recent addition (2.6.32-rc+) and will not
|
||||
be generated by older kernels.
|
||||
|
||||
3. CHANGE
|
||||
|
||||
The CHANGE uevent is used in two places. One is when reporting the
|
||||
successful mount of the filesystem by the first node (FIRSTMOUNT=Done).
|
||||
This is used as a signal by gfs_controld that it is then ok for other
|
||||
nodes in the cluster to mount the filesystem.
|
||||
|
||||
The other CHANGE uevent is used to inform of the completion
|
||||
of journal recovery for one of the filesystems journals. It has
|
||||
two environment variables, JID= which specifies the journal id which
|
||||
has just been recovered, and RECOVERY=[Done|Failed] to indicate the
|
||||
success (or otherwise) of the operation. These uevents are generated
|
||||
for every journal recovered, whether it is during the initial mount
|
||||
process or as the result of gfs_controld requesting a specific journal
|
||||
recovery via the /sys/fs/gfs2/<fsname>/lock_module/recovery file.
|
||||
|
||||
Because the CHANGE uevent was used (in early versions of gfs_controld)
|
||||
without checking the environment variables to discover the state, we
|
||||
cannot add any more functions to it without running the risk of
|
||||
someone using an older version of the user tools and breaking their
|
||||
cluster. For this reason the ONLINE uevent was used when adding a new
|
||||
uevent for a successful mount or remount.
|
||||
|
||||
4. OFFLINE
|
||||
|
||||
The OFFLINE uevent is only generated due to filesystem errors and is used
|
||||
as part of the "withdraw" mechanism. Currently this doesn't give any
|
||||
information about what the error is, which is something that needs to
|
||||
be fixed.
|
||||
|
||||
5. REMOVE
|
||||
|
||||
The REMOVE uevent is generated at the end of an unsuccessful mount
|
||||
or at the end of a umount of the filesystem. All REMOVE uevents will
|
||||
have been preceeded by at least an ADD uevent for the same fileystem,
|
||||
and unlike the other uevents is generated automatically by the kernel's
|
||||
kobject subsystem.
|
||||
|
||||
|
||||
Information common to all GFS2 uevents (uevent environment variables)
|
||||
----------------------------------------------------------------------
|
||||
|
||||
1. LOCKTABLE=
|
||||
|
||||
The LOCKTABLE is a string, as supplied on the mount command
|
||||
line (locktable=) or via fstab. It is used as a filesystem label
|
||||
as well as providing the information for a lock_dlm mount to be
|
||||
able to join the cluster.
|
||||
|
||||
2. LOCKPROTO=
|
||||
|
||||
The LOCKPROTO is a string, and its value depends on what is set
|
||||
on the mount command line, or via fstab. It will be either
|
||||
lock_nolock or lock_dlm. In the future other lock managers
|
||||
may be supported.
|
||||
|
||||
3. JOURNALID=
|
||||
|
||||
If a journal is in use by the filesystem (journals are not
|
||||
assigned for spectator mounts) then this will give the
|
||||
numeric journal id in all GFS2 uevents.
|
||||
|
||||
4. UUID=
|
||||
|
||||
With recent versions of gfs2-utils, mkfs.gfs2 writes a UUID
|
||||
into the filesystem superblock. If it exists, this will
|
||||
be included in every uevent relating to the filesystem.
|
||||
|
||||
|
||||
|
98
Documentation/filesystems/nfs.txt
Normal file
98
Documentation/filesystems/nfs.txt
Normal file
@@ -0,0 +1,98 @@
|
||||
|
||||
The NFS client
|
||||
==============
|
||||
|
||||
The NFS version 2 protocol was first documented in RFC1094 (March 1989).
|
||||
Since then two more major releases of NFS have been published, with NFSv3
|
||||
being documented in RFC1813 (June 1995), and NFSv4 in RFC3530 (April
|
||||
2003).
|
||||
|
||||
The Linux NFS client currently supports all the above published versions,
|
||||
and work is in progress on adding support for minor version 1 of the NFSv4
|
||||
protocol.
|
||||
|
||||
The purpose of this document is to provide information on some of the
|
||||
upcall interfaces that are used in order to provide the NFS client with
|
||||
some of the information that it requires in order to fully comply with
|
||||
the NFS spec.
|
||||
|
||||
The DNS resolver
|
||||
================
|
||||
|
||||
NFSv4 allows for one server to refer the NFS client to data that has been
|
||||
migrated onto another server by means of the special "fs_locations"
|
||||
attribute. See
|
||||
http://tools.ietf.org/html/rfc3530#section-6
|
||||
and
|
||||
http://tools.ietf.org/html/draft-ietf-nfsv4-referrals-00
|
||||
|
||||
The fs_locations information can take the form of either an ip address and
|
||||
a path, or a DNS hostname and a path. The latter requires the NFS client to
|
||||
do a DNS lookup in order to mount the new volume, and hence the need for an
|
||||
upcall to allow userland to provide this service.
|
||||
|
||||
Assuming that the user has the 'rpc_pipefs' filesystem mounted in the usual
|
||||
/var/lib/nfs/rpc_pipefs, the upcall consists of the following steps:
|
||||
|
||||
(1) The process checks the dns_resolve cache to see if it contains a
|
||||
valid entry. If so, it returns that entry and exits.
|
||||
|
||||
(2) If no valid entry exists, the helper script '/sbin/nfs_cache_getent'
|
||||
(may be changed using the 'nfs.cache_getent' kernel boot parameter)
|
||||
is run, with two arguments:
|
||||
- the cache name, "dns_resolve"
|
||||
- the hostname to resolve
|
||||
|
||||
(3) After looking up the corresponding ip address, the helper script
|
||||
writes the result into the rpc_pipefs pseudo-file
|
||||
'/var/lib/nfs/rpc_pipefs/cache/dns_resolve/channel'
|
||||
in the following (text) format:
|
||||
|
||||
"<ip address> <hostname> <ttl>\n"
|
||||
|
||||
Where <ip address> is in the usual IPv4 (123.456.78.90) or IPv6
|
||||
(ffee:ddcc:bbaa:9988:7766:5544:3322:1100, ffee::1100, ...) format.
|
||||
<hostname> is identical to the second argument of the helper
|
||||
script, and <ttl> is the 'time to live' of this cache entry (in
|
||||
units of seconds).
|
||||
|
||||
Note: If <ip address> is invalid, say the string "0", then a negative
|
||||
entry is created, which will cause the kernel to treat the hostname
|
||||
as having no valid DNS translation.
|
||||
|
||||
|
||||
|
||||
|
||||
A basic sample /sbin/nfs_cache_getent
|
||||
=====================================
|
||||
|
||||
#!/bin/bash
|
||||
#
|
||||
ttl=600
|
||||
#
|
||||
cut=/usr/bin/cut
|
||||
getent=/usr/bin/getent
|
||||
rpc_pipefs=/var/lib/nfs/rpc_pipefs
|
||||
#
|
||||
die()
|
||||
{
|
||||
echo "Usage: $0 cache_name entry_name"
|
||||
exit 1
|
||||
}
|
||||
|
||||
[ $# -lt 2 ] && die
|
||||
cachename="$1"
|
||||
cache_path=${rpc_pipefs}/cache/${cachename}/channel
|
||||
|
||||
case "${cachename}" in
|
||||
dns_resolve)
|
||||
name="$2"
|
||||
result="$(${getent} hosts ${name} | ${cut} -f1 -d\ )"
|
||||
[ -z "${result}" ] && result="0"
|
||||
;;
|
||||
*)
|
||||
die
|
||||
;;
|
||||
esac
|
||||
echo "${result} ${name} ${ttl}" >${cache_path}
|
||||
|
@@ -46,7 +46,7 @@ better to do. The file is seekable, in that one can do something like the
|
||||
following:
|
||||
|
||||
dd if=/proc/sequence of=out1 count=1
|
||||
dd if=/proc/sequence skip=1 out=out2 count=1
|
||||
dd if=/proc/sequence skip=1 of=out2 count=1
|
||||
|
||||
Then concatenate the output files out1 and out2 and get the right
|
||||
result. Yes, it is a thoroughly useless module, but the point is to show
|
||||
|
99
Documentation/flexible-arrays.txt
Normal file
99
Documentation/flexible-arrays.txt
Normal file
@@ -0,0 +1,99 @@
|
||||
Using flexible arrays in the kernel
|
||||
Last updated for 2.6.31
|
||||
Jonathan Corbet <corbet@lwn.net>
|
||||
|
||||
Large contiguous memory allocations can be unreliable in the Linux kernel.
|
||||
Kernel programmers will sometimes respond to this problem by allocating
|
||||
pages with vmalloc(). This solution not ideal, though. On 32-bit systems,
|
||||
memory from vmalloc() must be mapped into a relatively small address space;
|
||||
it's easy to run out. On SMP systems, the page table changes required by
|
||||
vmalloc() allocations can require expensive cross-processor interrupts on
|
||||
all CPUs. And, on all systems, use of space in the vmalloc() range
|
||||
increases pressure on the translation lookaside buffer (TLB), reducing the
|
||||
performance of the system.
|
||||
|
||||
In many cases, the need for memory from vmalloc() can be eliminated by
|
||||
piecing together an array from smaller parts; the flexible array library
|
||||
exists to make this task easier.
|
||||
|
||||
A flexible array holds an arbitrary (within limits) number of fixed-sized
|
||||
objects, accessed via an integer index. Sparse arrays are handled
|
||||
reasonably well. Only single-page allocations are made, so memory
|
||||
allocation failures should be relatively rare. The down sides are that the
|
||||
arrays cannot be indexed directly, individual object size cannot exceed the
|
||||
system page size, and putting data into a flexible array requires a copy
|
||||
operation. It's also worth noting that flexible arrays do no internal
|
||||
locking at all; if concurrent access to an array is possible, then the
|
||||
caller must arrange for appropriate mutual exclusion.
|
||||
|
||||
The creation of a flexible array is done with:
|
||||
|
||||
#include <linux/flex_array.h>
|
||||
|
||||
struct flex_array *flex_array_alloc(int element_size,
|
||||
unsigned int total,
|
||||
gfp_t flags);
|
||||
|
||||
The individual object size is provided by element_size, while total is the
|
||||
maximum number of objects which can be stored in the array. The flags
|
||||
argument is passed directly to the internal memory allocation calls. With
|
||||
the current code, using flags to ask for high memory is likely to lead to
|
||||
notably unpleasant side effects.
|
||||
|
||||
Storing data into a flexible array is accomplished with a call to:
|
||||
|
||||
int flex_array_put(struct flex_array *array, unsigned int element_nr,
|
||||
void *src, gfp_t flags);
|
||||
|
||||
This call will copy the data from src into the array, in the position
|
||||
indicated by element_nr (which must be less than the maximum specified when
|
||||
the array was created). If any memory allocations must be performed, flags
|
||||
will be used. The return value is zero on success, a negative error code
|
||||
otherwise.
|
||||
|
||||
There might possibly be a need to store data into a flexible array while
|
||||
running in some sort of atomic context; in this situation, sleeping in the
|
||||
memory allocator would be a bad thing. That can be avoided by using
|
||||
GFP_ATOMIC for the flags value, but, often, there is a better way. The
|
||||
trick is to ensure that any needed memory allocations are done before
|
||||
entering atomic context, using:
|
||||
|
||||
int flex_array_prealloc(struct flex_array *array, unsigned int start,
|
||||
unsigned int end, gfp_t flags);
|
||||
|
||||
This function will ensure that memory for the elements indexed in the range
|
||||
defined by start and end has been allocated. Thereafter, a
|
||||
flex_array_put() call on an element in that range is guaranteed not to
|
||||
block.
|
||||
|
||||
Getting data back out of the array is done with:
|
||||
|
||||
void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
|
||||
|
||||
The return value is a pointer to the data element, or NULL if that
|
||||
particular element has never been allocated.
|
||||
|
||||
Note that it is possible to get back a valid pointer for an element which
|
||||
has never been stored in the array. Memory for array elements is allocated
|
||||
one page at a time; a single allocation could provide memory for several
|
||||
adjacent elements. The flexible array code does not know if a specific
|
||||
element has been written; it only knows if the associated memory is
|
||||
present. So a flex_array_get() call on an element which was never stored
|
||||
in the array has the potential to return a pointer to random data. If the
|
||||
caller does not have a separate way to know which elements were actually
|
||||
stored, it might be wise, at least, to add GFP_ZERO to the flags argument
|
||||
to ensure that all elements are zeroed.
|
||||
|
||||
There is no way to remove a single element from the array. It is possible,
|
||||
though, to remove all elements with a call to:
|
||||
|
||||
void flex_array_free_parts(struct flex_array *array);
|
||||
|
||||
This call frees all elements, but leaves the array itself in place.
|
||||
Freeing the entire array is done with:
|
||||
|
||||
void flex_array_free(struct flex_array *array);
|
||||
|
||||
As of this writing, there are no users of flexible arrays in the mainline
|
||||
kernel. The functions described here are also not exported to modules;
|
||||
that will probably be fixed when somebody comes up with a need for it.
|
475
Documentation/input/sentelic.txt
Normal file
475
Documentation/input/sentelic.txt
Normal file
@@ -0,0 +1,475 @@
|
||||
Copyright (C) 2002-2008 Sentelic Corporation.
|
||||
Last update: Oct-31-2008
|
||||
|
||||
==============================================================================
|
||||
* Finger Sensing Pad Intellimouse Mode(scrolling wheel, 4th and 5th buttons)
|
||||
==============================================================================
|
||||
A) MSID 4: Scrolling wheel mode plus Forward page(4th button) and Backward
|
||||
page (5th button)
|
||||
@1. Set sample rate to 200;
|
||||
@2. Set sample rate to 200;
|
||||
@3. Set sample rate to 80;
|
||||
@4. Issuing the "Get device ID" command (0xF2) and waits for the response;
|
||||
@5. FSP will respond 0x04.
|
||||
|
||||
Packet 1
|
||||
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
|
||||
BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
|
||||
1 |Y|X|y|x|1|M|R|L| 2 |X|X|X|X|X|X|X|X| 3 |Y|Y|Y|Y|Y|Y|Y|Y| 4 | | |B|F|W|W|W|W|
|
||||
|---------------| |---------------| |---------------| |---------------|
|
||||
|
||||
Byte 1: Bit7 => Y overflow
|
||||
Bit6 => X overflow
|
||||
Bit5 => Y sign bit
|
||||
Bit4 => X sign bit
|
||||
Bit3 => 1
|
||||
Bit2 => Middle Button, 1 is pressed, 0 is not pressed.
|
||||
Bit1 => Right Button, 1 is pressed, 0 is not pressed.
|
||||
Bit0 => Left Button, 1 is pressed, 0 is not pressed.
|
||||
Byte 2: X Movement(9-bit 2's complement integers)
|
||||
Byte 3: Y Movement(9-bit 2's complement integers)
|
||||
Byte 4: Bit3~Bit0 => the scrolling wheel's movement since the last data report.
|
||||
valid values, -8 ~ +7
|
||||
Bit4 => 1 = 4th mouse button is pressed, Forward one page.
|
||||
0 = 4th mouse button is not pressed.
|
||||
Bit5 => 1 = 5th mouse button is pressed, Backward one page.
|
||||
0 = 5th mouse button is not pressed.
|
||||
|
||||
B) MSID 6: Horizontal and Vertical scrolling.
|
||||
@ Set bit 1 in register 0x40 to 1
|
||||
|
||||
# FSP replaces scrolling wheel's movement as 4 bits to show horizontal and
|
||||
vertical scrolling.
|
||||
|
||||
Packet 1
|
||||
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
|
||||
BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
|
||||
1 |Y|X|y|x|1|M|R|L| 2 |X|X|X|X|X|X|X|X| 3 |Y|Y|Y|Y|Y|Y|Y|Y| 4 | | |B|F|l|r|u|d|
|
||||
|---------------| |---------------| |---------------| |---------------|
|
||||
|
||||
Byte 1: Bit7 => Y overflow
|
||||
Bit6 => X overflow
|
||||
Bit5 => Y sign bit
|
||||
Bit4 => X sign bit
|
||||
Bit3 => 1
|
||||
Bit2 => Middle Button, 1 is pressed, 0 is not pressed.
|
||||
Bit1 => Right Button, 1 is pressed, 0 is not pressed.
|
||||
Bit0 => Left Button, 1 is pressed, 0 is not pressed.
|
||||
Byte 2: X Movement(9-bit 2's complement integers)
|
||||
Byte 3: Y Movement(9-bit 2's complement integers)
|
||||
Byte 4: Bit0 => the Vertical scrolling movement downward.
|
||||
Bit1 => the Vertical scrolling movement upward.
|
||||
Bit2 => the Vertical scrolling movement rightward.
|
||||
Bit3 => the Vertical scrolling movement leftward.
|
||||
Bit4 => 1 = 4th mouse button is pressed, Forward one page.
|
||||
0 = 4th mouse button is not pressed.
|
||||
Bit5 => 1 = 5th mouse button is pressed, Backward one page.
|
||||
0 = 5th mouse button is not pressed.
|
||||
|
||||
C) MSID 7:
|
||||
# FSP uses 2 packets(8 Bytes) data to represent Absolute Position
|
||||
so we have PACKET NUMBER to identify packets.
|
||||
If PACKET NUMBER is 0, the packet is Packet 1.
|
||||
If PACKET NUMBER is 1, the packet is Packet 2.
|
||||
Please count this number in program.
|
||||
|
||||
# MSID6 special packet will be enable at the same time when enable MSID 7.
|
||||
|
||||
==============================================================================
|
||||
* Absolute position for STL3886-G0.
|
||||
==============================================================================
|
||||
@ Set bit 2 or 3 in register 0x40 to 1
|
||||
@ Set bit 6 in register 0x40 to 1
|
||||
|
||||
Packet 1 (ABSOLUTE POSITION)
|
||||
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
|
||||
BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
|
||||
1 |0|1|V|1|1|M|R|L| 2 |X|X|X|X|X|X|X|X| 3 |Y|Y|Y|Y|Y|Y|Y|Y| 4 |r|l|d|u|X|X|Y|Y|
|
||||
|---------------| |---------------| |---------------| |---------------|
|
||||
|
||||
Byte 1: Bit7~Bit6 => 00, Normal data packet
|
||||
=> 01, Absolute coordination packet
|
||||
=> 10, Notify packet
|
||||
Bit5 => valid bit
|
||||
Bit4 => 1
|
||||
Bit3 => 1
|
||||
Bit2 => Middle Button, 1 is pressed, 0 is not pressed.
|
||||
Bit1 => Right Button, 1 is pressed, 0 is not pressed.
|
||||
Bit0 => Left Button, 1 is pressed, 0 is not pressed.
|
||||
Byte 2: X coordinate (xpos[9:2])
|
||||
Byte 3: Y coordinate (ypos[9:2])
|
||||
Byte 4: Bit1~Bit0 => Y coordinate (xpos[1:0])
|
||||
Bit3~Bit2 => X coordinate (ypos[1:0])
|
||||
Bit4 => scroll up
|
||||
Bit5 => scroll down
|
||||
Bit6 => scroll left
|
||||
Bit7 => scroll right
|
||||
|
||||
Notify Packet for G0
|
||||
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
|
||||
BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
|
||||
1 |1|0|0|1|1|M|R|L| 2 |C|C|C|C|C|C|C|C| 3 |M|M|M|M|M|M|M|M| 4 |0|0|0|0|0|0|0|0|
|
||||
|---------------| |---------------| |---------------| |---------------|
|
||||
|
||||
Byte 1: Bit7~Bit6 => 00, Normal data packet
|
||||
=> 01, Absolute coordination packet
|
||||
=> 10, Notify packet
|
||||
Bit5 => 0
|
||||
Bit4 => 1
|
||||
Bit3 => 1
|
||||
Bit2 => Middle Button, 1 is pressed, 0 is not pressed.
|
||||
Bit1 => Right Button, 1 is pressed, 0 is not pressed.
|
||||
Bit0 => Left Button, 1 is pressed, 0 is not pressed.
|
||||
Byte 2: Message Type => 0x5A (Enable/Disable status packet)
|
||||
Mode Type => 0xA5 (Normal/Icon mode status)
|
||||
Byte 3: Message Type => 0x00 (Disabled)
|
||||
=> 0x01 (Enabled)
|
||||
Mode Type => 0x00 (Normal)
|
||||
=> 0x01 (Icon)
|
||||
Byte 4: Bit7~Bit0 => Don't Care
|
||||
|
||||
==============================================================================
|
||||
* Absolute position for STL3888-A0.
|
||||
==============================================================================
|
||||
Packet 1 (ABSOLUTE POSITION)
|
||||
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
|
||||
BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
|
||||
1 |0|1|V|A|1|L|0|1| 2 |X|X|X|X|X|X|X|X| 3 |Y|Y|Y|Y|Y|Y|Y|Y| 4 |x|x|y|y|X|X|Y|Y|
|
||||
|---------------| |---------------| |---------------| |---------------|
|
||||
|
||||
Byte 1: Bit7~Bit6 => 00, Normal data packet
|
||||
=> 01, Absolute coordination packet
|
||||
=> 10, Notify packet
|
||||
Bit5 => Valid bit, 0 means that the coordinate is invalid or finger up.
|
||||
When both fingers are up, the last two reports have zero valid
|
||||
bit.
|
||||
Bit4 => arc
|
||||
Bit3 => 1
|
||||
Bit2 => Left Button, 1 is pressed, 0 is released.
|
||||
Bit1 => 0
|
||||
Bit0 => 1
|
||||
Byte 2: X coordinate (xpos[9:2])
|
||||
Byte 3: Y coordinate (ypos[9:2])
|
||||
Byte 4: Bit1~Bit0 => Y coordinate (xpos[1:0])
|
||||
Bit3~Bit2 => X coordinate (ypos[1:0])
|
||||
Bit5~Bit4 => y1_g
|
||||
Bit7~Bit6 => x1_g
|
||||
|
||||
Packet 2 (ABSOLUTE POSITION)
|
||||
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
|
||||
BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
|
||||
1 |0|1|V|A|1|R|1|0| 2 |X|X|X|X|X|X|X|X| 3 |Y|Y|Y|Y|Y|Y|Y|Y| 4 |x|x|y|y|X|X|Y|Y|
|
||||
|---------------| |---------------| |---------------| |---------------|
|
||||
|
||||
Byte 1: Bit7~Bit6 => 00, Normal data packet
|
||||
=> 01, Absolute coordinates packet
|
||||
=> 10, Notify packet
|
||||
Bit5 => Valid bit, 0 means that the coordinate is invalid or finger up.
|
||||
When both fingers are up, the last two reports have zero valid
|
||||
bit.
|
||||
Bit4 => arc
|
||||
Bit3 => 1
|
||||
Bit2 => Right Button, 1 is pressed, 0 is released.
|
||||
Bit1 => 1
|
||||
Bit0 => 0
|
||||
Byte 2: X coordinate (xpos[9:2])
|
||||
Byte 3: Y coordinate (ypos[9:2])
|
||||
Byte 4: Bit1~Bit0 => Y coordinate (xpos[1:0])
|
||||
Bit3~Bit2 => X coordinate (ypos[1:0])
|
||||
Bit5~Bit4 => y2_g
|
||||
Bit7~Bit6 => x2_g
|
||||
|
||||
Notify Packet for STL3888-A0
|
||||
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
|
||||
BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
|
||||
1 |1|0|1|P|1|M|R|L| 2 |C|C|C|C|C|C|C|C| 3 |0|0|F|F|0|0|0|i| 4 |r|l|d|u|0|0|0|0|
|
||||
|---------------| |---------------| |---------------| |---------------|
|
||||
|
||||
Byte 1: Bit7~Bit6 => 00, Normal data packet
|
||||
=> 01, Absolute coordination packet
|
||||
=> 10, Notify packet
|
||||
Bit5 => 1
|
||||
Bit4 => when in absolute coordinates mode (valid when EN_PKT_GO is 1):
|
||||
0: left button is generated by the on-pad command
|
||||
1: left button is generated by the external button
|
||||
Bit3 => 1
|
||||
Bit2 => Middle Button, 1 is pressed, 0 is not pressed.
|
||||
Bit1 => Right Button, 1 is pressed, 0 is not pressed.
|
||||
Bit0 => Left Button, 1 is pressed, 0 is not pressed.
|
||||
Byte 2: Message Type => 0xB7 (Multi Finger, Multi Coordinate mode)
|
||||
Byte 3: Bit7~Bit6 => Don't care
|
||||
Bit5~Bit4 => Number of fingers
|
||||
Bit3~Bit1 => Reserved
|
||||
Bit0 => 1: enter gesture mode; 0: leaving gesture mode
|
||||
Byte 4: Bit7 => scroll right button
|
||||
Bit6 => scroll left button
|
||||
Bit5 => scroll down button
|
||||
Bit4 => scroll up button
|
||||
* Note that if gesture and additional button (Bit4~Bit7)
|
||||
happen at the same time, the button information will not
|
||||
be sent.
|
||||
Bit3~Bit0 => Reserved
|
||||
|
||||
Sample sequence of Multi-finger, Multi-coordinate mode:
|
||||
|
||||
notify packet (valid bit == 1), abs pkt 1, abs pkt 2, abs pkt 1,
|
||||
abs pkt 2, ..., notify packet(valid bit == 0)
|
||||
|
||||
==============================================================================
|
||||
* FSP Enable/Disable packet
|
||||
==============================================================================
|
||||
Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
|
||||
BYTE |---------------|BYTE |---------------|BYTE|---------------|BYTE|---------------|
|
||||
1 |Y|X|0|0|1|M|R|L| 2 |0|1|0|1|1|0|1|E| 3 | | | | | | | | | 4 | | | | | | | | |
|
||||
|---------------| |---------------| |---------------| |---------------|
|
||||
|
||||
FSP will send out enable/disable packet when FSP receive PS/2 enable/disable
|
||||
command. Host will receive the packet which Middle, Right, Left button will
|
||||
be set. The packet only use byte 0 and byte 1 as a pattern of original packet.
|
||||
Ignore the other bytes of the packet.
|
||||
|
||||
Byte 1: Bit7 => 0, Y overflow
|
||||
Bit6 => 0, X overflow
|
||||
Bit5 => 0, Y sign bit
|
||||
Bit4 => 0, X sign bit
|
||||
Bit3 => 1
|
||||
Bit2 => 1, Middle Button
|
||||
Bit1 => 1, Right Button
|
||||
Bit0 => 1, Left Button
|
||||
Byte 2: Bit7~1 => (0101101b)
|
||||
Bit0 => 1 = Enable
|
||||
0 = Disable
|
||||
Byte 3: Don't care
|
||||
Byte 4: Don't care (MOUSE ID 3, 4)
|
||||
Byte 5~8: Don't care (Absolute packet)
|
||||
|
||||
==============================================================================
|
||||
* PS/2 Command Set
|
||||
==============================================================================
|
||||
|
||||
FSP supports basic PS/2 commanding set and modes, refer to following URL for
|
||||
details about PS/2 commands:
|
||||
|
||||
http://www.computer-engineering.org/index.php?title=PS/2_Mouse_Interface
|
||||
|
||||
==============================================================================
|
||||
* Programming Sequence for Determining Packet Parsing Flow
|
||||
==============================================================================
|
||||
1. Identify FSP by reading device ID(0x00) and version(0x01) register
|
||||
|
||||
2. Determine number of buttons by reading status2 (0x0b) register
|
||||
|
||||
buttons = reg[0x0b] & 0x30
|
||||
|
||||
if buttons == 0x30 or buttons == 0x20:
|
||||
# two/four buttons
|
||||
Refer to 'Finger Sensing Pad PS/2 Mouse Intellimouse'
|
||||
section A for packet parsing detail(ignore byte 4, bit ~ 7)
|
||||
elif buttons == 0x10:
|
||||
# 6 buttons
|
||||
Refer to 'Finger Sensing Pad PS/2 Mouse Intellimouse'
|
||||
section B for packet parsing detail
|
||||
elif buttons == 0x00:
|
||||
# 6 buttons
|
||||
Refer to 'Finger Sensing Pad PS/2 Mouse Intellimouse'
|
||||
section A for packet parsing detail
|
||||
|
||||
==============================================================================
|
||||
* Programming Sequence for Register Reading/Writing
|
||||
==============================================================================
|
||||
|
||||
Register inversion requirement:
|
||||
|
||||
Following values needed to be inverted(the '~' operator in C) before being
|
||||
sent to FSP:
|
||||
|
||||
0xe9, 0xee, 0xf2 and 0xff.
|
||||
|
||||
Register swapping requirement:
|
||||
|
||||
Following values needed to have their higher 4 bits and lower 4 bits being
|
||||
swapped before being sent to FSP:
|
||||
|
||||
10, 20, 40, 60, 80, 100 and 200.
|
||||
|
||||
Register reading sequence:
|
||||
|
||||
1. send 0xf3 PS/2 command to FSP;
|
||||
|
||||
2. send 0x66 PS/2 command to FSP;
|
||||
|
||||
3. send 0x88 PS/2 command to FSP;
|
||||
|
||||
4. send 0xf3 PS/2 command to FSP;
|
||||
|
||||
5. if the register address being to read is not required to be
|
||||
inverted(refer to the 'Register inversion requirement' section),
|
||||
goto step 6
|
||||
|
||||
5a. send 0x68 PS/2 command to FSP;
|
||||
|
||||
5b. send the inverted register address to FSP and goto step 8;
|
||||
|
||||
6. if the register address being to read is not required to be
|
||||
swapped(refer to the 'Register swapping requirement' section),
|
||||
goto step 7
|
||||
|
||||
6a. send 0xcc PS/2 command to FSP;
|
||||
|
||||
6b. send the swapped register address to FSP and goto step 8;
|
||||
|
||||
7. send 0x66 PS/2 command to FSP;
|
||||
|
||||
7a. send the original register address to FSP and goto step 8;
|
||||
|
||||
8. send 0xe9(status request) PS/2 command to FSP;
|
||||
|
||||
9. the response read from FSP should be the requested register value.
|
||||
|
||||
Register writing sequence:
|
||||
|
||||
1. send 0xf3 PS/2 command to FSP;
|
||||
|
||||
2. if the register address being to write is not required to be
|
||||
inverted(refer to the 'Register inversion requirement' section),
|
||||
goto step 3
|
||||
|
||||
2a. send 0x74 PS/2 command to FSP;
|
||||
|
||||
2b. send the inverted register address to FSP and goto step 5;
|
||||
|
||||
3. if the register address being to write is not required to be
|
||||
swapped(refer to the 'Register swapping requirement' section),
|
||||
goto step 4
|
||||
|
||||
3a. send 0x77 PS/2 command to FSP;
|
||||
|
||||
3b. send the swapped register address to FSP and goto step 5;
|
||||
|
||||
4. send 0x55 PS/2 command to FSP;
|
||||
|
||||
4a. send the register address to FSP and goto step 5;
|
||||
|
||||
5. send 0xf3 PS/2 command to FSP;
|
||||
|
||||
6. if the register value being to write is not required to be
|
||||
inverted(refer to the 'Register inversion requirement' section),
|
||||
goto step 7
|
||||
|
||||
6a. send 0x47 PS/2 command to FSP;
|
||||
|
||||
6b. send the inverted register value to FSP and goto step 9;
|
||||
|
||||
7. if the register value being to write is not required to be
|
||||
swapped(refer to the 'Register swapping requirement' section),
|
||||
goto step 8
|
||||
|
||||
7a. send 0x44 PS/2 command to FSP;
|
||||
|
||||
7b. send the swapped register value to FSP and goto step 9;
|
||||
|
||||
8. send 0x33 PS/2 command to FSP;
|
||||
|
||||
8a. send the register value to FSP;
|
||||
|
||||
9. the register writing sequence is completed.
|
||||
|
||||
==============================================================================
|
||||
* Register Listing
|
||||
==============================================================================
|
||||
|
||||
offset width default r/w name
|
||||
0x00 bit7~bit0 0x01 RO device ID
|
||||
|
||||
0x01 bit7~bit0 0xc0 RW version ID
|
||||
|
||||
0x02 bit7~bit0 0x01 RO vendor ID
|
||||
|
||||
0x03 bit7~bit0 0x01 RO product ID
|
||||
|
||||
0x04 bit3~bit0 0x01 RW revision ID
|
||||
|
||||
0x0b RO test mode status 1
|
||||
bit3 1 RO 0: rotate 180 degree, 1: no rotation
|
||||
|
||||
bit5~bit4 RO number of buttons
|
||||
11 => 2, lbtn/rbtn
|
||||
10 => 4, lbtn/rbtn/scru/scrd
|
||||
01 => 6, lbtn/rbtn/scru/scrd/scrl/scrr
|
||||
00 => 6, lbtn/rbtn/scru/scrd/fbtn/bbtn
|
||||
|
||||
0x0f RW register file page control
|
||||
bit0 0 RW 1 to enable page 1 register files
|
||||
|
||||
0x10 RW system control 1
|
||||
bit0 1 RW Reserved, must be 1
|
||||
bit1 0 RW Reserved, must be 0
|
||||
bit4 1 RW Reserved, must be 0
|
||||
bit5 0 RW register clock gating enable
|
||||
0: read only, 1: read/write enable
|
||||
(Note that following registers does not require clock gating being
|
||||
enabled prior to write: 05 06 07 08 09 0c 0f 10 11 12 16 17 18 23 2e
|
||||
40 41 42 43.)
|
||||
|
||||
0x31 RW on-pad command detection
|
||||
bit7 0 RW on-pad command left button down tag
|
||||
enable
|
||||
0: disable, 1: enable
|
||||
|
||||
0x34 RW on-pad command control 5
|
||||
bit4~bit0 0x05 RW XLO in 0s/4/1, so 03h = 0010.1b = 2.5
|
||||
(Note that position unit is in 0.5 scanline)
|
||||
|
||||
bit7 0 RW on-pad tap zone enable
|
||||
0: disable, 1: enable
|
||||
|
||||
0x35 RW on-pad command control 6
|
||||
bit4~bit0 0x1d RW XHI in 0s/4/1, so 19h = 1100.1b = 12.5
|
||||
(Note that position unit is in 0.5 scanline)
|
||||
|
||||
0x36 RW on-pad command control 7
|
||||
bit4~bit0 0x04 RW YLO in 0s/4/1, so 03h = 0010.1b = 2.5
|
||||
(Note that position unit is in 0.5 scanline)
|
||||
|
||||
0x37 RW on-pad command control 8
|
||||
bit4~bit0 0x13 RW YHI in 0s/4/1, so 11h = 1000.1b = 8.5
|
||||
(Note that position unit is in 0.5 scanline)
|
||||
|
||||
0x40 RW system control 5
|
||||
bit1 0 RW FSP Intellimouse mode enable
|
||||
0: disable, 1: enable
|
||||
|
||||
bit2 0 RW movement + abs. coordinate mode enable
|
||||
0: disable, 1: enable
|
||||
(Note that this function has the functionality of bit 1 even when
|
||||
bit 1 is not set. However, the format is different from that of bit 1.
|
||||
In addition, when bit 1 and bit 2 are set at the same time, bit 2 will
|
||||
override bit 1.)
|
||||
|
||||
bit3 0 RW abs. coordinate only mode enable
|
||||
0: disable, 1: enable
|
||||
(Note that this function has the functionality of bit 1 even when
|
||||
bit 1 is not set. However, the format is different from that of bit 1.
|
||||
In addition, when bit 1, bit 2 and bit 3 are set at the same time,
|
||||
bit 3 will override bit 1 and 2.)
|
||||
|
||||
bit5 0 RW auto switch enable
|
||||
0: disable, 1: enable
|
||||
|
||||
bit6 0 RW G0 abs. + notify packet format enable
|
||||
0: disable, 1: enable
|
||||
(Note that the absolute/relative coordinate output still depends on
|
||||
bit 2 and 3. That is, if any of those bit is 1, host will receive
|
||||
absolute coordinates; otherwise, host only receives packets with
|
||||
relative coordinate.)
|
||||
|
||||
0x43 RW on-pad control
|
||||
bit0 0 RW on-pad control enable
|
||||
0: disable, 1: enable
|
||||
(Note that if this bit is cleared, bit 3/5 will be ineffective)
|
||||
|
||||
bit3 0 RW on-pad fix vertical scrolling enable
|
||||
0: disable, 1: enable
|
||||
|
||||
bit5 0 RW on-pad fix horizontal scrolling enable
|
||||
0: disable, 1: enable
|
210
Documentation/intel_txt.txt
Normal file
210
Documentation/intel_txt.txt
Normal file
@@ -0,0 +1,210 @@
|
||||
Intel(R) TXT Overview:
|
||||
=====================
|
||||
|
||||
Intel's technology for safer computing, Intel(R) Trusted Execution
|
||||
Technology (Intel(R) TXT), defines platform-level enhancements that
|
||||
provide the building blocks for creating trusted platforms.
|
||||
|
||||
Intel TXT was formerly known by the code name LaGrande Technology (LT).
|
||||
|
||||
Intel TXT in Brief:
|
||||
o Provides dynamic root of trust for measurement (DRTM)
|
||||
o Data protection in case of improper shutdown
|
||||
o Measurement and verification of launched environment
|
||||
|
||||
Intel TXT is part of the vPro(TM) brand and is also available some
|
||||
non-vPro systems. It is currently available on desktop systems
|
||||
based on the Q35, X38, Q45, and Q43 Express chipsets (e.g. Dell
|
||||
Optiplex 755, HP dc7800, etc.) and mobile systems based on the GM45,
|
||||
PM45, and GS45 Express chipsets.
|
||||
|
||||
For more information, see http://www.intel.com/technology/security/.
|
||||
This site also has a link to the Intel TXT MLE Developers Manual,
|
||||
which has been updated for the new released platforms.
|
||||
|
||||
Intel TXT has been presented at various events over the past few
|
||||
years, some of which are:
|
||||
LinuxTAG 2008:
|
||||
http://www.linuxtag.org/2008/en/conf/events/vp-donnerstag/
|
||||
details.html?talkid=110
|
||||
TRUST2008:
|
||||
http://www.trust2008.eu/downloads/Keynote-Speakers/
|
||||
3_David-Grawrock_The-Front-Door-of-Trusted-Computing.pdf
|
||||
IDF 2008, Shanghai:
|
||||
http://inteldeveloperforum.com.edgesuite.net/shanghai_2008/
|
||||
aep/PROS003/index.html
|
||||
IDFs 2006, 2007 (I'm not sure if/where they are online)
|
||||
|
||||
Trusted Boot Project Overview:
|
||||
=============================
|
||||
|
||||
Trusted Boot (tboot) is an open source, pre- kernel/VMM module that
|
||||
uses Intel TXT to perform a measured and verified launch of an OS
|
||||
kernel/VMM.
|
||||
|
||||
It is hosted on SourceForge at http://sourceforge.net/projects/tboot.
|
||||
The mercurial source repo is available at http://www.bughost.org/
|
||||
repos.hg/tboot.hg.
|
||||
|
||||
Tboot currently supports launching Xen (open source VMM/hypervisor
|
||||
w/ TXT support since v3.2), and now Linux kernels.
|
||||
|
||||
|
||||
Value Proposition for Linux or "Why should you care?"
|
||||
=====================================================
|
||||
|
||||
While there are many products and technologies that attempt to
|
||||
measure or protect the integrity of a running kernel, they all
|
||||
assume the kernel is "good" to begin with. The Integrity
|
||||
Measurement Architecture (IMA) and Linux Integrity Module interface
|
||||
are examples of such solutions.
|
||||
|
||||
To get trust in the initial kernel without using Intel TXT, a
|
||||
static root of trust must be used. This bases trust in BIOS
|
||||
starting at system reset and requires measurement of all code
|
||||
executed between system reset through the completion of the kernel
|
||||
boot as well as data objects used by that code. In the case of a
|
||||
Linux kernel, this means all of BIOS, any option ROMs, the
|
||||
bootloader and the boot config. In practice, this is a lot of
|
||||
code/data, much of which is subject to change from boot to boot
|
||||
(e.g. changing NICs may change option ROMs). Without reference
|
||||
hashes, these measurement changes are difficult to assess or
|
||||
confirm as benign. This process also does not provide DMA
|
||||
protection, memory configuration/alias checks and locks, crash
|
||||
protection, or policy support.
|
||||
|
||||
By using the hardware-based root of trust that Intel TXT provides,
|
||||
many of these issues can be mitigated. Specifically: many
|
||||
pre-launch components can be removed from the trust chain, DMA
|
||||
protection is provided to all launched components, a large number
|
||||
of platform configuration checks are performed and values locked,
|
||||
protection is provided for any data in the event of an improper
|
||||
shutdown, and there is support for policy-based execution/verification.
|
||||
This provides a more stable measurement and a higher assurance of
|
||||
system configuration and initial state than would be otherwise
|
||||
possible. Since the tboot project is open source, source code for
|
||||
almost all parts of the trust chain is available (excepting SMM and
|
||||
Intel-provided firmware).
|
||||
|
||||
How Does it Work?
|
||||
=================
|
||||
|
||||
o Tboot is an executable that is launched by the bootloader as
|
||||
the "kernel" (the binary the bootloader executes).
|
||||
o It performs all of the work necessary to determine if the
|
||||
platform supports Intel TXT and, if so, executes the GETSEC[SENTER]
|
||||
processor instruction that initiates the dynamic root of trust.
|
||||
- If tboot determines that the system does not support Intel TXT
|
||||
or is not configured correctly (e.g. the SINIT AC Module was
|
||||
incorrect), it will directly launch the kernel with no changes
|
||||
to any state.
|
||||
- Tboot will output various information about its progress to the
|
||||
terminal, serial port, and/or an in-memory log; the output
|
||||
locations can be configured with a command line switch.
|
||||
o The GETSEC[SENTER] instruction will return control to tboot and
|
||||
tboot then verifies certain aspects of the environment (e.g. TPM NV
|
||||
lock, e820 table does not have invalid entries, etc.).
|
||||
o It will wake the APs from the special sleep state the GETSEC[SENTER]
|
||||
instruction had put them in and place them into a wait-for-SIPI
|
||||
state.
|
||||
- Because the processors will not respond to an INIT or SIPI when
|
||||
in the TXT environment, it is necessary to create a small VT-x
|
||||
guest for the APs. When they run in this guest, they will
|
||||
simply wait for the INIT-SIPI-SIPI sequence, which will cause
|
||||
VMEXITs, and then disable VT and jump to the SIPI vector. This
|
||||
approach seemed like a better choice than having to insert
|
||||
special code into the kernel's MP wakeup sequence.
|
||||
o Tboot then applies an (optional) user-defined launch policy to
|
||||
verify the kernel and initrd.
|
||||
- This policy is rooted in TPM NV and is described in the tboot
|
||||
project. The tboot project also contains code for tools to
|
||||
create and provision the policy.
|
||||
- Policies are completely under user control and if not present
|
||||
then any kernel will be launched.
|
||||
- Policy action is flexible and can include halting on failures
|
||||
or simply logging them and continuing.
|
||||
o Tboot adjusts the e820 table provided by the bootloader to reserve
|
||||
its own location in memory as well as to reserve certain other
|
||||
TXT-related regions.
|
||||
o As part of it's launch, tboot DMA protects all of RAM (using the
|
||||
VT-d PMRs). Thus, the kernel must be booted with 'intel_iommu=on'
|
||||
in order to remove this blanket protection and use VT-d's
|
||||
page-level protection.
|
||||
o Tboot will populate a shared page with some data about itself and
|
||||
pass this to the Linux kernel as it transfers control.
|
||||
- The location of the shared page is passed via the boot_params
|
||||
struct as a physical address.
|
||||
o The kernel will look for the tboot shared page address and, if it
|
||||
exists, map it.
|
||||
o As one of the checks/protections provided by TXT, it makes a copy
|
||||
of the VT-d DMARs in a DMA-protected region of memory and verifies
|
||||
them for correctness. The VT-d code will detect if the kernel was
|
||||
launched with tboot and use this copy instead of the one in the
|
||||
ACPI table.
|
||||
o At this point, tboot and TXT are out of the picture until a
|
||||
shutdown (S<n>)
|
||||
o In order to put a system into any of the sleep states after a TXT
|
||||
launch, TXT must first be exited. This is to prevent attacks that
|
||||
attempt to crash the system to gain control on reboot and steal
|
||||
data left in memory.
|
||||
- The kernel will perform all of its sleep preparation and
|
||||
populate the shared page with the ACPI data needed to put the
|
||||
platform in the desired sleep state.
|
||||
- Then the kernel jumps into tboot via the vector specified in the
|
||||
shared page.
|
||||
- Tboot will clean up the environment and disable TXT, then use the
|
||||
kernel-provided ACPI information to actually place the platform
|
||||
into the desired sleep state.
|
||||
- In the case of S3, tboot will also register itself as the resume
|
||||
vector. This is necessary because it must re-establish the
|
||||
measured environment upon resume. Once the TXT environment
|
||||
has been restored, it will restore the TPM PCRs and then
|
||||
transfer control back to the kernel's S3 resume vector.
|
||||
In order to preserve system integrity across S3, the kernel
|
||||
provides tboot with a set of memory ranges (kernel
|
||||
code/data/bss, S3 resume code, and AP trampoline) that tboot
|
||||
will calculate a MAC (message authentication code) over and then
|
||||
seal with the TPM. On resume and once the measured environment
|
||||
has been re-established, tboot will re-calculate the MAC and
|
||||
verify it against the sealed value. Tboot's policy determines
|
||||
what happens if the verification fails.
|
||||
|
||||
That's pretty much it for TXT support.
|
||||
|
||||
|
||||
Configuring the System:
|
||||
======================
|
||||
|
||||
This code works with 32bit, 32bit PAE, and 64bit (x86_64) kernels.
|
||||
|
||||
In BIOS, the user must enable: TPM, TXT, VT-x, VT-d. Not all BIOSes
|
||||
allow these to be individually enabled/disabled and the screens in
|
||||
which to find them are BIOS-specific.
|
||||
|
||||
grub.conf needs to be modified as follows:
|
||||
title Linux 2.6.29-tip w/ tboot
|
||||
root (hd0,0)
|
||||
kernel /tboot.gz logging=serial,vga,memory
|
||||
module /vmlinuz-2.6.29-tip intel_iommu=on ro
|
||||
root=LABEL=/ rhgb console=ttyS0,115200 3
|
||||
module /initrd-2.6.29-tip.img
|
||||
module /Q35_SINIT_17.BIN
|
||||
|
||||
The kernel option for enabling Intel TXT support is found under the
|
||||
Security top-level menu and is called "Enable Intel(R) Trusted
|
||||
Execution Technology (TXT)". It is marked as EXPERIMENTAL and
|
||||
depends on the generic x86 support (to allow maximum flexibility in
|
||||
kernel build options), since the tboot code will detect whether the
|
||||
platform actually supports Intel TXT and thus whether any of the
|
||||
kernel code is executed.
|
||||
|
||||
The Q35_SINIT_17.BIN file is what Intel TXT refers to as an
|
||||
Authenticated Code Module. It is specific to the chipset in the
|
||||
system and can also be found on the Trusted Boot site. It is an
|
||||
(unencrypted) module signed by Intel that is used as part of the
|
||||
DRTM process to verify and configure the system. It is signed
|
||||
because it operates at a higher privilege level in the system than
|
||||
any other macrocode and its correct operation is critical to the
|
||||
establishment of the DRTM. The process for determining the correct
|
||||
SINIT ACM for a system is documented in the SINIT-guide.txt file
|
||||
that is on the tboot SourceForge site under the SINIT ACM downloads.
|
@@ -121,6 +121,7 @@ Code Seq# Include File Comments
|
||||
'c' 00-7F linux/comstats.h conflict!
|
||||
'c' 00-7F linux/coda.h conflict!
|
||||
'c' 80-9F arch/s390/include/asm/chsc.h
|
||||
'c' A0-AF arch/x86/include/asm/msr.h
|
||||
'd' 00-FF linux/char/drm/drm/h conflict!
|
||||
'd' F0-FF linux/digi1.h
|
||||
'e' all linux/digi1.h conflict!
|
||||
@@ -192,7 +193,7 @@ Code Seq# Include File Comments
|
||||
0xAD 00 Netfilter device in development:
|
||||
<mailto:rusty@rustcorp.com.au>
|
||||
0xAE all linux/kvm.h Kernel-based Virtual Machine
|
||||
<mailto:kvm-devel@lists.sourceforge.net>
|
||||
<mailto:kvm@vger.kernel.org>
|
||||
0xB0 all RATIO devices in development:
|
||||
<mailto:vgo@ratio.de>
|
||||
0xB1 00-1F PPPoX <mailto:mostrows@styx.uwaterloo.ca>
|
||||
|
@@ -57,6 +57,7 @@ parameter is applicable:
|
||||
ISAPNP ISA PnP code is enabled.
|
||||
ISDN Appropriate ISDN support is enabled.
|
||||
JOY Appropriate joystick support is enabled.
|
||||
KVM Kernel Virtual Machine support is enabled.
|
||||
LIBATA Libata driver is enabled
|
||||
LP Printer support is enabled.
|
||||
LOOP Loopback device support is enabled.
|
||||
@@ -1098,6 +1099,44 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
kstack=N [X86] Print N words from the kernel stack
|
||||
in oops dumps.
|
||||
|
||||
kvm.ignore_msrs=[KVM] Ignore guest accesses to unhandled MSRs.
|
||||
Default is 0 (don't ignore, but inject #GP)
|
||||
|
||||
kvm.oos_shadow= [KVM] Disable out-of-sync shadow paging.
|
||||
Default is 1 (enabled)
|
||||
|
||||
kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM.
|
||||
Default is 0 (off)
|
||||
|
||||
kvm-amd.npt= [KVM,AMD] Disable nested paging (virtualized MMU)
|
||||
for all guests.
|
||||
Default is 1 (enabled) if in 64bit or 32bit-PAE mode
|
||||
|
||||
kvm-intel.bypass_guest_pf=
|
||||
[KVM,Intel] Disables bypassing of guest page faults
|
||||
on Intel chips. Default is 1 (enabled)
|
||||
|
||||
kvm-intel.ept= [KVM,Intel] Disable extended page tables
|
||||
(virtualized MMU) support on capable Intel chips.
|
||||
Default is 1 (enabled)
|
||||
|
||||
kvm-intel.emulate_invalid_guest_state=
|
||||
[KVM,Intel] Enable emulation of invalid guest states
|
||||
Default is 0 (disabled)
|
||||
|
||||
kvm-intel.flexpriority=
|
||||
[KVM,Intel] Disable FlexPriority feature (TPR shadow).
|
||||
Default is 1 (enabled)
|
||||
|
||||
kvm-intel.unrestricted_guest=
|
||||
[KVM,Intel] Disable unrestricted guest feature
|
||||
(virtualized real and unpaged mode) on capable
|
||||
Intel chips. Default is 1 (enabled)
|
||||
|
||||
kvm-intel.vpid= [KVM,Intel] Disable Virtual Processor Identification
|
||||
feature (tagged TLBs) on capable Intel chips.
|
||||
Default is 1 (enabled)
|
||||
|
||||
l2cr= [PPC]
|
||||
|
||||
l3cr= [PPC]
|
||||
@@ -1503,6 +1542,14 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
[NFS] set the TCP port on which the NFSv4 callback
|
||||
channel should listen.
|
||||
|
||||
nfs.cache_getent=
|
||||
[NFS] sets the pathname to the program which is used
|
||||
to update the NFS client cache entries.
|
||||
|
||||
nfs.cache_getent_timeout=
|
||||
[NFS] sets the timeout after which an attempt to
|
||||
update a cache entry is deemed to have failed.
|
||||
|
||||
nfs.idmap_cache_timeout=
|
||||
[NFS] set the maximum lifetime for idmapper cache
|
||||
entries.
|
||||
@@ -1535,6 +1582,11 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
symbolic names: lapic and ioapic
|
||||
Example: nmi_watchdog=2 or nmi_watchdog=panic,lapic
|
||||
|
||||
netpoll.carrier_timeout=
|
||||
[NET] Specifies amount of time (in seconds) that
|
||||
netpoll should wait for a carrier. By default netpoll
|
||||
waits 4 seconds.
|
||||
|
||||
no387 [BUGS=X86-32] Tells the kernel to use the 387 maths
|
||||
emulation library even if a 387 maths coprocessor
|
||||
is present.
|
||||
@@ -1919,11 +1971,12 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
Format: { 0 | 1 }
|
||||
See arch/parisc/kernel/pdc_chassis.c
|
||||
|
||||
percpu_alloc= [X86] Select which percpu first chunk allocator to use.
|
||||
Allowed values are one of "lpage", "embed" and "4k".
|
||||
See comments in arch/x86/kernel/setup_percpu.c for
|
||||
details on each allocator. This parameter is primarily
|
||||
for debugging and performance comparison.
|
||||
percpu_alloc= Select which percpu first chunk allocator to use.
|
||||
Currently supported values are "embed" and "page".
|
||||
Archs may support subset or none of the selections.
|
||||
See comments in mm/percpu.c for details on each
|
||||
allocator. This parameter is primarily for debugging
|
||||
and performance comparison.
|
||||
|
||||
pf. [PARIDE]
|
||||
See Documentation/blockdev/paride.txt.
|
||||
@@ -2395,6 +2448,18 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
stifb= [HW]
|
||||
Format: bpp:<bpp1>[:<bpp2>[:<bpp3>...]]
|
||||
|
||||
sunrpc.min_resvport=
|
||||
sunrpc.max_resvport=
|
||||
[NFS,SUNRPC]
|
||||
SunRPC servers often require that client requests
|
||||
originate from a privileged port (i.e. a port in the
|
||||
range 0 < portnr < 1024).
|
||||
An administrator who wishes to reserve some of these
|
||||
ports for other uses may adjust the range that the
|
||||
kernel's sunrpc client considers to be privileged
|
||||
using these two parameters to set the minimum and
|
||||
maximum port values.
|
||||
|
||||
sunrpc.pool_mode=
|
||||
[NFS]
|
||||
Control how the NFS server code allocates CPUs to
|
||||
@@ -2411,6 +2476,15 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
pernode one pool for each NUMA node (equivalent
|
||||
to global on non-NUMA machines)
|
||||
|
||||
sunrpc.tcp_slot_table_entries=
|
||||
sunrpc.udp_slot_table_entries=
|
||||
[NFS,SUNRPC]
|
||||
Sets the upper limit on the number of simultaneous
|
||||
RPC calls that can be sent from the client to a
|
||||
server. Increasing these values may allow you to
|
||||
improve throughput, but will also increase the
|
||||
amount of memory reserved for use by the client.
|
||||
|
||||
swiotlb= [IA-64] Number of I/O TLB slabs
|
||||
|
||||
switches= [HW,M68k]
|
||||
@@ -2480,6 +2554,11 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
trace_buf_size=nn[KMG]
|
||||
[FTRACE] will set tracing buffer size.
|
||||
|
||||
trace_event=[event-list]
|
||||
[FTRACE] Set and start specified trace events in order
|
||||
to facilitate early boot debugging.
|
||||
See also Documentation/trace/events.txt
|
||||
|
||||
trix= [HW,OSS] MediaTrix AudioTrix Pro
|
||||
Format:
|
||||
<io>,<irq>,<dma>,<dma2>,<sb_io>,<sb_irq>,<sb_dma>,<mpu_io>,<mpu_irq>
|
||||
|
@@ -26,7 +26,7 @@ This document has the following sections:
|
||||
- Notes on accessing payload contents
|
||||
- Defining a key type
|
||||
- Request-key callback service
|
||||
- Key access filesystem
|
||||
- Garbage collection
|
||||
|
||||
|
||||
============
|
||||
@@ -113,6 +113,9 @@ Each key has a number of attributes:
|
||||
|
||||
(*) Dead. The key's type was unregistered, and so the key is now useless.
|
||||
|
||||
Keys in the last three states are subject to garbage collection. See the
|
||||
section on "Garbage collection".
|
||||
|
||||
|
||||
====================
|
||||
KEY SERVICE OVERVIEW
|
||||
@@ -754,6 +757,26 @@ The keyctl syscall functions are:
|
||||
successful.
|
||||
|
||||
|
||||
(*) Install the calling process's session keyring on its parent.
|
||||
|
||||
long keyctl(KEYCTL_SESSION_TO_PARENT);
|
||||
|
||||
This functions attempts to install the calling process's session keyring
|
||||
on to the calling process's parent, replacing the parent's current session
|
||||
keyring.
|
||||
|
||||
The calling process must have the same ownership as its parent, the
|
||||
keyring must have the same ownership as the calling process, the calling
|
||||
process must have LINK permission on the keyring and the active LSM module
|
||||
mustn't deny permission, otherwise error EPERM will be returned.
|
||||
|
||||
Error ENOMEM will be returned if there was insufficient memory to complete
|
||||
the operation, otherwise 0 will be returned to indicate success.
|
||||
|
||||
The keyring will be replaced next time the parent process leaves the
|
||||
kernel and resumes executing userspace.
|
||||
|
||||
|
||||
===============
|
||||
KERNEL SERVICES
|
||||
===============
|
||||
@@ -1231,3 +1254,17 @@ by executing:
|
||||
|
||||
In this case, the program isn't required to actually attach the key to a ring;
|
||||
the rings are provided for reference.
|
||||
|
||||
|
||||
==================
|
||||
GARBAGE COLLECTION
|
||||
==================
|
||||
|
||||
Dead keys (for which the type has been removed) will be automatically unlinked
|
||||
from those keyrings that point to them and deleted as soon as possible by a
|
||||
background garbage collector.
|
||||
|
||||
Similarly, revoked and expired keys will be garbage collected, but only after a
|
||||
certain amount of time has passed. This time is set as a number of seconds in:
|
||||
|
||||
/proc/sys/kernel/keys/gc_delay
|
||||
|
@@ -27,6 +27,13 @@ To trigger an intermediate memory scan:
|
||||
|
||||
# echo scan > /sys/kernel/debug/kmemleak
|
||||
|
||||
To clear the list of all current possible memory leaks:
|
||||
|
||||
# echo clear > /sys/kernel/debug/kmemleak
|
||||
|
||||
New leaks will then come up upon reading /sys/kernel/debug/kmemleak
|
||||
again.
|
||||
|
||||
Note that the orphan objects are listed in the order they were allocated
|
||||
and one object at the beginning of the list may cause other subsequent
|
||||
objects to be reported as orphan.
|
||||
@@ -42,6 +49,9 @@ Memory scanning parameters can be modified at run-time by writing to the
|
||||
scan=<secs> - set the automatic memory scanning period in seconds
|
||||
(default 600, 0 to stop the automatic scanning)
|
||||
scan - trigger a memory scan
|
||||
clear - clear list of current memory leak suspects, done by
|
||||
marking all current reported unreferenced objects grey
|
||||
dump=<addr> - dump information about the object found at <addr>
|
||||
|
||||
Kmemleak can also be disabled at boot-time by passing "kmemleak=off" on
|
||||
the kernel command line.
|
||||
@@ -86,6 +96,27 @@ avoid this, kmemleak can also store the number of values pointing to an
|
||||
address inside the block address range that need to be found so that the
|
||||
block is not considered a leak. One example is __vmalloc().
|
||||
|
||||
Testing specific sections with kmemleak
|
||||
---------------------------------------
|
||||
|
||||
Upon initial bootup your /sys/kernel/debug/kmemleak output page may be
|
||||
quite extensive. This can also be the case if you have very buggy code
|
||||
when doing development. To work around these situations you can use the
|
||||
'clear' command to clear all reported unreferenced objects from the
|
||||
/sys/kernel/debug/kmemleak output. By issuing a 'scan' after a 'clear'
|
||||
you can find new unreferenced objects; this should help with testing
|
||||
specific sections of code.
|
||||
|
||||
To test a critical section on demand with a clean kmemleak do:
|
||||
|
||||
# echo clear > /sys/kernel/debug/kmemleak
|
||||
... test your kernel or modules ...
|
||||
# echo scan > /sys/kernel/debug/kmemleak
|
||||
|
||||
Then as usual to get your report with:
|
||||
|
||||
# cat /sys/kernel/debug/kmemleak
|
||||
|
||||
Kmemleak API
|
||||
------------
|
||||
|
||||
|
759
Documentation/kvm/api.txt
Normal file
759
Documentation/kvm/api.txt
Normal file
@@ -0,0 +1,759 @@
|
||||
The Definitive KVM (Kernel-based Virtual Machine) API Documentation
|
||||
===================================================================
|
||||
|
||||
1. General description
|
||||
|
||||
The kvm API is a set of ioctls that are issued to control various aspects
|
||||
of a virtual machine. The ioctls belong to three classes
|
||||
|
||||
- System ioctls: These query and set global attributes which affect the
|
||||
whole kvm subsystem. In addition a system ioctl is used to create
|
||||
virtual machines
|
||||
|
||||
- VM ioctls: These query and set attributes that affect an entire virtual
|
||||
machine, for example memory layout. In addition a VM ioctl is used to
|
||||
create virtual cpus (vcpus).
|
||||
|
||||
Only run VM ioctls from the same process (address space) that was used
|
||||
to create the VM.
|
||||
|
||||
- vcpu ioctls: These query and set attributes that control the operation
|
||||
of a single virtual cpu.
|
||||
|
||||
Only run vcpu ioctls from the same thread that was used to create the
|
||||
vcpu.
|
||||
|
||||
2. File descritpors
|
||||
|
||||
The kvm API is centered around file descriptors. An initial
|
||||
open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
|
||||
can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
|
||||
handle will create a VM file descripror which can be used to issue VM
|
||||
ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
|
||||
and return a file descriptor pointing to it. Finally, ioctls on a vcpu
|
||||
fd can be used to control the vcpu, including the important task of
|
||||
actually running guest code.
|
||||
|
||||
In general file descriptors can be migrated among processes by means
|
||||
of fork() and the SCM_RIGHTS facility of unix domain socket. These
|
||||
kinds of tricks are explicitly not supported by kvm. While they will
|
||||
not cause harm to the host, their actual behavior is not guaranteed by
|
||||
the API. The only supported use is one virtual machine per process,
|
||||
and one vcpu per thread.
|
||||
|
||||
3. Extensions
|
||||
|
||||
As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
|
||||
incompatible change are allowed. However, there is an extension
|
||||
facility that allows backward-compatible extensions to the API to be
|
||||
queried and used.
|
||||
|
||||
The extension mechanism is not based on on the Linux version number.
|
||||
Instead, kvm defines extension identifiers and a facility to query
|
||||
whether a particular extension identifier is available. If it is, a
|
||||
set of ioctls is available for application use.
|
||||
|
||||
4. API description
|
||||
|
||||
This section describes ioctls that can be used to control kvm guests.
|
||||
For each ioctl, the following information is provided along with a
|
||||
description:
|
||||
|
||||
Capability: which KVM extension provides this ioctl. Can be 'basic',
|
||||
which means that is will be provided by any kernel that supports
|
||||
API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
|
||||
means availability needs to be checked with KVM_CHECK_EXTENSION
|
||||
(see section 4.4).
|
||||
|
||||
Architectures: which instruction set architectures provide this ioctl.
|
||||
x86 includes both i386 and x86_64.
|
||||
|
||||
Type: system, vm, or vcpu.
|
||||
|
||||
Parameters: what parameters are accepted by the ioctl.
|
||||
|
||||
Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
|
||||
are not detailed, but errors with specific meanings are.
|
||||
|
||||
4.1 KVM_GET_API_VERSION
|
||||
|
||||
Capability: basic
|
||||
Architectures: all
|
||||
Type: system ioctl
|
||||
Parameters: none
|
||||
Returns: the constant KVM_API_VERSION (=12)
|
||||
|
||||
This identifies the API version as the stable kvm API. It is not
|
||||
expected that this number will change. However, Linux 2.6.20 and
|
||||
2.6.21 report earlier versions; these are not documented and not
|
||||
supported. Applications should refuse to run if KVM_GET_API_VERSION
|
||||
returns a value other than 12. If this check passes, all ioctls
|
||||
described as 'basic' will be available.
|
||||
|
||||
4.2 KVM_CREATE_VM
|
||||
|
||||
Capability: basic
|
||||
Architectures: all
|
||||
Type: system ioctl
|
||||
Parameters: none
|
||||
Returns: a VM fd that can be used to control the new virtual machine.
|
||||
|
||||
The new VM has no virtual cpus and no memory. An mmap() of a VM fd
|
||||
will access the virtual machine's physical address space; offset zero
|
||||
corresponds to guest physical address zero. Use of mmap() on a VM fd
|
||||
is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
|
||||
available.
|
||||
|
||||
4.3 KVM_GET_MSR_INDEX_LIST
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: system
|
||||
Parameters: struct kvm_msr_list (in/out)
|
||||
Returns: 0 on success; -1 on error
|
||||
Errors:
|
||||
E2BIG: the msr index list is to be to fit in the array specified by
|
||||
the user.
|
||||
|
||||
struct kvm_msr_list {
|
||||
__u32 nmsrs; /* number of msrs in entries */
|
||||
__u32 indices[0];
|
||||
};
|
||||
|
||||
This ioctl returns the guest msrs that are supported. The list varies
|
||||
by kvm version and host processor, but does not change otherwise. The
|
||||
user fills in the size of the indices array in nmsrs, and in return
|
||||
kvm adjusts nmsrs to reflect the actual number of msrs and fills in
|
||||
the indices array with their numbers.
|
||||
|
||||
4.4 KVM_CHECK_EXTENSION
|
||||
|
||||
Capability: basic
|
||||
Architectures: all
|
||||
Type: system ioctl
|
||||
Parameters: extension identifier (KVM_CAP_*)
|
||||
Returns: 0 if unsupported; 1 (or some other positive integer) if supported
|
||||
|
||||
The API allows the application to query about extensions to the core
|
||||
kvm API. Userspace passes an extension identifier (an integer) and
|
||||
receives an integer that describes the extension availability.
|
||||
Generally 0 means no and 1 means yes, but some extensions may report
|
||||
additional information in the integer return value.
|
||||
|
||||
4.5 KVM_GET_VCPU_MMAP_SIZE
|
||||
|
||||
Capability: basic
|
||||
Architectures: all
|
||||
Type: system ioctl
|
||||
Parameters: none
|
||||
Returns: size of vcpu mmap area, in bytes
|
||||
|
||||
The KVM_RUN ioctl (cf.) communicates with userspace via a shared
|
||||
memory region. This ioctl returns the size of that region. See the
|
||||
KVM_RUN documentation for details.
|
||||
|
||||
4.6 KVM_SET_MEMORY_REGION
|
||||
|
||||
Capability: basic
|
||||
Architectures: all
|
||||
Type: vm ioctl
|
||||
Parameters: struct kvm_memory_region (in)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
struct kvm_memory_region {
|
||||
__u32 slot;
|
||||
__u32 flags;
|
||||
__u64 guest_phys_addr;
|
||||
__u64 memory_size; /* bytes */
|
||||
};
|
||||
|
||||
/* for kvm_memory_region::flags */
|
||||
#define KVM_MEM_LOG_DIRTY_PAGES 1UL
|
||||
|
||||
This ioctl allows the user to create or modify a guest physical memory
|
||||
slot. When changing an existing slot, it may be moved in the guest
|
||||
physical memory space, or its flags may be modified. It may not be
|
||||
resized. Slots may not overlap.
|
||||
|
||||
The flags field supports just one flag, KVM_MEM_LOG_DIRTY_PAGES, which
|
||||
instructs kvm to keep track of writes to memory within the slot. See
|
||||
the KVM_GET_DIRTY_LOG ioctl.
|
||||
|
||||
It is recommended to use the KVM_SET_USER_MEMORY_REGION ioctl instead
|
||||
of this API, if available. This newer API allows placing guest memory
|
||||
at specified locations in the host address space, yielding better
|
||||
control and easy access.
|
||||
|
||||
4.6 KVM_CREATE_VCPU
|
||||
|
||||
Capability: basic
|
||||
Architectures: all
|
||||
Type: vm ioctl
|
||||
Parameters: vcpu id (apic id on x86)
|
||||
Returns: vcpu fd on success, -1 on error
|
||||
|
||||
This API adds a vcpu to a virtual machine. The vcpu id is a small integer
|
||||
in the range [0, max_vcpus).
|
||||
|
||||
4.7 KVM_GET_DIRTY_LOG (vm ioctl)
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vm ioctl
|
||||
Parameters: struct kvm_dirty_log (in/out)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
/* for KVM_GET_DIRTY_LOG */
|
||||
struct kvm_dirty_log {
|
||||
__u32 slot;
|
||||
__u32 padding;
|
||||
union {
|
||||
void __user *dirty_bitmap; /* one bit per page */
|
||||
__u64 padding;
|
||||
};
|
||||
};
|
||||
|
||||
Given a memory slot, return a bitmap containing any pages dirtied
|
||||
since the last call to this ioctl. Bit 0 is the first page in the
|
||||
memory slot. Ensure the entire structure is cleared to avoid padding
|
||||
issues.
|
||||
|
||||
4.8 KVM_SET_MEMORY_ALIAS
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vm ioctl
|
||||
Parameters: struct kvm_memory_alias (in)
|
||||
Returns: 0 (success), -1 (error)
|
||||
|
||||
struct kvm_memory_alias {
|
||||
__u32 slot; /* this has a different namespace than memory slots */
|
||||
__u32 flags;
|
||||
__u64 guest_phys_addr;
|
||||
__u64 memory_size;
|
||||
__u64 target_phys_addr;
|
||||
};
|
||||
|
||||
Defines a guest physical address space region as an alias to another
|
||||
region. Useful for aliased address, for example the VGA low memory
|
||||
window. Should not be used with userspace memory.
|
||||
|
||||
4.9 KVM_RUN
|
||||
|
||||
Capability: basic
|
||||
Architectures: all
|
||||
Type: vcpu ioctl
|
||||
Parameters: none
|
||||
Returns: 0 on success, -1 on error
|
||||
Errors:
|
||||
EINTR: an unmasked signal is pending
|
||||
|
||||
This ioctl is used to run a guest virtual cpu. While there are no
|
||||
explicit parameters, there is an implicit parameter block that can be
|
||||
obtained by mmap()ing the vcpu fd at offset 0, with the size given by
|
||||
KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
|
||||
kvm_run' (see below).
|
||||
|
||||
4.10 KVM_GET_REGS
|
||||
|
||||
Capability: basic
|
||||
Architectures: all
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_regs (out)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Reads the general purpose registers from the vcpu.
|
||||
|
||||
/* x86 */
|
||||
struct kvm_regs {
|
||||
/* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
|
||||
__u64 rax, rbx, rcx, rdx;
|
||||
__u64 rsi, rdi, rsp, rbp;
|
||||
__u64 r8, r9, r10, r11;
|
||||
__u64 r12, r13, r14, r15;
|
||||
__u64 rip, rflags;
|
||||
};
|
||||
|
||||
4.11 KVM_SET_REGS
|
||||
|
||||
Capability: basic
|
||||
Architectures: all
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_regs (in)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Writes the general purpose registers into the vcpu.
|
||||
|
||||
See KVM_GET_REGS for the data structure.
|
||||
|
||||
4.12 KVM_GET_SREGS
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_sregs (out)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Reads special registers from the vcpu.
|
||||
|
||||
/* x86 */
|
||||
struct kvm_sregs {
|
||||
struct kvm_segment cs, ds, es, fs, gs, ss;
|
||||
struct kvm_segment tr, ldt;
|
||||
struct kvm_dtable gdt, idt;
|
||||
__u64 cr0, cr2, cr3, cr4, cr8;
|
||||
__u64 efer;
|
||||
__u64 apic_base;
|
||||
__u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
|
||||
};
|
||||
|
||||
interrupt_bitmap is a bitmap of pending external interrupts. At most
|
||||
one bit may be set. This interrupt has been acknowledged by the APIC
|
||||
but not yet injected into the cpu core.
|
||||
|
||||
4.13 KVM_SET_SREGS
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_sregs (in)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Writes special registers into the vcpu. See KVM_GET_SREGS for the
|
||||
data structures.
|
||||
|
||||
4.14 KVM_TRANSLATE
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_translation (in/out)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Translates a virtual address according to the vcpu's current address
|
||||
translation mode.
|
||||
|
||||
struct kvm_translation {
|
||||
/* in */
|
||||
__u64 linear_address;
|
||||
|
||||
/* out */
|
||||
__u64 physical_address;
|
||||
__u8 valid;
|
||||
__u8 writeable;
|
||||
__u8 usermode;
|
||||
__u8 pad[5];
|
||||
};
|
||||
|
||||
4.15 KVM_INTERRUPT
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_interrupt (in)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Queues a hardware interrupt vector to be injected. This is only
|
||||
useful if in-kernel local APIC is not used.
|
||||
|
||||
/* for KVM_INTERRUPT */
|
||||
struct kvm_interrupt {
|
||||
/* in */
|
||||
__u32 irq;
|
||||
};
|
||||
|
||||
Note 'irq' is an interrupt vector, not an interrupt pin or line.
|
||||
|
||||
4.16 KVM_DEBUG_GUEST
|
||||
|
||||
Capability: basic
|
||||
Architectures: none
|
||||
Type: vcpu ioctl
|
||||
Parameters: none)
|
||||
Returns: -1 on error
|
||||
|
||||
Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
|
||||
|
||||
4.17 KVM_GET_MSRS
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_msrs (in/out)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Reads model-specific registers from the vcpu. Supported msr indices can
|
||||
be obtained using KVM_GET_MSR_INDEX_LIST.
|
||||
|
||||
struct kvm_msrs {
|
||||
__u32 nmsrs; /* number of msrs in entries */
|
||||
__u32 pad;
|
||||
|
||||
struct kvm_msr_entry entries[0];
|
||||
};
|
||||
|
||||
struct kvm_msr_entry {
|
||||
__u32 index;
|
||||
__u32 reserved;
|
||||
__u64 data;
|
||||
};
|
||||
|
||||
Application code should set the 'nmsrs' member (which indicates the
|
||||
size of the entries array) and the 'index' member of each array entry.
|
||||
kvm will fill in the 'data' member.
|
||||
|
||||
4.18 KVM_SET_MSRS
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_msrs (in)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
|
||||
data structures.
|
||||
|
||||
Application code should set the 'nmsrs' member (which indicates the
|
||||
size of the entries array), and the 'index' and 'data' members of each
|
||||
array entry.
|
||||
|
||||
4.19 KVM_SET_CPUID
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_cpuid (in)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Defines the vcpu responses to the cpuid instruction. Applications
|
||||
should use the KVM_SET_CPUID2 ioctl if available.
|
||||
|
||||
|
||||
struct kvm_cpuid_entry {
|
||||
__u32 function;
|
||||
__u32 eax;
|
||||
__u32 ebx;
|
||||
__u32 ecx;
|
||||
__u32 edx;
|
||||
__u32 padding;
|
||||
};
|
||||
|
||||
/* for KVM_SET_CPUID */
|
||||
struct kvm_cpuid {
|
||||
__u32 nent;
|
||||
__u32 padding;
|
||||
struct kvm_cpuid_entry entries[0];
|
||||
};
|
||||
|
||||
4.20 KVM_SET_SIGNAL_MASK
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_signal_mask (in)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Defines which signals are blocked during execution of KVM_RUN. This
|
||||
signal mask temporarily overrides the threads signal mask. Any
|
||||
unblocked signal received (except SIGKILL and SIGSTOP, which retain
|
||||
their traditional behaviour) will cause KVM_RUN to return with -EINTR.
|
||||
|
||||
Note the signal will only be delivered if not blocked by the original
|
||||
signal mask.
|
||||
|
||||
/* for KVM_SET_SIGNAL_MASK */
|
||||
struct kvm_signal_mask {
|
||||
__u32 len;
|
||||
__u8 sigset[0];
|
||||
};
|
||||
|
||||
4.21 KVM_GET_FPU
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_fpu (out)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Reads the floating point state from the vcpu.
|
||||
|
||||
/* for KVM_GET_FPU and KVM_SET_FPU */
|
||||
struct kvm_fpu {
|
||||
__u8 fpr[8][16];
|
||||
__u16 fcw;
|
||||
__u16 fsw;
|
||||
__u8 ftwx; /* in fxsave format */
|
||||
__u8 pad1;
|
||||
__u16 last_opcode;
|
||||
__u64 last_ip;
|
||||
__u64 last_dp;
|
||||
__u8 xmm[16][16];
|
||||
__u32 mxcsr;
|
||||
__u32 pad2;
|
||||
};
|
||||
|
||||
4.22 KVM_SET_FPU
|
||||
|
||||
Capability: basic
|
||||
Architectures: x86
|
||||
Type: vcpu ioctl
|
||||
Parameters: struct kvm_fpu (in)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Writes the floating point state to the vcpu.
|
||||
|
||||
/* for KVM_GET_FPU and KVM_SET_FPU */
|
||||
struct kvm_fpu {
|
||||
__u8 fpr[8][16];
|
||||
__u16 fcw;
|
||||
__u16 fsw;
|
||||
__u8 ftwx; /* in fxsave format */
|
||||
__u8 pad1;
|
||||
__u16 last_opcode;
|
||||
__u64 last_ip;
|
||||
__u64 last_dp;
|
||||
__u8 xmm[16][16];
|
||||
__u32 mxcsr;
|
||||
__u32 pad2;
|
||||
};
|
||||
|
||||
4.23 KVM_CREATE_IRQCHIP
|
||||
|
||||
Capability: KVM_CAP_IRQCHIP
|
||||
Architectures: x86, ia64
|
||||
Type: vm ioctl
|
||||
Parameters: none
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Creates an interrupt controller model in the kernel. On x86, creates a virtual
|
||||
ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
|
||||
local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
|
||||
only go to the IOAPIC. On ia64, a IOSAPIC is created.
|
||||
|
||||
4.24 KVM_IRQ_LINE
|
||||
|
||||
Capability: KVM_CAP_IRQCHIP
|
||||
Architectures: x86, ia64
|
||||
Type: vm ioctl
|
||||
Parameters: struct kvm_irq_level
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Sets the level of a GSI input to the interrupt controller model in the kernel.
|
||||
Requires that an interrupt controller model has been previously created with
|
||||
KVM_CREATE_IRQCHIP. Note that edge-triggered interrupts require the level
|
||||
to be set to 1 and then back to 0.
|
||||
|
||||
struct kvm_irq_level {
|
||||
union {
|
||||
__u32 irq; /* GSI */
|
||||
__s32 status; /* not used for KVM_IRQ_LEVEL */
|
||||
};
|
||||
__u32 level; /* 0 or 1 */
|
||||
};
|
||||
|
||||
4.25 KVM_GET_IRQCHIP
|
||||
|
||||
Capability: KVM_CAP_IRQCHIP
|
||||
Architectures: x86, ia64
|
||||
Type: vm ioctl
|
||||
Parameters: struct kvm_irqchip (in/out)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Reads the state of a kernel interrupt controller created with
|
||||
KVM_CREATE_IRQCHIP into a buffer provided by the caller.
|
||||
|
||||
struct kvm_irqchip {
|
||||
__u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
|
||||
__u32 pad;
|
||||
union {
|
||||
char dummy[512]; /* reserving space */
|
||||
struct kvm_pic_state pic;
|
||||
struct kvm_ioapic_state ioapic;
|
||||
} chip;
|
||||
};
|
||||
|
||||
4.26 KVM_SET_IRQCHIP
|
||||
|
||||
Capability: KVM_CAP_IRQCHIP
|
||||
Architectures: x86, ia64
|
||||
Type: vm ioctl
|
||||
Parameters: struct kvm_irqchip (in)
|
||||
Returns: 0 on success, -1 on error
|
||||
|
||||
Sets the state of a kernel interrupt controller created with
|
||||
KVM_CREATE_IRQCHIP from a buffer provided by the caller.
|
||||
|
||||
struct kvm_irqchip {
|
||||
__u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
|
||||
__u32 pad;
|
||||
union {
|
||||
char dummy[512]; /* reserving space */
|
||||
struct kvm_pic_state pic;
|
||||
struct kvm_ioapic_state ioapic;
|
||||
} chip;
|
||||
};
|
||||
|
||||
5. The kvm_run structure
|
||||
|
||||
Application code obtains a pointer to the kvm_run structure by
|
||||
mmap()ing a vcpu fd. From that point, application code can control
|
||||
execution by changing fields in kvm_run prior to calling the KVM_RUN
|
||||
ioctl, and obtain information about the reason KVM_RUN returned by
|
||||
looking up structure members.
|
||||
|
||||
struct kvm_run {
|
||||
/* in */
|
||||
__u8 request_interrupt_window;
|
||||
|
||||
Request that KVM_RUN return when it becomes possible to inject external
|
||||
interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
|
||||
|
||||
__u8 padding1[7];
|
||||
|
||||
/* out */
|
||||
__u32 exit_reason;
|
||||
|
||||
When KVM_RUN has returned successfully (return value 0), this informs
|
||||
application code why KVM_RUN has returned. Allowable values for this
|
||||
field are detailed below.
|
||||
|
||||
__u8 ready_for_interrupt_injection;
|
||||
|
||||
If request_interrupt_window has been specified, this field indicates
|
||||
an interrupt can be injected now with KVM_INTERRUPT.
|
||||
|
||||
__u8 if_flag;
|
||||
|
||||
The value of the current interrupt flag. Only valid if in-kernel
|
||||
local APIC is not used.
|
||||
|
||||
__u8 padding2[2];
|
||||
|
||||
/* in (pre_kvm_run), out (post_kvm_run) */
|
||||
__u64 cr8;
|
||||
|
||||
The value of the cr8 register. Only valid if in-kernel local APIC is
|
||||
not used. Both input and output.
|
||||
|
||||
__u64 apic_base;
|
||||
|
||||
The value of the APIC BASE msr. Only valid if in-kernel local
|
||||
APIC is not used. Both input and output.
|
||||
|
||||
union {
|
||||
/* KVM_EXIT_UNKNOWN */
|
||||
struct {
|
||||
__u64 hardware_exit_reason;
|
||||
} hw;
|
||||
|
||||
If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
|
||||
reasons. Further architecture-specific information is available in
|
||||
hardware_exit_reason.
|
||||
|
||||
/* KVM_EXIT_FAIL_ENTRY */
|
||||
struct {
|
||||
__u64 hardware_entry_failure_reason;
|
||||
} fail_entry;
|
||||
|
||||
If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
|
||||
to unknown reasons. Further architecture-specific information is
|
||||
available in hardware_entry_failure_reason.
|
||||
|
||||
/* KVM_EXIT_EXCEPTION */
|
||||
struct {
|
||||
__u32 exception;
|
||||
__u32 error_code;
|
||||
} ex;
|
||||
|
||||
Unused.
|
||||
|
||||
/* KVM_EXIT_IO */
|
||||
struct {
|
||||
#define KVM_EXIT_IO_IN 0
|
||||
#define KVM_EXIT_IO_OUT 1
|
||||
__u8 direction;
|
||||
__u8 size; /* bytes */
|
||||
__u16 port;
|
||||
__u32 count;
|
||||
__u64 data_offset; /* relative to kvm_run start */
|
||||
} io;
|
||||
|
||||
If exit_reason is KVM_EXIT_IO_IN or KVM_EXIT_IO_OUT, then the vcpu has
|
||||
executed a port I/O instruction which could not be satisfied by kvm.
|
||||
data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
|
||||
where kvm expects application code to place the data for the next
|
||||
KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a patcked array.
|
||||
|
||||
struct {
|
||||
struct kvm_debug_exit_arch arch;
|
||||
} debug;
|
||||
|
||||
Unused.
|
||||
|
||||
/* KVM_EXIT_MMIO */
|
||||
struct {
|
||||
__u64 phys_addr;
|
||||
__u8 data[8];
|
||||
__u32 len;
|
||||
__u8 is_write;
|
||||
} mmio;
|
||||
|
||||
If exit_reason is KVM_EXIT_MMIO or KVM_EXIT_IO_OUT, then the vcpu has
|
||||
executed a memory-mapped I/O instruction which could not be satisfied
|
||||
by kvm. The 'data' member contains the written data if 'is_write' is
|
||||
true, and should be filled by application code otherwise.
|
||||
|
||||
/* KVM_EXIT_HYPERCALL */
|
||||
struct {
|
||||
__u64 nr;
|
||||
__u64 args[6];
|
||||
__u64 ret;
|
||||
__u32 longmode;
|
||||
__u32 pad;
|
||||
} hypercall;
|
||||
|
||||
Unused.
|
||||
|
||||
/* KVM_EXIT_TPR_ACCESS */
|
||||
struct {
|
||||
__u64 rip;
|
||||
__u32 is_write;
|
||||
__u32 pad;
|
||||
} tpr_access;
|
||||
|
||||
To be documented (KVM_TPR_ACCESS_REPORTING).
|
||||
|
||||
/* KVM_EXIT_S390_SIEIC */
|
||||
struct {
|
||||
__u8 icptcode;
|
||||
__u64 mask; /* psw upper half */
|
||||
__u64 addr; /* psw lower half */
|
||||
__u16 ipa;
|
||||
__u32 ipb;
|
||||
} s390_sieic;
|
||||
|
||||
s390 specific.
|
||||
|
||||
/* KVM_EXIT_S390_RESET */
|
||||
#define KVM_S390_RESET_POR 1
|
||||
#define KVM_S390_RESET_CLEAR 2
|
||||
#define KVM_S390_RESET_SUBSYSTEM 4
|
||||
#define KVM_S390_RESET_CPU_INIT 8
|
||||
#define KVM_S390_RESET_IPL 16
|
||||
__u64 s390_reset_flags;
|
||||
|
||||
s390 specific.
|
||||
|
||||
/* KVM_EXIT_DCR */
|
||||
struct {
|
||||
__u32 dcrn;
|
||||
__u32 data;
|
||||
__u8 is_write;
|
||||
} dcr;
|
||||
|
||||
powerpc specific.
|
||||
|
||||
/* Fix the size of the union. */
|
||||
char padding[256];
|
||||
};
|
||||
};
|
@@ -60,6 +60,8 @@ framerelay.txt
|
||||
- info on using Frame Relay/Data Link Connection Identifier (DLCI).
|
||||
generic_netlink.txt
|
||||
- info on Generic Netlink
|
||||
ieee802154.txt
|
||||
- Linux IEEE 802.15.4 implementation, API and drivers
|
||||
ip-sysctl.txt
|
||||
- /proc/sys/net/ipv4/* variables
|
||||
ip_dynaddr.txt
|
||||
|
@@ -22,7 +22,7 @@ int sd = socket(PF_IEEE802154, SOCK_DGRAM, 0);
|
||||
.....
|
||||
|
||||
The address family, socket addresses etc. are defined in the
|
||||
include/net/ieee802154/af_ieee802154.h header or in the special header
|
||||
include/net/af_ieee802154.h header or in the special header
|
||||
in our userspace package (see either linux-zigbee sourceforge download page
|
||||
or git tree at git://linux-zigbee.git.sourceforge.net/gitroot/linux-zigbee).
|
||||
|
||||
@@ -33,7 +33,7 @@ MLME - MAC Level Management
|
||||
============================
|
||||
|
||||
Most of IEEE 802.15.4 MLME interfaces are directly mapped on netlink commands.
|
||||
See the include/net/ieee802154/nl802154.h header. Our userspace tools package
|
||||
See the include/net/nl802154.h header. Our userspace tools package
|
||||
(see above) provides CLI configuration utility for radio interfaces and simple
|
||||
coordinator for IEEE 802.15.4 networks as an example users of MLME protocol.
|
||||
|
||||
@@ -54,10 +54,14 @@ Those types of devices require different approach to be hooked into Linux kernel
|
||||
HardMAC
|
||||
=======
|
||||
|
||||
See the header include/net/ieee802154/netdevice.h. You have to implement Linux
|
||||
See the header include/net/ieee802154_netdev.h. You have to implement Linux
|
||||
net_device, with .type = ARPHRD_IEEE802154. Data is exchanged with socket family
|
||||
code via plain sk_buffs. The control block of sk_buffs will contain additional
|
||||
info as described in the struct ieee802154_mac_cb.
|
||||
code via plain sk_buffs. On skb reception skb->cb must contain additional
|
||||
info as described in the struct ieee802154_mac_cb. During packet transmission
|
||||
the skb->cb is used to provide additional data to device's header_ops->create
|
||||
function. Be aware, that this data can be overriden later (when socket code
|
||||
submits skb to qdisc), so if you need something from that cb later, you should
|
||||
store info in the skb->data on your own.
|
||||
|
||||
To hook the MLME interface you have to populate the ml_priv field of your
|
||||
net_device with a pointer to struct ieee802154_mlme_ops instance. All fields are
|
||||
@@ -69,8 +73,8 @@ We provide an example of simple HardMAC driver at drivers/ieee802154/fakehard.c
|
||||
SoftMAC
|
||||
=======
|
||||
|
||||
We are going to provide intermediate layer impelementing IEEE 802.15.4 MAC
|
||||
We are going to provide intermediate layer implementing IEEE 802.15.4 MAC
|
||||
in software. This is currently WIP.
|
||||
|
||||
See header include/net/ieee802154/mac802154.h and several drivers in
|
||||
drivers/ieee802154/
|
||||
See header include/net/mac802154.h and several drivers in drivers/ieee802154/.
|
||||
|
||||
|
@@ -311,9 +311,12 @@ tcp_no_metrics_save - BOOLEAN
|
||||
connections.
|
||||
|
||||
tcp_orphan_retries - INTEGER
|
||||
How may times to retry before killing TCP connection, closed
|
||||
by our side. Default value 7 corresponds to ~50sec-16min
|
||||
depending on RTO. If you machine is loaded WEB server,
|
||||
This value influences the timeout of a locally closed TCP connection,
|
||||
when RTO retransmissions remain unacknowledged.
|
||||
See tcp_retries2 for more details.
|
||||
|
||||
The default value is 7.
|
||||
If your machine is a loaded WEB server,
|
||||
you should think about lowering this value, such sockets
|
||||
may consume significant resources. Cf. tcp_max_orphans.
|
||||
|
||||
@@ -327,16 +330,28 @@ tcp_retrans_collapse - BOOLEAN
|
||||
certain TCP stacks.
|
||||
|
||||
tcp_retries1 - INTEGER
|
||||
How many times to retry before deciding that something is wrong
|
||||
and it is necessary to report this suspicion to network layer.
|
||||
Minimal RFC value is 3, it is default, which corresponds
|
||||
to ~3sec-8min depending on RTO.
|
||||
This value influences the time, after which TCP decides, that
|
||||
something is wrong due to unacknowledged RTO retransmissions,
|
||||
and reports this suspicion to the network layer.
|
||||
See tcp_retries2 for more details.
|
||||
|
||||
RFC 1122 recommends at least 3 retransmissions, which is the
|
||||
default.
|
||||
|
||||
tcp_retries2 - INTEGER
|
||||
How may times to retry before killing alive TCP connection.
|
||||
RFC1122 says that the limit should be longer than 100 sec.
|
||||
It is too small number. Default value 15 corresponds to ~13-30min
|
||||
depending on RTO.
|
||||
This value influences the timeout of an alive TCP connection,
|
||||
when RTO retransmissions remain unacknowledged.
|
||||
Given a value of N, a hypothetical TCP connection following
|
||||
exponential backoff with an initial RTO of TCP_RTO_MIN would
|
||||
retransmit N times before killing the connection at the (N+1)th RTO.
|
||||
|
||||
The default value of 15 yields a hypothetical timeout of 924.6
|
||||
seconds and is a lower bound for the effective timeout.
|
||||
TCP will effectively time out at the first RTO which exceeds the
|
||||
hypothetical timeout.
|
||||
|
||||
RFC 1122 recommends at least 100 seconds for the timeout,
|
||||
which corresponds to a value of at least 8.
|
||||
|
||||
tcp_rfc1337 - BOOLEAN
|
||||
If set, the TCP stack behaves conforming to RFC1337. If unset,
|
||||
@@ -1282,6 +1297,16 @@ sctp_rmem - vector of 3 INTEGERs: min, default, max
|
||||
sctp_wmem - vector of 3 INTEGERs: min, default, max
|
||||
See tcp_wmem for a description.
|
||||
|
||||
addr_scope_policy - INTEGER
|
||||
Control IPv4 address scoping - draft-stewart-tsvwg-sctp-ipv4-00
|
||||
|
||||
0 - Disable IPv4 address scoping
|
||||
1 - Enable IPv4 address scoping
|
||||
2 - Follow draft but allow IPv4 private addresses
|
||||
3 - Follow draft but allow IPv4 link local addresses
|
||||
|
||||
Default: 1
|
||||
|
||||
|
||||
/proc/sys/net/core/*
|
||||
dev_weight - INTEGER
|
||||
|
@@ -495,6 +495,13 @@ and for each vararg a long value. So e.g. for a debug entry with a format
|
||||
string plus two varargs one would need to allocate a (3 * sizeof(long))
|
||||
byte data area in the debug_register() function.
|
||||
|
||||
IMPORTANT: Using "%s" in sprintf event functions is dangerous. You can only
|
||||
use "%s" in the sprintf event functions, if the memory for the passed string is
|
||||
available as long as the debug feature exists. The reason behind this is that
|
||||
due to performance considerations only a pointer to the string is stored in
|
||||
the debug feature. If you log a string that is freed afterwards, you will get
|
||||
an OOPS when inspecting the debug feature, because then the debug feature will
|
||||
access the already freed memory.
|
||||
|
||||
NOTE: If using the sprintf view do NOT use other event/exception functions
|
||||
than the sprintf-event and -exception functions.
|
||||
|
@@ -60,6 +60,12 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
|
||||
slots - Reserve the slot index for the given driver.
|
||||
This option takes multiple strings.
|
||||
See "Module Autoloading Support" section for details.
|
||||
debug - Specifies the debug message level
|
||||
(0 = disable debug prints, 1 = normal debug messages,
|
||||
2 = verbose debug messages)
|
||||
This option appears only when CONFIG_SND_DEBUG=y.
|
||||
This option can be dynamically changed via sysfs
|
||||
/sys/modules/snd/parameters/debug file.
|
||||
|
||||
Module snd-pcm-oss
|
||||
------------------
|
||||
@@ -513,6 +519,26 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
|
||||
or input, but you may use this module for any application which
|
||||
requires a sound card (like RealPlayer).
|
||||
|
||||
pcm_devs - Number of PCM devices assigned to each card
|
||||
(default = 1, up to 4)
|
||||
pcm_substreams - Number of PCM substreams assigned to each PCM
|
||||
(default = 8, up to 16)
|
||||
hrtimer - Use hrtimer (=1, default) or system timer (=0)
|
||||
fake_buffer - Fake buffer allocations (default = 1)
|
||||
|
||||
When multiple PCM devices are created, snd-dummy gives different
|
||||
behavior to each PCM device:
|
||||
0 = interleaved with mmap support
|
||||
1 = non-interleaved with mmap support
|
||||
2 = interleaved without mmap
|
||||
3 = non-interleaved without mmap
|
||||
|
||||
As default, snd-dummy drivers doesn't allocate the real buffers
|
||||
but either ignores read/write or mmap a single dummy page to all
|
||||
buffer pages, in order to save the resouces. If your apps need
|
||||
the read/ written buffer data to be consistent, pass fake_buffer=0
|
||||
option.
|
||||
|
||||
The power-management is supported.
|
||||
|
||||
Module snd-echo3g
|
||||
@@ -768,6 +794,10 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
|
||||
bdl_pos_adj - Specifies the DMA IRQ timing delay in samples.
|
||||
Passing -1 will make the driver to choose the appropriate
|
||||
value based on the controller chip.
|
||||
patch - Specifies the early "patch" files to modify the HD-audio
|
||||
setup before initializing the codecs. This option is
|
||||
available only when CONFIG_SND_HDA_PATCH_LOADER=y is set.
|
||||
See HD-Audio.txt for details.
|
||||
|
||||
[Single (global) options]
|
||||
single_cmd - Use single immediate commands to communicate with
|
||||
|
@@ -114,8 +114,8 @@ ALC662/663/272
|
||||
samsung-nc10 Samsung NC10 mini notebook
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC882/885
|
||||
==========
|
||||
ALC882/883/885/888/889
|
||||
======================
|
||||
3stack-dig 3-jack with SPDIF I/O
|
||||
6stack-dig 6-jack digital with SPDIF I/O
|
||||
arima Arima W820Di1
|
||||
@@ -127,12 +127,8 @@ ALC882/885
|
||||
mbp3 Macbook Pro rev3
|
||||
imac24 iMac 24'' with jack detection
|
||||
w2jc ASUS W2JC
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC883/888
|
||||
==========
|
||||
3stack-dig 3-jack with SPDIF I/O
|
||||
6stack-dig 6-jack digital with SPDIF I/O
|
||||
3stack-2ch-dig 3-jack with SPDIF I/O (ALC883)
|
||||
alc883-6stack-dig 6-jack digital with SPDIF I/O (ALC883)
|
||||
3stack-6ch 3-jack 6-channel
|
||||
3stack-6ch-dig 3-jack 6-channel with SPDIF I/O
|
||||
6stack-dig-demo 6-jack digital for Intel demo board
|
||||
@@ -140,6 +136,7 @@ ALC883/888
|
||||
acer-aspire Acer Aspire 9810
|
||||
acer-aspire-4930g Acer Aspire 4930G
|
||||
acer-aspire-6530g Acer Aspire 6530G
|
||||
acer-aspire-7730g Acer Aspire 7730G
|
||||
acer-aspire-8930g Acer Aspire 8930G
|
||||
medion Medion Laptops
|
||||
medion-md2 Medion MD2
|
||||
@@ -155,10 +152,13 @@ ALC883/888
|
||||
3stack-hp HP machines with 3stack (Lucknow, Samba boards)
|
||||
6stack-dell Dell machines with 6stack (Inspiron 530)
|
||||
mitac Mitac 8252D
|
||||
clevo-m540r Clevo M540R (6ch + digital)
|
||||
clevo-m720 Clevo M720 laptop series
|
||||
fujitsu-pi2515 Fujitsu AMILO Pi2515
|
||||
fujitsu-xa3530 Fujitsu AMILO XA3530
|
||||
3stack-6ch-intel Intel DG33* boards
|
||||
intel-alc889a Intel IbexPeak with ALC889A
|
||||
intel-x58 Intel DX58 with ALC889
|
||||
asus-p5q ASUS P5Q-EM boards
|
||||
mb31 MacBook 3,1
|
||||
sony-vaio-tt Sony VAIO TT
|
||||
@@ -229,7 +229,7 @@ AD1984
|
||||
======
|
||||
basic default configuration
|
||||
thinkpad Lenovo Thinkpad T61/X61
|
||||
dell Dell T3400
|
||||
dell_desktop Dell T3400
|
||||
|
||||
AD1986A
|
||||
=======
|
||||
@@ -258,6 +258,7 @@ Conexant 5045
|
||||
laptop-micsense Laptop with Mic sense (old model fujitsu)
|
||||
laptop-hpmicsense Laptop with HP and Mic senses
|
||||
benq Benq R55E
|
||||
laptop-hp530 HP 530 laptop
|
||||
test for testing/debugging purpose, almost all controls
|
||||
can be adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
@@ -278,9 +279,16 @@ Conexant 5051
|
||||
hp-dv6736 HP dv6736
|
||||
lenovo-x200 Lenovo X200 laptop
|
||||
|
||||
Conexant 5066
|
||||
=============
|
||||
laptop Basic Laptop config (default)
|
||||
dell-laptop Dell laptops
|
||||
olpc-xo-1_5 OLPC XO 1.5
|
||||
|
||||
STAC9200
|
||||
========
|
||||
ref Reference board
|
||||
oqo OQO Model 2
|
||||
dell-d21 Dell (unknown)
|
||||
dell-d22 Dell (unknown)
|
||||
dell-d23 Dell (unknown)
|
||||
@@ -368,10 +376,12 @@ STAC92HD73*
|
||||
===========
|
||||
ref Reference board
|
||||
no-jd BIOS setup but without jack-detection
|
||||
intel Intel DG45* mobos
|
||||
dell-m6-amic Dell desktops/laptops with analog mics
|
||||
dell-m6-dmic Dell desktops/laptops with digital mics
|
||||
dell-m6 Dell desktops/laptops with both type of mics
|
||||
dell-eq Dell desktops/laptops
|
||||
alienware Alienware M17x
|
||||
auto BIOS setup (default)
|
||||
|
||||
STAC92HD83*
|
||||
@@ -385,3 +395,8 @@ STAC9872
|
||||
========
|
||||
vaio VAIO laptop without SPDIF
|
||||
auto BIOS setup (default)
|
||||
|
||||
Cirrus Logic CS4206/4207
|
||||
========================
|
||||
mbp55 MacBook Pro 5,5
|
||||
auto BIOS setup (default)
|
||||
|
@@ -138,6 +138,10 @@ override the BIOS setup or to provide more comprehensive features.
|
||||
The driver checks PCI SSID and looks through the static configuration
|
||||
table until any matching entry is found. If you have a new machine,
|
||||
you may see a message like below:
|
||||
------------------------------------------------------------------------
|
||||
hda_codec: ALC880: BIOS auto-probing.
|
||||
------------------------------------------------------------------------
|
||||
Meanwhile, in the earlier versions, you would see a message like:
|
||||
------------------------------------------------------------------------
|
||||
hda_codec: Unknown model for ALC880, trying auto-probe from BIOS...
|
||||
------------------------------------------------------------------------
|
||||
@@ -403,6 +407,66 @@ re-configure based on that state, run like below:
|
||||
------------------------------------------------------------------------
|
||||
|
||||
|
||||
Early Patching
|
||||
~~~~~~~~~~~~~~
|
||||
When CONFIG_SND_HDA_PATCH_LOADER=y is set, you can pass a "patch" as a
|
||||
firmware file for modifying the HD-audio setup before initializing the
|
||||
codec. This can work basically like the reconfiguration via sysfs in
|
||||
the above, but it does it before the first codec configuration.
|
||||
|
||||
A patch file is a plain text file which looks like below:
|
||||
|
||||
------------------------------------------------------------------------
|
||||
[codec]
|
||||
0x12345678 0xabcd1234 2
|
||||
|
||||
[model]
|
||||
auto
|
||||
|
||||
[pincfg]
|
||||
0x12 0x411111f0
|
||||
|
||||
[verb]
|
||||
0x20 0x500 0x03
|
||||
0x20 0x400 0xff
|
||||
|
||||
[hint]
|
||||
hp_detect = yes
|
||||
------------------------------------------------------------------------
|
||||
|
||||
The file needs to have a line `[codec]`. The next line should contain
|
||||
three numbers indicating the codec vendor-id (0x12345678 in the
|
||||
example), the codec subsystem-id (0xabcd1234) and the address (2) of
|
||||
the codec. The rest patch entries are applied to this specified codec
|
||||
until another codec entry is given.
|
||||
|
||||
The `[model]` line allows to change the model name of the each codec.
|
||||
In the example above, it will be changed to model=auto.
|
||||
Note that this overrides the module option.
|
||||
|
||||
After the `[pincfg]` line, the contents are parsed as the initial
|
||||
default pin-configurations just like `user_pin_configs` sysfs above.
|
||||
The values can be shown in user_pin_configs sysfs file, too.
|
||||
|
||||
Similarly, the lines after `[verb]` are parsed as `init_verbs`
|
||||
sysfs entries, and the lines after `[hint]` are parsed as `hints`
|
||||
sysfs entries, respectively.
|
||||
|
||||
The hd-audio driver reads the file via request_firmware(). Thus,
|
||||
a patch file has to be located on the appropriate firmware path,
|
||||
typically, /lib/firmware. For example, when you pass the option
|
||||
`patch=hda-init.fw`, the file /lib/firmware/hda-init-fw must be
|
||||
present.
|
||||
|
||||
The patch module option is specific to each card instance, and you
|
||||
need to give one file name for each instance, separated by commas.
|
||||
For example, if you have two cards, one for an on-board analog and one
|
||||
for an HDMI video board, you may pass patch option like below:
|
||||
------------------------------------------------------------------------
|
||||
options snd-hda-intel patch=on-board-patch,hdmi-patch
|
||||
------------------------------------------------------------------------
|
||||
|
||||
|
||||
Power-Saving
|
||||
~~~~~~~~~~~~
|
||||
The power-saving is a kind of auto-suspend of the device. When the
|
||||
|
@@ -19,6 +19,7 @@ Currently, these files might (depending on your configuration)
|
||||
show up in /proc/sys/kernel:
|
||||
- acpi_video_flags
|
||||
- acct
|
||||
- callhome [ S390 only ]
|
||||
- auto_msgmni
|
||||
- core_pattern
|
||||
- core_uses_pid
|
||||
@@ -91,6 +92,21 @@ valid for 30 seconds.
|
||||
|
||||
==============================================================
|
||||
|
||||
callhome:
|
||||
|
||||
Controls the kernel's callhome behavior in case of a kernel panic.
|
||||
|
||||
The s390 hardware allows an operating system to send a notification
|
||||
to a service organization (callhome) in case of an operating system panic.
|
||||
|
||||
When the value in this file is 0 (which is the default behavior)
|
||||
nothing happens in case of a kernel panic. If this value is set to "1"
|
||||
the complete kernel oops message is send to the IBM customer service
|
||||
organization in case the mainframe the Linux operating system is running
|
||||
on has a service contract with IBM.
|
||||
|
||||
==============================================================
|
||||
|
||||
core_pattern:
|
||||
|
||||
core_pattern is used to specify a core dumpfile pattern name.
|
||||
|
@@ -83,6 +83,15 @@ When reading one of these enable files, there are four results:
|
||||
X - there is a mixture of events enabled and disabled
|
||||
? - this file does not affect any event
|
||||
|
||||
2.3 Boot option
|
||||
---------------
|
||||
|
||||
In order to facilitate early boot debugging, use boot option:
|
||||
|
||||
trace_event=[event-list]
|
||||
|
||||
The format of this boot option is the same as described in section 2.1.
|
||||
|
||||
3. Defining an event-enabled tracepoint
|
||||
=======================================
|
||||
|
||||
|
@@ -85,26 +85,19 @@ of ftrace. Here is a list of some of the key files:
|
||||
This file holds the output of the trace in a human
|
||||
readable format (described below).
|
||||
|
||||
latency_trace:
|
||||
|
||||
This file shows the same trace but the information
|
||||
is organized more to display possible latencies
|
||||
in the system (described below).
|
||||
|
||||
trace_pipe:
|
||||
|
||||
The output is the same as the "trace" file but this
|
||||
file is meant to be streamed with live tracing.
|
||||
Reads from this file will block until new data
|
||||
is retrieved. Unlike the "trace" and "latency_trace"
|
||||
files, this file is a consumer. This means reading
|
||||
from this file causes sequential reads to display
|
||||
more current data. Once data is read from this
|
||||
file, it is consumed, and will not be read
|
||||
again with a sequential read. The "trace" and
|
||||
"latency_trace" files are static, and if the
|
||||
tracer is not adding more data, they will display
|
||||
the same information every time they are read.
|
||||
Reads from this file will block until new data is
|
||||
retrieved. Unlike the "trace" file, this file is a
|
||||
consumer. This means reading from this file causes
|
||||
sequential reads to display more current data. Once
|
||||
data is read from this file, it is consumed, and
|
||||
will not be read again with a sequential read. The
|
||||
"trace" file is static, and if the tracer is not
|
||||
adding more data,they will display the same
|
||||
information every time they are read.
|
||||
|
||||
trace_options:
|
||||
|
||||
@@ -117,10 +110,10 @@ of ftrace. Here is a list of some of the key files:
|
||||
Some of the tracers record the max latency.
|
||||
For example, the time interrupts are disabled.
|
||||
This time is saved in this file. The max trace
|
||||
will also be stored, and displayed by either
|
||||
"trace" or "latency_trace". A new max trace will
|
||||
only be recorded if the latency is greater than
|
||||
the value in this file. (in microseconds)
|
||||
will also be stored, and displayed by "trace".
|
||||
A new max trace will only be recorded if the
|
||||
latency is greater than the value in this
|
||||
file. (in microseconds)
|
||||
|
||||
buffer_size_kb:
|
||||
|
||||
@@ -210,7 +203,7 @@ Here is the list of current tracers that may be configured.
|
||||
the trace with the longest max latency.
|
||||
See tracing_max_latency. When a new max is recorded,
|
||||
it replaces the old trace. It is best to view this
|
||||
trace via the latency_trace file.
|
||||
trace with the latency-format option enabled.
|
||||
|
||||
"preemptoff"
|
||||
|
||||
@@ -307,8 +300,8 @@ the lowest priority thread (pid 0).
|
||||
Latency trace format
|
||||
--------------------
|
||||
|
||||
For traces that display latency times, the latency_trace file
|
||||
gives somewhat more information to see why a latency happened.
|
||||
When the latency-format option is enabled, the trace file gives
|
||||
somewhat more information to see why a latency happened.
|
||||
Here is a typical trace.
|
||||
|
||||
# tracer: irqsoff
|
||||
@@ -380,9 +373,10 @@ explains which is which.
|
||||
|
||||
The above is mostly meaningful for kernel developers.
|
||||
|
||||
time: This differs from the trace file output. The trace file output
|
||||
includes an absolute timestamp. The timestamp used by the
|
||||
latency_trace file is relative to the start of the trace.
|
||||
time: When the latency-format option is enabled, the trace file
|
||||
output includes a timestamp relative to the start of the
|
||||
trace. This differs from the output when latency-format
|
||||
is disabled, which includes an absolute timestamp.
|
||||
|
||||
delay: This is just to help catch your eye a bit better. And
|
||||
needs to be fixed to be only relative to the same CPU.
|
||||
@@ -440,7 +434,8 @@ Here are the available options:
|
||||
sym-addr:
|
||||
bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
|
||||
|
||||
verbose - This deals with the latency_trace file.
|
||||
verbose - This deals with the trace file when the
|
||||
latency-format option is enabled.
|
||||
|
||||
bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
|
||||
(+0.000ms): simple_strtoul (strict_strtoul)
|
||||
@@ -472,7 +467,7 @@ Here are the available options:
|
||||
the app is no longer running
|
||||
|
||||
The lookup is performed when you read
|
||||
trace,trace_pipe,latency_trace. Example:
|
||||
trace,trace_pipe. Example:
|
||||
|
||||
a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
|
||||
x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
|
||||
@@ -481,6 +476,11 @@ x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
|
||||
every scheduling event. Will add overhead if
|
||||
there's a lot of tasks running at once.
|
||||
|
||||
latency-format - This option changes the trace. When
|
||||
it is enabled, the trace displays
|
||||
additional information about the
|
||||
latencies, as described in "Latency
|
||||
trace format".
|
||||
|
||||
sched_switch
|
||||
------------
|
||||
@@ -596,12 +596,13 @@ To reset the maximum, echo 0 into tracing_max_latency. Here is
|
||||
an example:
|
||||
|
||||
# echo irqsoff > current_tracer
|
||||
# echo latency-format > trace_options
|
||||
# echo 0 > tracing_max_latency
|
||||
# echo 1 > tracing_enabled
|
||||
# ls -ltr
|
||||
[...]
|
||||
# echo 0 > tracing_enabled
|
||||
# cat latency_trace
|
||||
# cat trace
|
||||
# tracer: irqsoff
|
||||
#
|
||||
irqsoff latency trace v1.1.5 on 2.6.26
|
||||
@@ -703,12 +704,13 @@ which preemption was disabled. The control of preemptoff tracer
|
||||
is much like the irqsoff tracer.
|
||||
|
||||
# echo preemptoff > current_tracer
|
||||
# echo latency-format > trace_options
|
||||
# echo 0 > tracing_max_latency
|
||||
# echo 1 > tracing_enabled
|
||||
# ls -ltr
|
||||
[...]
|
||||
# echo 0 > tracing_enabled
|
||||
# cat latency_trace
|
||||
# cat trace
|
||||
# tracer: preemptoff
|
||||
#
|
||||
preemptoff latency trace v1.1.5 on 2.6.26-rc8
|
||||
@@ -850,12 +852,13 @@ Again, using this trace is much like the irqsoff and preemptoff
|
||||
tracers.
|
||||
|
||||
# echo preemptirqsoff > current_tracer
|
||||
# echo latency-format > trace_options
|
||||
# echo 0 > tracing_max_latency
|
||||
# echo 1 > tracing_enabled
|
||||
# ls -ltr
|
||||
[...]
|
||||
# echo 0 > tracing_enabled
|
||||
# cat latency_trace
|
||||
# cat trace
|
||||
# tracer: preemptirqsoff
|
||||
#
|
||||
preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
|
||||
@@ -1012,11 +1015,12 @@ Instead of performing an 'ls', we will run 'sleep 1' under
|
||||
'chrt' which changes the priority of the task.
|
||||
|
||||
# echo wakeup > current_tracer
|
||||
# echo latency-format > trace_options
|
||||
# echo 0 > tracing_max_latency
|
||||
# echo 1 > tracing_enabled
|
||||
# chrt -f 5 sleep 1
|
||||
# echo 0 > tracing_enabled
|
||||
# cat latency_trace
|
||||
# cat trace
|
||||
# tracer: wakeup
|
||||
#
|
||||
wakeup latency trace v1.1.5 on 2.6.26-rc8
|
||||
|
42
Documentation/trace/function-graph-fold.vim
Normal file
42
Documentation/trace/function-graph-fold.vim
Normal file
@@ -0,0 +1,42 @@
|
||||
" Enable folding for ftrace function_graph traces.
|
||||
"
|
||||
" To use, :source this file while viewing a function_graph trace, or use vim's
|
||||
" -S option to load from the command-line together with a trace. You can then
|
||||
" use the usual vim fold commands, such as "za", to open and close nested
|
||||
" functions. While closed, a fold will show the total time taken for a call,
|
||||
" as would normally appear on the line with the closing brace. Folded
|
||||
" functions will not include finish_task_switch(), so folding should remain
|
||||
" relatively sane even through a context switch.
|
||||
"
|
||||
" Note that this will almost certainly only work well with a
|
||||
" single-CPU trace (e.g. trace-cmd report --cpu 1).
|
||||
|
||||
function! FunctionGraphFoldExpr(lnum)
|
||||
let line = getline(a:lnum)
|
||||
if line[-1:] == '{'
|
||||
if line =~ 'finish_task_switch() {$'
|
||||
return '>1'
|
||||
endif
|
||||
return 'a1'
|
||||
elseif line[-1:] == '}'
|
||||
return 's1'
|
||||
else
|
||||
return '='
|
||||
endif
|
||||
endfunction
|
||||
|
||||
function! FunctionGraphFoldText()
|
||||
let s = split(getline(v:foldstart), '|', 1)
|
||||
if getline(v:foldend+1) =~ 'finish_task_switch() {$'
|
||||
let s[2] = ' task switch '
|
||||
else
|
||||
let e = split(getline(v:foldend), '|', 1)
|
||||
let s[2] = e[2]
|
||||
endif
|
||||
return join(s, '|')
|
||||
endfunction
|
||||
|
||||
setlocal foldexpr=FunctionGraphFoldExpr(v:lnum)
|
||||
setlocal foldtext=FunctionGraphFoldText()
|
||||
setlocal foldcolumn=12
|
||||
setlocal foldmethod=expr
|
955
Documentation/trace/ring-buffer-design.txt
Normal file
955
Documentation/trace/ring-buffer-design.txt
Normal file
@@ -0,0 +1,955 @@
|
||||
Lockless Ring Buffer Design
|
||||
===========================
|
||||
|
||||
Copyright 2009 Red Hat Inc.
|
||||
Author: Steven Rostedt <srostedt@redhat.com>
|
||||
License: The GNU Free Documentation License, Version 1.2
|
||||
(dual licensed under the GPL v2)
|
||||
Reviewers: Mathieu Desnoyers, Huang Ying, Hidetoshi Seto,
|
||||
and Frederic Weisbecker.
|
||||
|
||||
|
||||
Written for: 2.6.31
|
||||
|
||||
Terminology used in this Document
|
||||
---------------------------------
|
||||
|
||||
tail - where new writes happen in the ring buffer.
|
||||
|
||||
head - where new reads happen in the ring buffer.
|
||||
|
||||
producer - the task that writes into the ring buffer (same as writer)
|
||||
|
||||
writer - same as producer
|
||||
|
||||
consumer - the task that reads from the buffer (same as reader)
|
||||
|
||||
reader - same as consumer.
|
||||
|
||||
reader_page - A page outside the ring buffer used solely (for the most part)
|
||||
by the reader.
|
||||
|
||||
head_page - a pointer to the page that the reader will use next
|
||||
|
||||
tail_page - a pointer to the page that will be written to next
|
||||
|
||||
commit_page - a pointer to the page with the last finished non nested write.
|
||||
|
||||
cmpxchg - hardware assisted atomic transaction that performs the following:
|
||||
|
||||
A = B iff previous A == C
|
||||
|
||||
R = cmpxchg(A, C, B) is saying that we replace A with B if and only if
|
||||
current A is equal to C, and we put the old (current) A into R
|
||||
|
||||
R gets the previous A regardless if A is updated with B or not.
|
||||
|
||||
To see if the update was successful a compare of R == C may be used.
|
||||
|
||||
The Generic Ring Buffer
|
||||
-----------------------
|
||||
|
||||
The ring buffer can be used in either an overwrite mode or in
|
||||
producer/consumer mode.
|
||||
|
||||
Producer/consumer mode is where the producer were to fill up the
|
||||
buffer before the consumer could free up anything, the producer
|
||||
will stop writing to the buffer. This will lose most recent events.
|
||||
|
||||
Overwrite mode is where the produce were to fill up the buffer
|
||||
before the consumer could free up anything, the producer will
|
||||
overwrite the older data. This will lose the oldest events.
|
||||
|
||||
No two writers can write at the same time (on the same per cpu buffer),
|
||||
but a writer may interrupt another writer, but it must finish writing
|
||||
before the previous writer may continue. This is very important to the
|
||||
algorithm. The writers act like a "stack". The way interrupts works
|
||||
enforces this behavior.
|
||||
|
||||
|
||||
writer1 start
|
||||
<preempted> writer2 start
|
||||
<preempted> writer3 start
|
||||
writer3 finishes
|
||||
writer2 finishes
|
||||
writer1 finishes
|
||||
|
||||
This is very much like a writer being preempted by an interrupt and
|
||||
the interrupt doing a write as well.
|
||||
|
||||
Readers can happen at any time. But no two readers may run at the
|
||||
same time, nor can a reader preempt/interrupt another reader. A reader
|
||||
can not preempt/interrupt a writer, but it may read/consume from the
|
||||
buffer at the same time as a writer is writing, but the reader must be
|
||||
on another processor to do so. A reader may read on its own processor
|
||||
and can be preempted by a writer.
|
||||
|
||||
A writer can preempt a reader, but a reader can not preempt a writer.
|
||||
But a reader can read the buffer at the same time (on another processor)
|
||||
as a writer.
|
||||
|
||||
The ring buffer is made up of a list of pages held together by a link list.
|
||||
|
||||
At initialization a reader page is allocated for the reader that is not
|
||||
part of the ring buffer.
|
||||
|
||||
The head_page, tail_page and commit_page are all initialized to point
|
||||
to the same page.
|
||||
|
||||
The reader page is initialized to have its next pointer pointing to
|
||||
the head page, and its previous pointer pointing to a page before
|
||||
the head page.
|
||||
|
||||
The reader has its own page to use. At start up time, this page is
|
||||
allocated but is not attached to the list. When the reader wants
|
||||
to read from the buffer, if its page is empty (like it is on start up)
|
||||
it will swap its page with the head_page. The old reader page will
|
||||
become part of the ring buffer and the head_page will be removed.
|
||||
The page after the inserted page (old reader_page) will become the
|
||||
new head page.
|
||||
|
||||
Once the new page is given to the reader, the reader could do what
|
||||
it wants with it, as long as a writer has left that page.
|
||||
|
||||
A sample of how the reader page is swapped: Note this does not
|
||||
show the head page in the buffer, it is for demonstrating a swap
|
||||
only.
|
||||
|
||||
+------+
|
||||
|reader| RING BUFFER
|
||||
|page |
|
||||
+------+
|
||||
+---+ +---+ +---+
|
||||
| |-->| |-->| |
|
||||
| |<--| |<--| |
|
||||
+---+ +---+ +---+
|
||||
^ | ^ |
|
||||
| +-------------+ |
|
||||
+-----------------+
|
||||
|
||||
|
||||
+------+
|
||||
|reader| RING BUFFER
|
||||
|page |-------------------+
|
||||
+------+ v
|
||||
| +---+ +---+ +---+
|
||||
| | |-->| |-->| |
|
||||
| | |<--| |<--| |<-+
|
||||
| +---+ +---+ +---+ |
|
||||
| ^ | ^ | |
|
||||
| | +-------------+ | |
|
||||
| +-----------------+ |
|
||||
+------------------------------------+
|
||||
|
||||
+------+
|
||||
|reader| RING BUFFER
|
||||
|page |-------------------+
|
||||
+------+ <---------------+ v
|
||||
| ^ +---+ +---+ +---+
|
||||
| | | |-->| |-->| |
|
||||
| | | | | |<--| |<-+
|
||||
| | +---+ +---+ +---+ |
|
||||
| | | ^ | |
|
||||
| | +-------------+ | |
|
||||
| +-----------------------------+ |
|
||||
+------------------------------------+
|
||||
|
||||
+------+
|
||||
|buffer| RING BUFFER
|
||||
|page |-------------------+
|
||||
+------+ <---------------+ v
|
||||
| ^ +---+ +---+ +---+
|
||||
| | | | | |-->| |
|
||||
| | New | | | |<--| |<-+
|
||||
| | Reader +---+ +---+ +---+ |
|
||||
| | page ----^ | |
|
||||
| | | |
|
||||
| +-----------------------------+ |
|
||||
+------------------------------------+
|
||||
|
||||
|
||||
|
||||
It is possible that the page swapped is the commit page and the tail page,
|
||||
if what is in the ring buffer is less than what is held in a buffer page.
|
||||
|
||||
|
||||
reader page commit page tail page
|
||||
| | |
|
||||
v | |
|
||||
+---+ | |
|
||||
| |<----------+ |
|
||||
| |<------------------------+
|
||||
| |------+
|
||||
+---+ |
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
This case is still valid for this algorithm.
|
||||
When the writer leaves the page, it simply goes into the ring buffer
|
||||
since the reader page still points to the next location in the ring
|
||||
buffer.
|
||||
|
||||
|
||||
The main pointers:
|
||||
|
||||
reader page - The page used solely by the reader and is not part
|
||||
of the ring buffer (may be swapped in)
|
||||
|
||||
head page - the next page in the ring buffer that will be swapped
|
||||
with the reader page.
|
||||
|
||||
tail page - the page where the next write will take place.
|
||||
|
||||
commit page - the page that last finished a write.
|
||||
|
||||
The commit page only is updated by the outer most writer in the
|
||||
writer stack. A writer that preempts another writer will not move the
|
||||
commit page.
|
||||
|
||||
When data is written into the ring buffer, a position is reserved
|
||||
in the ring buffer and passed back to the writer. When the writer
|
||||
is finished writing data into that position, it commits the write.
|
||||
|
||||
Another write (or a read) may take place at anytime during this
|
||||
transaction. If another write happens it must finish before continuing
|
||||
with the previous write.
|
||||
|
||||
|
||||
Write reserve:
|
||||
|
||||
Buffer page
|
||||
+---------+
|
||||
|written |
|
||||
+---------+ <--- given back to writer (current commit)
|
||||
|reserved |
|
||||
+---------+ <--- tail pointer
|
||||
| empty |
|
||||
+---------+
|
||||
|
||||
Write commit:
|
||||
|
||||
Buffer page
|
||||
+---------+
|
||||
|written |
|
||||
+---------+
|
||||
|written |
|
||||
+---------+ <--- next positon for write (current commit)
|
||||
| empty |
|
||||
+---------+
|
||||
|
||||
|
||||
If a write happens after the first reserve:
|
||||
|
||||
Buffer page
|
||||
+---------+
|
||||
|written |
|
||||
+---------+ <-- current commit
|
||||
|reserved |
|
||||
+---------+ <--- given back to second writer
|
||||
|reserved |
|
||||
+---------+ <--- tail pointer
|
||||
|
||||
After second writer commits:
|
||||
|
||||
|
||||
Buffer page
|
||||
+---------+
|
||||
|written |
|
||||
+---------+ <--(last full commit)
|
||||
|reserved |
|
||||
+---------+
|
||||
|pending |
|
||||
|commit |
|
||||
+---------+ <--- tail pointer
|
||||
|
||||
When the first writer commits:
|
||||
|
||||
Buffer page
|
||||
+---------+
|
||||
|written |
|
||||
+---------+
|
||||
|written |
|
||||
+---------+
|
||||
|written |
|
||||
+---------+ <--(last full commit and tail pointer)
|
||||
|
||||
|
||||
The commit pointer points to the last write location that was
|
||||
committed without preempting another write. When a write that
|
||||
preempted another write is committed, it only becomes a pending commit
|
||||
and will not be a full commit till all writes have been committed.
|
||||
|
||||
The commit page points to the page that has the last full commit.
|
||||
The tail page points to the page with the last write (before
|
||||
committing).
|
||||
|
||||
The tail page is always equal to or after the commit page. It may
|
||||
be several pages ahead. If the tail page catches up to the commit
|
||||
page then no more writes may take place (regardless of the mode
|
||||
of the ring buffer: overwrite and produce/consumer).
|
||||
|
||||
The order of pages are:
|
||||
|
||||
head page
|
||||
commit page
|
||||
tail page
|
||||
|
||||
Possible scenario:
|
||||
tail page
|
||||
head page commit page |
|
||||
| | |
|
||||
v v v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
There is a special case that the head page is after either the commit page
|
||||
and possibly the tail page. That is when the commit (and tail) page has been
|
||||
swapped with the reader page. This is because the head page is always
|
||||
part of the ring buffer, but the reader page is not. When ever there
|
||||
has been less than a full page that has been committed inside the ring buffer,
|
||||
and a reader swaps out a page, it will be swapping out the commit page.
|
||||
|
||||
|
||||
reader page commit page tail page
|
||||
| | |
|
||||
v | |
|
||||
+---+ | |
|
||||
| |<----------+ |
|
||||
| |<------------------------+
|
||||
| |------+
|
||||
+---+ |
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
^
|
||||
|
|
||||
head page
|
||||
|
||||
|
||||
In this case, the head page will not move when the tail and commit
|
||||
move back into the ring buffer.
|
||||
|
||||
The reader can not swap a page into the ring buffer if the commit page
|
||||
is still on that page. If the read meets the last commit (real commit
|
||||
not pending or reserved), then there is nothing more to read.
|
||||
The buffer is considered empty until another full commit finishes.
|
||||
|
||||
When the tail meets the head page, if the buffer is in overwrite mode,
|
||||
the head page will be pushed ahead one. If the buffer is in producer/consumer
|
||||
mode, the write will fail.
|
||||
|
||||
Overwrite mode:
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
^
|
||||
|
|
||||
head page
|
||||
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
^
|
||||
|
|
||||
head page
|
||||
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
^
|
||||
|
|
||||
head page
|
||||
|
||||
Note, the reader page will still point to the previous head page.
|
||||
But when a swap takes place, it will use the most recent head page.
|
||||
|
||||
|
||||
Making the Ring Buffer Lockless:
|
||||
--------------------------------
|
||||
|
||||
The main idea behind the lockless algorithm is to combine the moving
|
||||
of the head_page pointer with the swapping of pages with the reader.
|
||||
State flags are placed inside the pointer to the page. To do this,
|
||||
each page must be aligned in memory by 4 bytes. This will allow the 2
|
||||
least significant bits of the address to be used as flags. Since
|
||||
they will always be zero for the address. To get the address,
|
||||
simply mask out the flags.
|
||||
|
||||
MASK = ~3
|
||||
|
||||
address & MASK
|
||||
|
||||
Two flags will be kept by these two bits:
|
||||
|
||||
HEADER - the page being pointed to is a head page
|
||||
|
||||
UPDATE - the page being pointed to is being updated by a writer
|
||||
and was or is about to be a head page.
|
||||
|
||||
|
||||
reader page
|
||||
|
|
||||
v
|
||||
+---+
|
||||
| |------+
|
||||
+---+ |
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-H->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
|
||||
The above pointer "-H->" would have the HEADER flag set. That is
|
||||
the next page is the next page to be swapped out by the reader.
|
||||
This pointer means the next page is the head page.
|
||||
|
||||
When the tail page meets the head pointer, it will use cmpxchg to
|
||||
change the pointer to the UPDATE state:
|
||||
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-H->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
"-U->" represents a pointer in the UPDATE state.
|
||||
|
||||
Any access to the reader will need to take some sort of lock to serialize
|
||||
the readers. But the writers will never take a lock to write to the
|
||||
ring buffer. This means we only need to worry about a single reader,
|
||||
and writes only preempt in "stack" formation.
|
||||
|
||||
When the reader tries to swap the page with the ring buffer, it
|
||||
will also use cmpxchg. If the flag bit in the pointer to the
|
||||
head page does not have the HEADER flag set, the compare will fail
|
||||
and the reader will need to look for the new head page and try again.
|
||||
Note, the flag UPDATE and HEADER are never set at the same time.
|
||||
|
||||
The reader swaps the reader page as follows:
|
||||
|
||||
+------+
|
||||
|reader| RING BUFFER
|
||||
|page |
|
||||
+------+
|
||||
+---+ +---+ +---+
|
||||
| |--->| |--->| |
|
||||
| |<---| |<---| |
|
||||
+---+ +---+ +---+
|
||||
^ | ^ |
|
||||
| +---------------+ |
|
||||
+-----H-------------+
|
||||
|
||||
The reader sets the reader page next pointer as HEADER to the page after
|
||||
the head page.
|
||||
|
||||
|
||||
+------+
|
||||
|reader| RING BUFFER
|
||||
|page |-------H-----------+
|
||||
+------+ v
|
||||
| +---+ +---+ +---+
|
||||
| | |--->| |--->| |
|
||||
| | |<---| |<---| |<-+
|
||||
| +---+ +---+ +---+ |
|
||||
| ^ | ^ | |
|
||||
| | +---------------+ | |
|
||||
| +-----H-------------+ |
|
||||
+--------------------------------------+
|
||||
|
||||
It does a cmpxchg with the pointer to the previous head page to make it
|
||||
point to the reader page. Note that the new pointer does not have the HEADER
|
||||
flag set. This action atomically moves the head page forward.
|
||||
|
||||
+------+
|
||||
|reader| RING BUFFER
|
||||
|page |-------H-----------+
|
||||
+------+ v
|
||||
| ^ +---+ +---+ +---+
|
||||
| | | |-->| |-->| |
|
||||
| | | |<--| |<--| |<-+
|
||||
| | +---+ +---+ +---+ |
|
||||
| | | ^ | |
|
||||
| | +-------------+ | |
|
||||
| +-----------------------------+ |
|
||||
+------------------------------------+
|
||||
|
||||
After the new head page is set, the previous pointer of the head page is
|
||||
updated to the reader page.
|
||||
|
||||
+------+
|
||||
|reader| RING BUFFER
|
||||
|page |-------H-----------+
|
||||
+------+ <---------------+ v
|
||||
| ^ +---+ +---+ +---+
|
||||
| | | |-->| |-->| |
|
||||
| | | | | |<--| |<-+
|
||||
| | +---+ +---+ +---+ |
|
||||
| | | ^ | |
|
||||
| | +-------------+ | |
|
||||
| +-----------------------------+ |
|
||||
+------------------------------------+
|
||||
|
||||
+------+
|
||||
|buffer| RING BUFFER
|
||||
|page |-------H-----------+ <--- New head page
|
||||
+------+ <---------------+ v
|
||||
| ^ +---+ +---+ +---+
|
||||
| | | | | |-->| |
|
||||
| | New | | | |<--| |<-+
|
||||
| | Reader +---+ +---+ +---+ |
|
||||
| | page ----^ | |
|
||||
| | | |
|
||||
| +-----------------------------+ |
|
||||
+------------------------------------+
|
||||
|
||||
Another important point. The page that the reader page points back to
|
||||
by its previous pointer (the one that now points to the new head page)
|
||||
never points back to the reader page. That is because the reader page is
|
||||
not part of the ring buffer. Traversing the ring buffer via the next pointers
|
||||
will always stay in the ring buffer. Traversing the ring buffer via the
|
||||
prev pointers may not.
|
||||
|
||||
Note, the way to determine a reader page is simply by examining the previous
|
||||
pointer of the page. If the next pointer of the previous page does not
|
||||
point back to the original page, then the original page is a reader page:
|
||||
|
||||
|
||||
+--------+
|
||||
| reader | next +----+
|
||||
| page |-------->| |<====== (buffer page)
|
||||
+--------+ +----+
|
||||
| | ^
|
||||
| v | next
|
||||
prev | +----+
|
||||
+------------->| |
|
||||
+----+
|
||||
|
||||
The way the head page moves forward:
|
||||
|
||||
When the tail page meets the head page and the buffer is in overwrite mode
|
||||
and more writes take place, the head page must be moved forward before the
|
||||
writer may move the tail page. The way this is done is that the writer
|
||||
performs a cmpxchg to convert the pointer to the head page from the HEADER
|
||||
flag to have the UPDATE flag set. Once this is done, the reader will
|
||||
not be able to swap the head page from the buffer, nor will it be able to
|
||||
move the head page, until the writer is finished with the move.
|
||||
|
||||
This eliminates any races that the reader can have on the writer. The reader
|
||||
must spin, and this is why the reader can not preempt the writer.
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-H->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
The following page will be made into the new head page.
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |-H->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
After the new head page has been set, we can set the old head page
|
||||
pointer back to NORMAL.
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |-H->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
After the head page has been moved, the tail page may now move forward.
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |-H->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
|
||||
The above are the trivial updates. Now for the more complex scenarios.
|
||||
|
||||
|
||||
As stated before, if enough writes preempt the first write, the
|
||||
tail page may make it all the way around the buffer and meet the commit
|
||||
page. At this time, we must start dropping writes (usually with some kind
|
||||
of warning to the user). But what happens if the commit was still on the
|
||||
reader page? The commit page is not part of the ring buffer. The tail page
|
||||
must account for this.
|
||||
|
||||
|
||||
reader page commit page
|
||||
| |
|
||||
v |
|
||||
+---+ |
|
||||
| |<----------+
|
||||
| |
|
||||
| |------+
|
||||
+---+ |
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-H->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
^
|
||||
|
|
||||
tail page
|
||||
|
||||
If the tail page were to simply push the head page forward, the commit when
|
||||
leaving the reader page would not be pointing to the correct page.
|
||||
|
||||
The solution to this is to test if the commit page is on the reader page
|
||||
before pushing the head page. If it is, then it can be assumed that the
|
||||
tail page wrapped the buffer, and we must drop new writes.
|
||||
|
||||
This is not a race condition, because the commit page can only be moved
|
||||
by the outter most writer (the writer that was preempted).
|
||||
This means that the commit will not move while a writer is moving the
|
||||
tail page. The reader can not swap the reader page if it is also being
|
||||
used as the commit page. The reader can simply check that the commit
|
||||
is off the reader page. Once the commit page leaves the reader page
|
||||
it will never go back on it unless a reader does another swap with the
|
||||
buffer page that is also the commit page.
|
||||
|
||||
|
||||
Nested writes
|
||||
-------------
|
||||
|
||||
In the pushing forward of the tail page we must first push forward
|
||||
the head page if the head page is the next page. If the head page
|
||||
is not the next page, the tail page is simply updated with a cmpxchg.
|
||||
|
||||
Only writers move the tail page. This must be done atomically to protect
|
||||
against nested writers.
|
||||
|
||||
temp_page = tail_page
|
||||
next_page = temp_page->next
|
||||
cmpxchg(tail_page, temp_page, next_page)
|
||||
|
||||
The above will update the tail page if it is still pointing to the expected
|
||||
page. If this fails, a nested write pushed it forward, the the current write
|
||||
does not need to push it.
|
||||
|
||||
|
||||
temp page
|
||||
|
|
||||
v
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
Nested write comes in and moves the tail page forward:
|
||||
|
||||
tail page (moved by nested writer)
|
||||
temp page |
|
||||
| |
|
||||
v v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
The above would fail the cmpxchg, but since the tail page has already
|
||||
been moved forward, the writer will just try again to reserve storage
|
||||
on the new tail page.
|
||||
|
||||
But the moving of the head page is a bit more complex.
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-H->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
The write converts the head page pointer to UPDATE.
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
But if a nested writer preempts here. It will see that the next
|
||||
page is a head page, but it is also nested. It will detect that
|
||||
it is nested and will save that information. The detection is the
|
||||
fact that it sees the UPDATE flag instead of a HEADER or NORMAL
|
||||
pointer.
|
||||
|
||||
The nested writer will set the new head page pointer.
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |-H->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
But it will not reset the update back to normal. Only the writer
|
||||
that converted a pointer from HEAD to UPDATE will convert it back
|
||||
to NORMAL.
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |-H->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
After the nested writer finishes, the outer most writer will convert
|
||||
the UPDATE pointer to NORMAL.
|
||||
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |-H->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
|
||||
It can be even more complex if several nested writes came in and moved
|
||||
the tail page ahead several pages:
|
||||
|
||||
|
||||
(first writer)
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-H->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
The write converts the head page pointer to UPDATE.
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |--->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
Next writer comes in, and sees the update and sets up the new
|
||||
head page.
|
||||
|
||||
(second writer)
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |-H->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
The nested writer moves the tail page forward. But does not set the old
|
||||
update page to NORMAL because it is not the outer most writer.
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |-H->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
Another writer preempts and sees the page after the tail page is a head page.
|
||||
It changes it from HEAD to UPDATE.
|
||||
|
||||
(third writer)
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |-U->| |--->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
The writer will move the head page forward:
|
||||
|
||||
|
||||
(third writer)
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |-U->| |-H->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
But now that the third writer did change the HEAD flag to UPDATE it
|
||||
will convert it to normal:
|
||||
|
||||
|
||||
(third writer)
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |--->| |-H->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
|
||||
Then it will move the tail page, and return back to the second writer.
|
||||
|
||||
|
||||
(second writer)
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |--->| |-H->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
|
||||
The second writer will fail to move the tail page because it was already
|
||||
moved, so it will try again and add its data to the new tail page.
|
||||
It will return to the first writer.
|
||||
|
||||
|
||||
(first writer)
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |--->| |-H->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
The first writer can not know atomically test if the tail page moved
|
||||
while it updates the HEAD page. It will then update the head page to
|
||||
what it thinks is the new head page.
|
||||
|
||||
|
||||
(first writer)
|
||||
|
||||
tail page
|
||||
|
|
||||
v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |-H->| |-H->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
Since the cmpxchg returns the old value of the pointer the first writer
|
||||
will see it succeeded in updating the pointer from NORMAL to HEAD.
|
||||
But as we can see, this is not good enough. It must also check to see
|
||||
if the tail page is either where it use to be or on the next page:
|
||||
|
||||
|
||||
(first writer)
|
||||
|
||||
A B tail page
|
||||
| | |
|
||||
v v v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |-H->| |-H->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
If tail page != A and tail page does not equal B, then it must reset the
|
||||
pointer back to NORMAL. The fact that it only needs to worry about
|
||||
nested writers, it only needs to check this after setting the HEAD page.
|
||||
|
||||
|
||||
(first writer)
|
||||
|
||||
A B tail page
|
||||
| | |
|
||||
v v v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |-U->| |--->| |-H->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
||||
Now the writer can update the head page. This is also why the head page must
|
||||
remain in UPDATE and only reset by the outer most writer. This prevents
|
||||
the reader from seeing the incorrect head page.
|
||||
|
||||
|
||||
(first writer)
|
||||
|
||||
A B tail page
|
||||
| | |
|
||||
v v v
|
||||
+---+ +---+ +---+ +---+
|
||||
<---| |--->| |--->| |--->| |-H->
|
||||
--->| |<---| |<---| |<---| |<---
|
||||
+---+ +---+ +---+ +---+
|
||||
|
@@ -21,3 +21,5 @@
|
||||
20 -> Hauppauge WinTV-HVR1255 [0070:2251]
|
||||
21 -> Hauppauge WinTV-HVR1210 [0070:2291,0070:2295]
|
||||
22 -> Mygica X8506 DMB-TH [14f1:8651]
|
||||
23 -> Magic-Pro ProHDTV Extreme 2 [14f1:8657]
|
||||
24 -> Hauppauge WinTV-HVR1850 [0070:8541]
|
||||
|
@@ -80,3 +80,4 @@
|
||||
79 -> Terratec Cinergy HT PCI MKII [153b:1177]
|
||||
80 -> Hauppauge WinTV-IR Only [0070:9290]
|
||||
81 -> Leadtek WinFast DTV1800 Hybrid [107d:6654]
|
||||
82 -> WinFast DTV2000 H rev. J [107d:6f2b]
|
||||
|
@@ -7,7 +7,7 @@
|
||||
6 -> Terratec Cinergy 200 USB (em2800)
|
||||
7 -> Leadtek Winfast USB II (em2800) [0413:6023]
|
||||
8 -> Kworld USB2800 (em2800)
|
||||
9 -> Pinnacle Dazzle DVC 90/100/101/107 / Kaiser Baas Video to DVD maker (em2820/em2840) [1b80:e302,2304:0207,2304:021a]
|
||||
9 -> Pinnacle Dazzle DVC 90/100/101/107 / Kaiser Baas Video to DVD maker (em2820/em2840) [1b80:e302,1b80:e304,2304:0207,2304:021a]
|
||||
10 -> Hauppauge WinTV HVR 900 (em2880) [2040:6500]
|
||||
11 -> Terratec Hybrid XS (em2880) [0ccd:0042]
|
||||
12 -> Kworld PVR TV 2800 RF (em2820/em2840)
|
||||
@@ -33,7 +33,7 @@
|
||||
34 -> Terratec Cinergy A Hybrid XS (em2860) [0ccd:004f]
|
||||
35 -> Typhoon DVD Maker (em2860)
|
||||
36 -> NetGMBH Cam (em2860)
|
||||
37 -> Gadmei UTV330 (em2860)
|
||||
37 -> Gadmei UTV330 (em2860) [eb1a:50a6]
|
||||
38 -> Yakumo MovieMixer (em2861)
|
||||
39 -> KWorld PVRTV 300U (em2861) [eb1a:e300]
|
||||
40 -> Plextor ConvertX PX-TV100U (em2861) [093b:a005]
|
||||
@@ -67,3 +67,4 @@
|
||||
69 -> KWorld ATSC 315U HDTV TV Box (em2882) [eb1a:a313]
|
||||
70 -> Evga inDtube (em2882)
|
||||
71 -> Silvercrest Webcam 1.3mpix (em2820/em2840)
|
||||
72 -> Gadmei UTV330+ (em2861)
|
||||
|
@@ -167,3 +167,7 @@
|
||||
166 -> Beholder BeholdTV 607 RDS [5ace:6073]
|
||||
167 -> Beholder BeholdTV 609 RDS [5ace:6092]
|
||||
168 -> Beholder BeholdTV 609 RDS [5ace:6093]
|
||||
169 -> Compro VideoMate S350/S300 [185b:c900]
|
||||
170 -> AverMedia AverTV Studio 505 [1461:a115]
|
||||
171 -> Beholder BeholdTV X7 [5ace:7595]
|
||||
172 -> RoverMedia TV Link Pro FM [19d1:0138]
|
||||
|
@@ -78,3 +78,4 @@ tuner=77 - TCL tuner MF02GIP-5N-E
|
||||
tuner=78 - Philips FMD1216MEX MK3 Hybrid Tuner
|
||||
tuner=79 - Philips PAL/SECAM multi (FM1216 MK5)
|
||||
tuner=80 - Philips FQ1216LME MK3 PAL/SECAM w/active loopthrough
|
||||
tuner=81 - Partsnic (Daewoo) PTI-5NF05
|
||||
|
@@ -18,8 +18,8 @@ Table of Contents
|
||||
|
||||
1.0 Introduction
|
||||
|
||||
The file ../drivers/char/c-qcam.c is a device driver for the
|
||||
Logitech (nee Connectix) parallel port interface color CCD camera.
|
||||
The file ../../drivers/media/video/c-qcam.c is a device driver for
|
||||
the Logitech (nee Connectix) parallel port interface color CCD camera.
|
||||
This is a fairly inexpensive device for capturing images. Logitech
|
||||
does not currently provide information for developers, but many people
|
||||
have engineered several solutions for non-Microsoft use of the Color
|
||||
|
@@ -140,6 +140,7 @@ spca500 04fc:7333 PalmPixDC85
|
||||
sunplus 04fc:ffff Pure DigitalDakota
|
||||
spca501 0506:00df 3Com HomeConnect Lite
|
||||
sunplus 052b:1513 Megapix V4
|
||||
sunplus 052b:1803 MegaImage VI
|
||||
tv8532 0545:808b Veo Stingray
|
||||
tv8532 0545:8333 Veo Stingray
|
||||
sunplus 0546:3155 Polaroid PDC3070
|
||||
@@ -182,6 +183,7 @@ ov534 06f8:3002 Hercules Blog Webcam
|
||||
ov534 06f8:3003 Hercules Dualpix HD Weblog
|
||||
sonixj 06f8:3004 Hercules Classic Silver
|
||||
sonixj 06f8:3008 Hercules Deluxe Optical Glass
|
||||
pac7311 06f8:3009 Hercules Classic Link
|
||||
spca508 0733:0110 ViewQuest VQ110
|
||||
spca508 0130:0130 Clone Digital Webcam 11043
|
||||
spca501 0733:0401 Intel Create and Share
|
||||
@@ -235,8 +237,10 @@ pac7311 093a:2621 PAC731x
|
||||
pac7311 093a:2622 Genius Eye 312
|
||||
pac7311 093a:2624 PAC7302
|
||||
pac7311 093a:2626 Labtec 2200
|
||||
pac7311 093a:2629 Genious iSlim 300
|
||||
pac7311 093a:262a Webcam 300k
|
||||
pac7311 093a:262c Philips SPC 230 NC
|
||||
jeilinj 0979:0280 Sakar 57379
|
||||
zc3xx 0ac8:0302 Z-star Vimicro zc0302
|
||||
vc032x 0ac8:0321 Vimicro generic vc0321
|
||||
vc032x 0ac8:0323 Vimicro Vc0323
|
||||
@@ -247,6 +251,7 @@ zc3xx 0ac8:305b Z-star Vimicro zc0305b
|
||||
zc3xx 0ac8:307b Ldlc VC302+Ov7620
|
||||
vc032x 0ac8:c001 Sony embedded vimicro
|
||||
vc032x 0ac8:c002 Sony embedded vimicro
|
||||
vc032x 0ac8:c301 Samsung Q1 Ultra Premium
|
||||
spca508 0af9:0010 Hama USB Sightcam 100
|
||||
spca508 0af9:0011 Hama USB Sightcam 100
|
||||
sonixb 0c45:6001 Genius VideoCAM NB
|
||||
@@ -284,6 +289,7 @@ sonixj 0c45:613a Microdia Sonix PC Camera
|
||||
sonixj 0c45:613b Surfer SN-206
|
||||
sonixj 0c45:613c Sonix Pccam168
|
||||
sonixj 0c45:6143 Sonix Pccam168
|
||||
sonixj 0c45:6148 Digitus DA-70811/ZSMC USB PC Camera ZS211/Microdia
|
||||
sn9c20x 0c45:6240 PC Camera (SN9C201 + MT9M001)
|
||||
sn9c20x 0c45:6242 PC Camera (SN9C201 + MT9M111)
|
||||
sn9c20x 0c45:6248 PC Camera (SN9C201 + OV9655)
|
||||
|
176
Documentation/video4linux/si4713.txt
Normal file
176
Documentation/video4linux/si4713.txt
Normal file
@@ -0,0 +1,176 @@
|
||||
Driver for I2C radios for the Silicon Labs Si4713 FM Radio Transmitters
|
||||
|
||||
Copyright (c) 2009 Nokia Corporation
|
||||
Contact: Eduardo Valentin <eduardo.valentin@nokia.com>
|
||||
|
||||
|
||||
Information about the Device
|
||||
============================
|
||||
This chip is a Silicon Labs product. It is a I2C device, currently on 0x63 address.
|
||||
Basically, it has transmission and signal noise level measurement features.
|
||||
|
||||
The Si4713 integrates transmit functions for FM broadcast stereo transmission.
|
||||
The chip also allows integrated receive power scanning to identify low signal
|
||||
power FM channels.
|
||||
|
||||
The chip is programmed using commands and responses. There are also several
|
||||
properties which can change the behavior of this chip.
|
||||
|
||||
Users must comply with local regulations on radio frequency (RF) transmission.
|
||||
|
||||
Device driver description
|
||||
=========================
|
||||
There are two modules to handle this device. One is a I2C device driver
|
||||
and the other is a platform driver.
|
||||
|
||||
The I2C device driver exports a v4l2-subdev interface to the kernel.
|
||||
All properties can also be accessed by v4l2 extended controls interface, by
|
||||
using the v4l2-subdev calls (g_ext_ctrls, s_ext_ctrls).
|
||||
|
||||
The platform device driver exports a v4l2 radio device interface to user land.
|
||||
So, it uses the I2C device driver as a sub device in order to send the user
|
||||
commands to the actual device. Basically it is a wrapper to the I2C device driver.
|
||||
|
||||
Applications can use v4l2 radio API to specify frequency of operation, mute state,
|
||||
etc. But mostly of its properties will be present in the extended controls.
|
||||
|
||||
When the v4l2 mute property is set to 1 (true), the driver will turn the chip off.
|
||||
|
||||
Properties description
|
||||
======================
|
||||
|
||||
The properties can be accessed using v4l2 extended controls.
|
||||
Here is an output from v4l2-ctl util:
|
||||
/ # v4l2-ctl -d /dev/radio0 --all -L
|
||||
Driver Info:
|
||||
Driver name : radio-si4713
|
||||
Card type : Silicon Labs Si4713 Modulator
|
||||
Bus info :
|
||||
Driver version: 0
|
||||
Capabilities : 0x00080800
|
||||
RDS Output
|
||||
Modulator
|
||||
Audio output: 0 (FM Modulator Audio Out)
|
||||
Frequency: 1408000 (88.000000 MHz)
|
||||
Video Standard = 0x00000000
|
||||
Modulator:
|
||||
Name : FM Modulator
|
||||
Capabilities : 62.5 Hz stereo rds
|
||||
Frequency range : 76.0 MHz - 108.0 MHz
|
||||
Subchannel modulation: stereo+rds
|
||||
|
||||
User Controls
|
||||
|
||||
mute (bool) : default=1 value=0
|
||||
|
||||
FM Radio Modulator Controls
|
||||
|
||||
rds_signal_deviation (int) : min=0 max=90000 step=10 default=200 value=200 flags=slider
|
||||
rds_program_id (int) : min=0 max=65535 step=1 default=0 value=0
|
||||
rds_program_type (int) : min=0 max=31 step=1 default=0 value=0
|
||||
rds_ps_name (str) : min=0 max=96 step=8 value='si4713 '
|
||||
rds_radio_text (str) : min=0 max=384 step=32 value=''
|
||||
audio_limiter_feature_enabled (bool) : default=1 value=1
|
||||
audio_limiter_release_time (int) : min=250 max=102390 step=50 default=5010 value=5010 flags=slider
|
||||
audio_limiter_deviation (int) : min=0 max=90000 step=10 default=66250 value=66250 flags=slider
|
||||
audio_compression_feature_enabl (bool) : default=1 value=1
|
||||
audio_compression_gain (int) : min=0 max=20 step=1 default=15 value=15 flags=slider
|
||||
audio_compression_threshold (int) : min=-40 max=0 step=1 default=-40 value=-40 flags=slider
|
||||
audio_compression_attack_time (int) : min=0 max=5000 step=500 default=0 value=0 flags=slider
|
||||
audio_compression_release_time (int) : min=100000 max=1000000 step=100000 default=1000000 value=1000000 flags=slider
|
||||
pilot_tone_feature_enabled (bool) : default=1 value=1
|
||||
pilot_tone_deviation (int) : min=0 max=90000 step=10 default=6750 value=6750 flags=slider
|
||||
pilot_tone_frequency (int) : min=0 max=19000 step=1 default=19000 value=19000 flags=slider
|
||||
pre_emphasis_settings (menu) : min=0 max=2 default=1 value=1
|
||||
tune_power_level (int) : min=0 max=120 step=1 default=88 value=88 flags=slider
|
||||
tune_antenna_capacitor (int) : min=0 max=191 step=1 default=0 value=110 flags=slider
|
||||
/ #
|
||||
|
||||
Here is a summary of them:
|
||||
|
||||
* Pilot is an audible tone sent by the device.
|
||||
|
||||
pilot_frequency - Configures the frequency of the stereo pilot tone.
|
||||
pilot_deviation - Configures pilot tone frequency deviation level.
|
||||
pilot_enabled - Enables or disables the pilot tone feature.
|
||||
|
||||
* The si4713 device is capable of applying audio compression to the transmitted signal.
|
||||
|
||||
acomp_enabled - Enables or disables the audio dynamic range control feature.
|
||||
acomp_gain - Sets the gain for audio dynamic range control.
|
||||
acomp_threshold - Sets the threshold level for audio dynamic range control.
|
||||
acomp_attack_time - Sets the attack time for audio dynamic range control.
|
||||
acomp_release_time - Sets the release time for audio dynamic range control.
|
||||
|
||||
* Limiter setups audio deviation limiter feature. Once a over deviation occurs,
|
||||
it is possible to adjust the front-end gain of the audio input and always
|
||||
prevent over deviation.
|
||||
|
||||
limiter_enabled - Enables or disables the limiter feature.
|
||||
limiter_deviation - Configures audio frequency deviation level.
|
||||
limiter_release_time - Sets the limiter release time.
|
||||
|
||||
* Tuning power
|
||||
|
||||
power_level - Sets the output power level for signal transmission.
|
||||
antenna_capacitor - This selects the value of antenna tuning capacitor manually
|
||||
or automatically if set to zero.
|
||||
|
||||
* RDS related
|
||||
|
||||
rds_ps_name - Sets the RDS ps name field for transmission.
|
||||
rds_radio_text - Sets the RDS radio text for transmission.
|
||||
rds_pi - Sets the RDS PI field for transmission.
|
||||
rds_pty - Sets the RDS PTY field for transmission.
|
||||
|
||||
* Region related
|
||||
|
||||
preemphasis - sets the preemphasis to be applied for transmission.
|
||||
|
||||
RNL
|
||||
===
|
||||
|
||||
This device also has an interface to measure received noise level. To do that, you should
|
||||
ioctl the device node. Here is an code of example:
|
||||
|
||||
int main (int argc, char *argv[])
|
||||
{
|
||||
struct si4713_rnl rnl;
|
||||
int fd = open("/dev/radio0", O_RDWR);
|
||||
int rval;
|
||||
|
||||
if (argc < 2)
|
||||
return -EINVAL;
|
||||
|
||||
if (fd < 0)
|
||||
return fd;
|
||||
|
||||
sscanf(argv[1], "%d", &rnl.frequency);
|
||||
|
||||
rval = ioctl(fd, SI4713_IOC_MEASURE_RNL, &rnl);
|
||||
if (rval < 0)
|
||||
return rval;
|
||||
|
||||
printf("received noise level: %d\n", rnl.rnl);
|
||||
|
||||
close(fd);
|
||||
}
|
||||
|
||||
The struct si4713_rnl and SI4713_IOC_MEASURE_RNL are defined under
|
||||
include/media/si4713.h.
|
||||
|
||||
Stereo/Mono and RDS subchannels
|
||||
===============================
|
||||
|
||||
The device can also be configured using the available sub channels for
|
||||
transmission. To do that use S/G_MODULATOR ioctl and configure txsubchans properly.
|
||||
Refer to v4l2-spec for proper use of this ioctl.
|
||||
|
||||
Testing
|
||||
=======
|
||||
Testing is usually done with v4l2-ctl utility for managing FM tuner cards.
|
||||
The tool can be found in v4l-dvb repository under v4l2-apps/util directory.
|
||||
|
||||
Example for setting rds ps name:
|
||||
# v4l2-ctl -d /dev/radio0 --set-ctrl=rds_ps_name="Dummy"
|
||||
|
@@ -41,6 +41,8 @@ Possible debug options are
|
||||
P Poisoning (object and padding)
|
||||
U User tracking (free and alloc)
|
||||
T Trace (please only use on single slabs)
|
||||
O Switch debugging off for caches that would have
|
||||
caused higher minimum slab orders
|
||||
- Switch all debugging off (useful if the kernel is
|
||||
configured with CONFIG_SLUB_DEBUG_ON)
|
||||
|
||||
@@ -59,6 +61,14 @@ to the dentry cache with
|
||||
|
||||
slub_debug=F,dentry
|
||||
|
||||
Debugging options may require the minimum possible slab order to increase as
|
||||
a result of storing the metadata (for example, caches with PAGE_SIZE object
|
||||
sizes). This has a higher liklihood of resulting in slab allocation errors
|
||||
in low memory situations or if there's high fragmentation of memory. To
|
||||
switch off debugging for such caches by default, use
|
||||
|
||||
slub_debug=O
|
||||
|
||||
In case you forgot to enable debugging on the kernel command line: It is
|
||||
possible to enable debugging manually when the kernel is up. Look at the
|
||||
contents of:
|
||||
|
@@ -12,6 +12,7 @@ Offset Proto Name Meaning
|
||||
000/040 ALL screen_info Text mode or frame buffer information
|
||||
(struct screen_info)
|
||||
040/014 ALL apm_bios_info APM BIOS information (struct apm_bios_info)
|
||||
058/008 ALL tboot_addr Physical address of tboot shared page
|
||||
060/010 ALL ist_info Intel SpeedStep (IST) BIOS support information
|
||||
(struct ist_info)
|
||||
080/010 ALL hd0_info hd0 disk parameter, OBSOLETE!!
|
||||
|
Reference in New Issue
Block a user