crypto: ccp - Add abstraction for device-specific calls

Support for different generations of the coprocessor
requires that an abstraction layer be implemented for
interacting with the hardware. This patch splits out
version-specific functions to a separate file and populates
the version structure (acting as a driver) with function
pointers.

Signed-off-by: Gary R Hook <gary.hook@amd.com>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Gary R Hook
2016-03-01 13:49:25 -06:00
committed by Herbert Xu
parent c7019c4d73
commit ea0375afa1
7 changed files with 711 additions and 668 deletions

View File

@@ -141,9 +141,25 @@
#define CCP_ECC_RESULT_OFFSET 60
#define CCP_ECC_RESULT_SUCCESS 0x0001
struct ccp_op;
/* Structure for computation functions that are device-specific */
struct ccp_actions {
int (*perform_aes)(struct ccp_op *);
int (*perform_xts_aes)(struct ccp_op *);
int (*perform_sha)(struct ccp_op *);
int (*perform_rsa)(struct ccp_op *);
int (*perform_passthru)(struct ccp_op *);
int (*perform_ecc)(struct ccp_op *);
int (*init)(struct ccp_device *);
void (*destroy)(struct ccp_device *);
irqreturn_t (*irqhandler)(int, void *);
};
/* Structure to hold CCP version-specific values */
struct ccp_vdata {
unsigned int version;
struct ccp_actions *perform;
};
extern struct ccp_vdata ccpv3;
@@ -273,18 +289,132 @@ struct ccp_device {
unsigned int axcache;
};
enum ccp_memtype {
CCP_MEMTYPE_SYSTEM = 0,
CCP_MEMTYPE_KSB,
CCP_MEMTYPE_LOCAL,
CCP_MEMTYPE__LAST,
};
struct ccp_dma_info {
dma_addr_t address;
unsigned int offset;
unsigned int length;
enum dma_data_direction dir;
};
struct ccp_dm_workarea {
struct device *dev;
struct dma_pool *dma_pool;
unsigned int length;
u8 *address;
struct ccp_dma_info dma;
};
struct ccp_sg_workarea {
struct scatterlist *sg;
int nents;
struct scatterlist *dma_sg;
struct device *dma_dev;
unsigned int dma_count;
enum dma_data_direction dma_dir;
unsigned int sg_used;
u64 bytes_left;
};
struct ccp_data {
struct ccp_sg_workarea sg_wa;
struct ccp_dm_workarea dm_wa;
};
struct ccp_mem {
enum ccp_memtype type;
union {
struct ccp_dma_info dma;
u32 ksb;
} u;
};
struct ccp_aes_op {
enum ccp_aes_type type;
enum ccp_aes_mode mode;
enum ccp_aes_action action;
};
struct ccp_xts_aes_op {
enum ccp_aes_action action;
enum ccp_xts_aes_unit_size unit_size;
};
struct ccp_sha_op {
enum ccp_sha_type type;
u64 msg_bits;
};
struct ccp_rsa_op {
u32 mod_size;
u32 input_len;
};
struct ccp_passthru_op {
enum ccp_passthru_bitwise bit_mod;
enum ccp_passthru_byteswap byte_swap;
};
struct ccp_ecc_op {
enum ccp_ecc_function function;
};
struct ccp_op {
struct ccp_cmd_queue *cmd_q;
u32 jobid;
u32 ioc;
u32 soc;
u32 ksb_key;
u32 ksb_ctx;
u32 init;
u32 eom;
struct ccp_mem src;
struct ccp_mem dst;
union {
struct ccp_aes_op aes;
struct ccp_xts_aes_op xts;
struct ccp_sha_op sha;
struct ccp_rsa_op rsa;
struct ccp_passthru_op passthru;
struct ccp_ecc_op ecc;
} u;
};
static inline u32 ccp_addr_lo(struct ccp_dma_info *info)
{
return lower_32_bits(info->address + info->offset);
}
static inline u32 ccp_addr_hi(struct ccp_dma_info *info)
{
return upper_32_bits(info->address + info->offset) & 0x0000ffff;
}
int ccp_pci_init(void);
void ccp_pci_exit(void);
int ccp_platform_init(void);
void ccp_platform_exit(void);
struct ccp_device *ccp_alloc_struct(struct device *dev);
int ccp_init(struct ccp_device *ccp);
void ccp_destroy(struct ccp_device *ccp);
bool ccp_queues_suspended(struct ccp_device *ccp);
void ccp_add_device(struct ccp_device *ccp);
void ccp_del_device(struct ccp_device *ccp);
irqreturn_t ccp_irq_handler(int irq, void *data);
struct ccp_device *ccp_alloc_struct(struct device *dev);
bool ccp_queues_suspended(struct ccp_device *ccp);
int ccp_cmd_queue_thread(void *data);
int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd);