Merge tag 'docs-4.19' of git://git.lwn.net/linux
Pull documentation update from Jonathan Corbet: "This was a moderately busy cycle for docs, with the usual collection of small fixes and updates. We also have new ktime_get_*() docs from Arnd, some kernel-doc fixes, a new set of Italian translations (non so se vale la pena, ma non fa male - speriamo bene), and some extensive early memory-management documentation improvements from Mike Rapoport" * tag 'docs-4.19' of git://git.lwn.net/linux: (52 commits) Documentation: corrections to console/console.txt Documentation: add ioctl number entry for v4l2-subdev.h Remove gendered language from management style documentation scripts/kernel-doc: Escape all literal braces in regexes docs/mm: add description of boot time memory management docs/mm: memblock: add overview documentation docs/mm: memblock: add kernel-doc description for memblock types docs/mm: memblock: add kernel-doc comments for memblock_add[_node] docs/mm: memblock: update kernel-doc comments mm/memblock: add a name for memblock flags enumeration docs/mm: bootmem: add overview documentation docs/mm: bootmem: add kernel-doc description of 'struct bootmem_data' docs/mm: bootmem: fix kernel-doc warnings docs/mm: nobootmem: fixup kernel-doc comments mm/bootmem: drop duplicated kernel-doc comments Documentation: vm.txt: Adding 'nr_hugepages_mempolicy' parameter description. doc:it_IT: translation for kernel-hacking docs: Fix the reference labels in Locking.rst doc: tracing: Fix a typo of trace_stat mm: Introduce new type vm_fault_t ...
This commit is contained in:
92
Documentation/core-api/boot-time-mm.rst
Normal file
92
Documentation/core-api/boot-time-mm.rst
Normal file
@@ -0,0 +1,92 @@
|
||||
===========================
|
||||
Boot time memory management
|
||||
===========================
|
||||
|
||||
Early system initialization cannot use "normal" memory management
|
||||
simply because it is not set up yet. But there is still need to
|
||||
allocate memory for various data structures, for instance for the
|
||||
physical page allocator. To address this, a specialized allocator
|
||||
called the :ref:`Boot Memory Allocator <bootmem>`, or bootmem, was
|
||||
introduced. Several years later PowerPC developers added a "Logical
|
||||
Memory Blocks" allocator, which was later adopted by other
|
||||
architectures and renamed to :ref:`memblock <memblock>`. There is also
|
||||
a compatibility layer called `nobootmem` that translates bootmem
|
||||
allocation interfaces to memblock calls.
|
||||
|
||||
The selection of the early allocator is done using
|
||||
``CONFIG_NO_BOOTMEM`` and ``CONFIG_HAVE_MEMBLOCK`` kernel
|
||||
configuration options. These options are enabled or disabled
|
||||
statically by the architectures' Kconfig files.
|
||||
|
||||
* Architectures that rely only on bootmem select
|
||||
``CONFIG_NO_BOOTMEM=n && CONFIG_HAVE_MEMBLOCK=n``.
|
||||
* The users of memblock with the nobootmem compatibility layer set
|
||||
``CONFIG_NO_BOOTMEM=y && CONFIG_HAVE_MEMBLOCK=y``.
|
||||
* And for those that use both memblock and bootmem the configuration
|
||||
includes ``CONFIG_NO_BOOTMEM=n && CONFIG_HAVE_MEMBLOCK=y``.
|
||||
|
||||
Whichever allocator is used, it is the responsibility of the
|
||||
architecture specific initialization to set it up in
|
||||
:c:func:`setup_arch` and tear it down in :c:func:`mem_init` functions.
|
||||
|
||||
Once the early memory management is available it offers a variety of
|
||||
functions and macros for memory allocations. The allocation request
|
||||
may be directed to the first (and probably the only) node or to a
|
||||
particular node in a NUMA system. There are API variants that panic
|
||||
when an allocation fails and those that don't. And more recent and
|
||||
advanced memblock even allows controlling its own behaviour.
|
||||
|
||||
.. _bootmem:
|
||||
|
||||
Bootmem
|
||||
=======
|
||||
|
||||
(mostly stolen from Mel Gorman's "Understanding the Linux Virtual
|
||||
Memory Manager" `book`_)
|
||||
|
||||
.. _book: https://www.kernel.org/doc/gorman/
|
||||
|
||||
.. kernel-doc:: mm/bootmem.c
|
||||
:doc: bootmem overview
|
||||
|
||||
.. _memblock:
|
||||
|
||||
Memblock
|
||||
========
|
||||
|
||||
.. kernel-doc:: mm/memblock.c
|
||||
:doc: memblock overview
|
||||
|
||||
|
||||
Functions and structures
|
||||
========================
|
||||
|
||||
Common API
|
||||
----------
|
||||
|
||||
The functions that are described in this section are available
|
||||
regardless of what early memory manager is enabled.
|
||||
|
||||
.. kernel-doc:: mm/nobootmem.c
|
||||
|
||||
Bootmem specific API
|
||||
--------------------
|
||||
|
||||
These interfaces available only with bootmem, i.e when ``CONFIG_NO_BOOTMEM=n``
|
||||
|
||||
.. kernel-doc:: include/linux/bootmem.h
|
||||
.. kernel-doc:: mm/bootmem.c
|
||||
:nodocs:
|
||||
|
||||
Memblock specific API
|
||||
---------------------
|
||||
|
||||
Here is the description of memblock data structures, functions and
|
||||
macros. Some of them are actually internal, but since they are
|
||||
documented it would be silly to omit them. Besides, reading the
|
||||
descriptions for the internal functions can help to understand what
|
||||
really happens under the hood.
|
||||
|
||||
.. kernel-doc:: include/linux/memblock.h
|
||||
.. kernel-doc:: mm/memblock.c
|
||||
:nodocs:
|
@@ -76,4 +76,6 @@ Functions and structures
|
||||
========================
|
||||
|
||||
.. kernel-doc:: include/linux/idr.h
|
||||
:functions:
|
||||
.. kernel-doc:: lib/idr.c
|
||||
:functions:
|
||||
|
@@ -28,6 +28,8 @@ Core utilities
|
||||
printk-formats
|
||||
circular-buffers
|
||||
gfp_mask-from-fs-io
|
||||
timekeeping
|
||||
boot-time-mm
|
||||
|
||||
Interfaces for kernel debugging
|
||||
===============================
|
||||
|
185
Documentation/core-api/timekeeping.rst
Normal file
185
Documentation/core-api/timekeeping.rst
Normal file
@@ -0,0 +1,185 @@
|
||||
ktime accessors
|
||||
===============
|
||||
|
||||
Device drivers can read the current time using ktime_get() and the many
|
||||
related functions declared in linux/timekeeping.h. As a rule of thumb,
|
||||
using an accessor with a shorter name is preferred over one with a longer
|
||||
name if both are equally fit for a particular use case.
|
||||
|
||||
Basic ktime_t based interfaces
|
||||
------------------------------
|
||||
|
||||
The recommended simplest form returns an opaque ktime_t, with variants
|
||||
that return time for different clock references:
|
||||
|
||||
|
||||
.. c:function:: ktime_t ktime_get( void )
|
||||
|
||||
CLOCK_MONOTONIC
|
||||
|
||||
Useful for reliable timestamps and measuring short time intervals
|
||||
accurately. Starts at system boot time but stops during suspend.
|
||||
|
||||
.. c:function:: ktime_t ktime_get_boottime( void )
|
||||
|
||||
CLOCK_BOOTTIME
|
||||
|
||||
Like ktime_get(), but does not stop when suspended. This can be
|
||||
used e.g. for key expiration times that need to be synchronized
|
||||
with other machines across a suspend operation.
|
||||
|
||||
.. c:function:: ktime_t ktime_get_real( void )
|
||||
|
||||
CLOCK_REALTIME
|
||||
|
||||
Returns the time in relative to the UNIX epoch starting in 1970
|
||||
using the Coordinated Universal Time (UTC), same as gettimeofday()
|
||||
user space. This is used for all timestamps that need to
|
||||
persist across a reboot, like inode times, but should be avoided
|
||||
for internal uses, since it can jump backwards due to a leap
|
||||
second update, NTP adjustment settimeofday() operation from user
|
||||
space.
|
||||
|
||||
.. c:function:: ktime_t ktime_get_clocktai( void )
|
||||
|
||||
CLOCK_TAI
|
||||
|
||||
Like ktime_get_real(), but uses the International Atomic Time (TAI)
|
||||
reference instead of UTC to avoid jumping on leap second updates.
|
||||
This is rarely useful in the kernel.
|
||||
|
||||
.. c:function:: ktime_t ktime_get_raw( void )
|
||||
|
||||
CLOCK_MONOTONIC_RAW
|
||||
|
||||
Like ktime_get(), but runs at the same rate as the hardware
|
||||
clocksource without (NTP) adjustments for clock drift. This is
|
||||
also rarely needed in the kernel.
|
||||
|
||||
nanosecond, timespec64, and second output
|
||||
-----------------------------------------
|
||||
|
||||
For all of the above, there are variants that return the time in a
|
||||
different format depending on what is required by the user:
|
||||
|
||||
.. c:function:: u64 ktime_get_ns( void )
|
||||
u64 ktime_get_boottime_ns( void )
|
||||
u64 ktime_get_real_ns( void )
|
||||
u64 ktime_get_tai_ns( void )
|
||||
u64 ktime_get_raw_ns( void )
|
||||
|
||||
Same as the plain ktime_get functions, but returning a u64 number
|
||||
of nanoseconds in the respective time reference, which may be
|
||||
more convenient for some callers.
|
||||
|
||||
.. c:function:: void ktime_get_ts64( struct timespec64 * )
|
||||
void ktime_get_boottime_ts64( struct timespec64 * )
|
||||
void ktime_get_real_ts64( struct timespec64 * )
|
||||
void ktime_get_clocktai_ts64( struct timespec64 * )
|
||||
void ktime_get_raw_ts64( struct timespec64 * )
|
||||
|
||||
Same above, but returns the time in a 'struct timespec64', split
|
||||
into seconds and nanoseconds. This can avoid an extra division
|
||||
when printing the time, or when passing it into an external
|
||||
interface that expects a 'timespec' or 'timeval' structure.
|
||||
|
||||
.. c:function:: time64_t ktime_get_seconds( void )
|
||||
time64_t ktime_get_boottime_seconds( void )
|
||||
time64_t ktime_get_real_seconds( void )
|
||||
time64_t ktime_get_clocktai_seconds( void )
|
||||
time64_t ktime_get_raw_seconds( void )
|
||||
|
||||
Return a coarse-grained version of the time as a scalar
|
||||
time64_t. This avoids accessing the clock hardware and rounds
|
||||
down the seconds to the full seconds of the last timer tick
|
||||
using the respective reference.
|
||||
|
||||
Coarse and fast_ns access
|
||||
-------------------------
|
||||
|
||||
Some additional variants exist for more specialized cases:
|
||||
|
||||
.. c:function:: ktime_t ktime_get_coarse_boottime( void )
|
||||
ktime_t ktime_get_coarse_real( void )
|
||||
ktime_t ktime_get_coarse_clocktai( void )
|
||||
ktime_t ktime_get_coarse_raw( void )
|
||||
|
||||
.. c:function:: void ktime_get_coarse_ts64( struct timespec64 * )
|
||||
void ktime_get_coarse_boottime_ts64( struct timespec64 * )
|
||||
void ktime_get_coarse_real_ts64( struct timespec64 * )
|
||||
void ktime_get_coarse_clocktai_ts64( struct timespec64 * )
|
||||
void ktime_get_coarse_raw_ts64( struct timespec64 * )
|
||||
|
||||
These are quicker than the non-coarse versions, but less accurate,
|
||||
corresponding to CLOCK_MONONOTNIC_COARSE and CLOCK_REALTIME_COARSE
|
||||
in user space, along with the equivalent boottime/tai/raw
|
||||
timebase not available in user space.
|
||||
|
||||
The time returned here corresponds to the last timer tick, which
|
||||
may be as much as 10ms in the past (for CONFIG_HZ=100), same as
|
||||
reading the 'jiffies' variable. These are only useful when called
|
||||
in a fast path and one still expects better than second accuracy,
|
||||
but can't easily use 'jiffies', e.g. for inode timestamps.
|
||||
Skipping the hardware clock access saves around 100 CPU cycles
|
||||
on most modern machines with a reliable cycle counter, but
|
||||
up to several microseconds on older hardware with an external
|
||||
clocksource.
|
||||
|
||||
.. c:function:: u64 ktime_get_mono_fast_ns( void )
|
||||
u64 ktime_get_raw_fast_ns( void )
|
||||
u64 ktime_get_boot_fast_ns( void )
|
||||
u64 ktime_get_real_fast_ns( void )
|
||||
|
||||
These variants are safe to call from any context, including from
|
||||
a non-maskable interrupt (NMI) during a timekeeper update, and
|
||||
while we are entering suspend with the clocksource powered down.
|
||||
This is useful in some tracing or debugging code as well as
|
||||
machine check reporting, but most drivers should never call them,
|
||||
since the time is allowed to jump under certain conditions.
|
||||
|
||||
Deprecated time interfaces
|
||||
--------------------------
|
||||
|
||||
Older kernels used some other interfaces that are now being phased out
|
||||
but may appear in third-party drivers being ported here. In particular,
|
||||
all interfaces returning a 'struct timeval' or 'struct timespec' have
|
||||
been replaced because the tv_sec member overflows in year 2038 on 32-bit
|
||||
architectures. These are the recommended replacements:
|
||||
|
||||
.. c:function:: void ktime_get_ts( struct timespec * )
|
||||
|
||||
Use ktime_get() or ktime_get_ts64() instead.
|
||||
|
||||
.. c:function:: struct timeval do_gettimeofday( void )
|
||||
struct timespec getnstimeofday( void )
|
||||
struct timespec64 getnstimeofday64( void )
|
||||
void ktime_get_real_ts( struct timespec * )
|
||||
|
||||
ktime_get_real_ts64() is a direct replacement, but consider using
|
||||
monotonic time (ktime_get_ts64()) and/or a ktime_t based interface
|
||||
(ktime_get()/ktime_get_real()).
|
||||
|
||||
.. c:function:: struct timespec current_kernel_time( void )
|
||||
struct timespec64 current_kernel_time64( void )
|
||||
struct timespec get_monotonic_coarse( void )
|
||||
struct timespec64 get_monotonic_coarse64( void )
|
||||
|
||||
These are replaced by ktime_get_coarse_real_ts64() and
|
||||
ktime_get_coarse_ts64(). However, A lot of code that wants
|
||||
coarse-grained times can use the simple 'jiffies' instead, while
|
||||
some drivers may actually want the higher resolution accessors
|
||||
these days.
|
||||
|
||||
.. c:function:: struct timespec getrawmonotonic( void )
|
||||
struct timespec64 getrawmonotonic64( void )
|
||||
struct timespec timekeeping_clocktai( void )
|
||||
struct timespec64 timekeeping_clocktai64( void )
|
||||
struct timespec get_monotonic_boottime( void )
|
||||
struct timespec64 get_monotonic_boottime64( void )
|
||||
|
||||
These are replaced by ktime_get_raw()/ktime_get_raw_ts64(),
|
||||
ktime_get_clocktai()/ktime_get_clocktai_ts64() as well
|
||||
as ktime_get_boottime()/ktime_get_boottime_ts64().
|
||||
However, if the particular choice of clock source is not
|
||||
important for the user, consider converting to
|
||||
ktime_get()/ktime_get_ts64() instead for consistency.
|
Reference in New Issue
Block a user