mm: replace ACCESS_ONCE with READ_ONCE or barriers

ACCESS_ONCE does not work reliably on non-scalar types. For
example gcc 4.6 and 4.7 might remove the volatile tag for such
accesses during the SRA (scalar replacement of aggregates) step
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145)

Let's change the code to access the page table elements with
READ_ONCE that does implicit scalar accesses for the gup code.

mm_find_pmd is tricky, because m68k and sparc(32bit) define pmd_t
as array of longs. This code requires just that the pmd_present
and pmd_trans_huge check are done on the same value, so a barrier
is sufficent.

A similar case is in handle_pte_fault. On ppc44x the word size is
32 bit, but a pte is 64 bit. A barrier is ok as well.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: linux-mm@kvack.org
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
此提交包含在:
Christian Borntraeger
2014-12-07 21:41:33 +01:00
父節點 230fa253df
當前提交 e37c698270
共有 3 個檔案被更改,包括 13 行新增3 行删除

查看文件

@@ -3202,7 +3202,16 @@ static int handle_pte_fault(struct mm_struct *mm,
pte_t entry;
spinlock_t *ptl;
entry = ACCESS_ONCE(*pte);
/*
* some architectures can have larger ptes than wordsize,
* e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
* so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
* The code below just needs a consistent view for the ifs and
* we later double check anyway with the ptl lock held. So here
* a barrier will do.
*/
entry = *pte;
barrier();
if (!pte_present(entry)) {
if (pte_none(entry)) {
if (vma->vm_ops) {