lguest: documentation update

Went through the documentation doing typo and content fixes.  This
patch contains only comment and whitespace changes.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
このコミットが含まれているのは:
Rusty Russell
2007-10-25 15:02:50 +10:00
コミット e1e72965ec
16個のファイルの変更414行の追加266行の削除

ファイルの表示

@@ -63,7 +63,7 @@ static struct lguest_pages *lguest_pages(unsigned int cpu)
static DEFINE_PER_CPU(struct lguest *, last_guest);
/*S:010
* We are getting close to the Switcher.
* We approach the Switcher.
*
* Remember that each CPU has two pages which are visible to the Guest when it
* runs on that CPU. This has to contain the state for that Guest: we copy the
@@ -134,7 +134,7 @@ static void run_guest_once(struct lguest *lg, struct lguest_pages *pages)
*
* The lcall also pushes the old code segment (KERNEL_CS) onto the
* stack, then the address of this call. This stack layout happens to
* exactly match the stack of an interrupt... */
* exactly match the stack layout created by an interrupt... */
asm volatile("pushf; lcall *lguest_entry"
/* This is how we tell GCC that %eax ("a") and %ebx ("b")
* are changed by this routine. The "=" means output. */
@@ -151,40 +151,46 @@ static void run_guest_once(struct lguest *lg, struct lguest_pages *pages)
}
/*:*/
/*M:002 There are hooks in the scheduler which we can register to tell when we
* get kicked off the CPU (preempt_notifier_register()). This would allow us
* to lazily disable SYSENTER which would regain some performance, and should
* also simplify copy_in_guest_info(). Note that we'd still need to restore
* things when we exit to Launcher userspace, but that's fairly easy.
*
* The hooks were designed for KVM, but we can also put them to good use. :*/
/*H:040 This is the i386-specific code to setup and run the Guest. Interrupts
* are disabled: we own the CPU. */
void lguest_arch_run_guest(struct lguest *lg)
{
/* Remember the awfully-named TS bit? If the Guest has asked
* to set it we set it now, so we can trap and pass that trap
* to the Guest if it uses the FPU. */
/* Remember the awfully-named TS bit? If the Guest has asked to set it
* we set it now, so we can trap and pass that trap to the Guest if it
* uses the FPU. */
if (lg->ts)
lguest_set_ts();
/* SYSENTER is an optimized way of doing system calls. We
* can't allow it because it always jumps to privilege level 0.
* A normal Guest won't try it because we don't advertise it in
* CPUID, but a malicious Guest (or malicious Guest userspace
* program) could, so we tell the CPU to disable it before
* running the Guest. */
/* SYSENTER is an optimized way of doing system calls. We can't allow
* it because it always jumps to privilege level 0. A normal Guest
* won't try it because we don't advertise it in CPUID, but a malicious
* Guest (or malicious Guest userspace program) could, so we tell the
* CPU to disable it before running the Guest. */
if (boot_cpu_has(X86_FEATURE_SEP))
wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
/* Now we actually run the Guest. It will pop back out when
* something interesting happens, and we can examine its
* registers to see what it was doing. */
/* Now we actually run the Guest. It will return when something
* interesting happens, and we can examine its registers to see what it
* was doing. */
run_guest_once(lg, lguest_pages(raw_smp_processor_id()));
/* The "regs" pointer contains two extra entries which are not
* really registers: a trap number which says what interrupt or
* trap made the switcher code come back, and an error code
* which some traps set. */
/* Note that the "regs" pointer contains two extra entries which are
* not really registers: a trap number which says what interrupt or
* trap made the switcher code come back, and an error code which some
* traps set. */
/* If the Guest page faulted, then the cr2 register will tell
* us the bad virtual address. We have to grab this now,
* because once we re-enable interrupts an interrupt could
* fault and thus overwrite cr2, or we could even move off to a
* different CPU. */
/* If the Guest page faulted, then the cr2 register will tell us the
* bad virtual address. We have to grab this now, because once we
* re-enable interrupts an interrupt could fault and thus overwrite
* cr2, or we could even move off to a different CPU. */
if (lg->regs->trapnum == 14)
lg->arch.last_pagefault = read_cr2();
/* Similarly, if we took a trap because the Guest used the FPU,
@@ -197,14 +203,15 @@ void lguest_arch_run_guest(struct lguest *lg)
wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
}
/*H:130 Our Guest is usually so well behaved; it never tries to do things it
* isn't allowed to. Unfortunately, Linux's paravirtual infrastructure isn't
* quite complete, because it doesn't contain replacements for the Intel I/O
* instructions. As a result, the Guest sometimes fumbles across one during
* the boot process as it probes for various things which are usually attached
* to a PC.
/*H:130 Now we've examined the hypercall code; our Guest can make requests.
* Our Guest is usually so well behaved; it never tries to do things it isn't
* allowed to, and uses hypercalls instead. Unfortunately, Linux's paravirtual
* infrastructure isn't quite complete, because it doesn't contain replacements
* for the Intel I/O instructions. As a result, the Guest sometimes fumbles
* across one during the boot process as it probes for various things which are
* usually attached to a PC.
*
* When the Guest uses one of these instructions, we get trap #13 (General
* When the Guest uses one of these instructions, we get a trap (General
* Protection Fault) and come here. We see if it's one of those troublesome
* instructions and skip over it. We return true if we did. */
static int emulate_insn(struct lguest *lg)
@@ -275,43 +282,43 @@ static int emulate_insn(struct lguest *lg)
void lguest_arch_handle_trap(struct lguest *lg)
{
switch (lg->regs->trapnum) {
case 13: /* We've intercepted a GPF. */
/* Check if this was one of those annoying IN or OUT
* instructions which we need to emulate. If so, we
* just go back into the Guest after we've done it. */
case 13: /* We've intercepted a General Protection Fault. */
/* Check if this was one of those annoying IN or OUT
* instructions which we need to emulate. If so, we just go
* back into the Guest after we've done it. */
if (lg->regs->errcode == 0) {
if (emulate_insn(lg))
return;
}
break;
case 14: /* We've intercepted a page fault. */
/* The Guest accessed a virtual address that wasn't
* mapped. This happens a lot: we don't actually set
* up most of the page tables for the Guest at all when
* we start: as it runs it asks for more and more, and
* we set them up as required. In this case, we don't
* even tell the Guest that the fault happened.
*
* The errcode tells whether this was a read or a
* write, and whether kernel or userspace code. */
case 14: /* We've intercepted a Page Fault. */
/* The Guest accessed a virtual address that wasn't mapped.
* This happens a lot: we don't actually set up most of the
* page tables for the Guest at all when we start: as it runs
* it asks for more and more, and we set them up as
* required. In this case, we don't even tell the Guest that
* the fault happened.
*
* The errcode tells whether this was a read or a write, and
* whether kernel or userspace code. */
if (demand_page(lg, lg->arch.last_pagefault, lg->regs->errcode))
return;
/* OK, it's really not there (or not OK): the Guest
* needs to know. We write out the cr2 value so it
* knows where the fault occurred.
*
* Note that if the Guest were really messed up, this
* could happen before it's done the INITIALIZE
* hypercall, so lg->lguest_data will be NULL */
/* OK, it's really not there (or not OK): the Guest needs to
* know. We write out the cr2 value so it knows where the
* fault occurred.
*
* Note that if the Guest were really messed up, this could
* happen before it's done the LHCALL_LGUEST_INIT hypercall, so
* lg->lguest_data could be NULL */
if (lg->lguest_data &&
put_user(lg->arch.last_pagefault, &lg->lguest_data->cr2))
kill_guest(lg, "Writing cr2");
break;
case 7: /* We've intercepted a Device Not Available fault. */
/* If the Guest doesn't want to know, we already
* restored the Floating Point Unit, so we just
* continue without telling it. */
/* If the Guest doesn't want to know, we already restored the
* Floating Point Unit, so we just continue without telling
* it. */
if (!lg->ts)
return;
break;
@@ -536,9 +543,6 @@ int lguest_arch_init_hypercalls(struct lguest *lg)
return 0;
}
/* Now we've examined the hypercall code; our Guest can make requests. There
* is one other way we can do things for the Guest, as we see in
* emulate_insn(). :*/
/*L:030 lguest_arch_setup_regs()
*
@@ -570,8 +574,8 @@ void lguest_arch_setup_regs(struct lguest *lg, unsigned long start)
/* %esi points to our boot information, at physical address 0, so don't
* touch it. */
/* There are a couple of GDT entries the Guest expects when first
* booting. */
setup_guest_gdt(lg);
}

ファイルの表示

@@ -6,6 +6,37 @@
* are feeling invigorated and refreshed then the next, more challenging stage
* can be found in "make Guest". :*/
/*M:012 Lguest is meant to be simple: my rule of thumb is that 1% more LOC must
* gain at least 1% more performance. Since neither LOC nor performance can be
* measured beforehand, it generally means implementing a feature then deciding
* if it's worth it. And once it's implemented, who can say no?
*
* This is why I haven't implemented this idea myself. I want to, but I
* haven't. You could, though.
*
* The main place where lguest performance sucks is Guest page faulting. When
* a Guest userspace process hits an unmapped page we switch back to the Host,
* walk the page tables, find it's not mapped, switch back to the Guest page
* fault handler, which calls a hypercall to set the page table entry, then
* finally returns to userspace. That's two round-trips.
*
* If we had a small walker in the Switcher, we could quickly check the Guest
* page table and if the page isn't mapped, immediately reflect the fault back
* into the Guest. This means the Switcher would have to know the top of the
* Guest page table and the page fault handler address.
*
* For simplicity, the Guest should only handle the case where the privilege
* level of the fault is 3 and probably only not present or write faults. It
* should also detect recursive faults, and hand the original fault to the
* Host (which is actually really easy).
*
* Two questions remain. Would the performance gain outweigh the complexity?
* And who would write the verse documenting it? :*/
/*M:011 Lguest64 handles NMI. This gave me NMI envy (until I looked at their
* code). It's worth doing though, since it would let us use oprofile in the
* Host when a Guest is running. :*/
/*S:100
* Welcome to the Switcher itself!
*
@@ -88,7 +119,7 @@ ENTRY(switch_to_guest)
// All saved and there's now five steps before us:
// Stack, GDT, IDT, TSS
// And last of all the page tables are flipped.
// Then last of all the page tables are flipped.
// Yet beware that our stack pointer must be
// Always valid lest an NMI hits
@@ -103,25 +134,25 @@ ENTRY(switch_to_guest)
lgdt LGUEST_PAGES_guest_gdt_desc(%eax)
// The Guest's IDT we did partially
// Move to the "struct lguest_pages" as well.
// Copy to "struct lguest_pages" as well.
lidt LGUEST_PAGES_guest_idt_desc(%eax)
// The TSS entry which controls traps
// Must be loaded up with "ltr" now:
// The GDT entry that TSS uses
// Changes type when we load it: damn Intel!
// For after we switch over our page tables
// It (as the rest) will be writable no more.
// (The GDT entry TSS needs
// Changes type when we load it: damn Intel!)
// That entry will be read-only: we'd crash.
movl $(GDT_ENTRY_TSS*8), %edx
ltr %dx
// Look back now, before we take this last step!
// The Host's TSS entry was also marked used;
// Let's clear it again, ere we return.
// Let's clear it again for our return.
// The GDT descriptor of the Host
// Points to the table after two "size" bytes
movl (LGUEST_PAGES_host_gdt_desc+2)(%eax), %edx
// Clear the type field of "used" (byte 5, bit 2)
// Clear "used" from type field (byte 5, bit 2)
andb $0xFD, (GDT_ENTRY_TSS*8 + 5)(%edx)
// Once our page table's switched, the Guest is live!
@@ -131,7 +162,7 @@ ENTRY(switch_to_guest)
// The page table change did one tricky thing:
// The Guest's register page has been mapped
// Writable onto our %esp (stack) --
// Writable under our %esp (stack) --
// We can simply pop off all Guest regs.
popl %eax
popl %ebx
@@ -152,16 +183,15 @@ ENTRY(switch_to_guest)
addl $8, %esp
// The last five stack slots hold return address
// And everything needed to change privilege
// Into the Guest privilege level of 1,
// And everything needed to switch privilege
// From Switcher's level 0 to Guest's 1,
// And the stack where the Guest had last left it.
// Interrupts are turned back on: we are Guest.
iret
// There are two paths where we switch to the Host
// We treat two paths to switch back to the Host
// Yet both must save Guest state and restore Host
// So we put the routine in a macro.
// We are on our way home, back to the Host
// Interrupted out of the Guest, we come here.
#define SWITCH_TO_HOST \
/* We save the Guest state: all registers first \
* Laid out just as "struct lguest_regs" defines */ \
@@ -194,7 +224,7 @@ ENTRY(switch_to_guest)
movl %esp, %eax; \
andl $(~(1 << PAGE_SHIFT - 1)), %eax; \
/* Save our trap number: the switch will obscure it \
* (The Guest regs are not mapped here in the Host) \
* (In the Host the Guest regs are not mapped here) \
* %ebx holds it safe for deliver_to_host */ \
movl LGUEST_PAGES_regs_trapnum(%eax), %ebx; \
/* The Host GDT, IDT and stack! \
@@ -210,9 +240,9 @@ ENTRY(switch_to_guest)
/* Switch to Host's GDT, IDT. */ \
lgdt LGUEST_PAGES_host_gdt_desc(%eax); \
lidt LGUEST_PAGES_host_idt_desc(%eax); \
/* Restore the Host's stack where it's saved regs lie */ \
/* Restore the Host's stack where its saved regs lie */ \
movl LGUEST_PAGES_host_sp(%eax), %esp; \
/* Last the TSS: our Host is complete */ \
/* Last the TSS: our Host is returned */ \
movl $(GDT_ENTRY_TSS*8), %edx; \
ltr %dx; \
/* Restore now the regs saved right at the first. */ \
@@ -222,14 +252,15 @@ ENTRY(switch_to_guest)
popl %ds; \
popl %es
// Here's where we come when the Guest has just trapped:
// (Which trap we'll see has been pushed on the stack).
// The first path is trod when the Guest has trapped:
// (Which trap it was has been pushed on the stack).
// We need only switch back, and the Host will decode
// Why we came home, and what needs to be done.
return_to_host:
SWITCH_TO_HOST
iret
// We are lead to the second path like so:
// An interrupt, with some cause external
// Has ajerked us rudely from the Guest's code
// Again we must return home to the Host
@@ -238,7 +269,7 @@ deliver_to_host:
// But now we must go home via that place
// Where that interrupt was supposed to go
// Had we not been ensconced, running the Guest.
// Here we see the cleverness of our stack:
// Here we see the trickness of run_guest_once():
// The Host stack is formed like an interrupt
// With EIP, CS and EFLAGS layered.
// Interrupt handlers end with "iret"
@@ -263,7 +294,7 @@ deliver_to_host:
xorw %ax, %ax
orl %eax, %edx
// Now the address of the handler's in %edx
// We call it now: its "iret" takes us home.
// We call it now: its "iret" drops us home.
jmp *%edx
// Every interrupt can come to us here