KVM: x86: switch to kvm_get_dirty_log_protect
We now have a generic function that does most of the work of kvm_vm_ioctl_get_dirty_log, now use it. Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Mario Smarduch <m.smarduch@samsung.com>
This commit is contained in:

committed by
Christoffer Dall

parent
ba0513b5b8
commit
e108ff2f80
@@ -3748,83 +3748,37 @@ static int kvm_vm_ioctl_reinject(struct kvm *kvm,
|
||||
* @kvm: kvm instance
|
||||
* @log: slot id and address to which we copy the log
|
||||
*
|
||||
* We need to keep it in mind that VCPU threads can write to the bitmap
|
||||
* concurrently. So, to avoid losing data, we keep the following order for
|
||||
* each bit:
|
||||
* Steps 1-4 below provide general overview of dirty page logging. See
|
||||
* kvm_get_dirty_log_protect() function description for additional details.
|
||||
*
|
||||
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
|
||||
* always flush the TLB (step 4) even if previous step failed and the dirty
|
||||
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
|
||||
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
|
||||
* writes will be marked dirty for next log read.
|
||||
*
|
||||
* 1. Take a snapshot of the bit and clear it if needed.
|
||||
* 2. Write protect the corresponding page.
|
||||
* 3. Flush TLB's if needed.
|
||||
* 4. Copy the snapshot to the userspace.
|
||||
*
|
||||
* Between 2 and 3, the guest may write to the page using the remaining TLB
|
||||
* entry. This is not a problem because the page will be reported dirty at
|
||||
* step 4 using the snapshot taken before and step 3 ensures that successive
|
||||
* writes will be logged for the next call.
|
||||
* 3. Copy the snapshot to the userspace.
|
||||
* 4. Flush TLB's if needed.
|
||||
*/
|
||||
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
|
||||
{
|
||||
int r;
|
||||
struct kvm_memory_slot *memslot;
|
||||
unsigned long n, i;
|
||||
unsigned long *dirty_bitmap;
|
||||
unsigned long *dirty_bitmap_buffer;
|
||||
bool is_dirty = false;
|
||||
int r;
|
||||
|
||||
mutex_lock(&kvm->slots_lock);
|
||||
|
||||
r = -EINVAL;
|
||||
if (log->slot >= KVM_USER_MEM_SLOTS)
|
||||
goto out;
|
||||
|
||||
memslot = id_to_memslot(kvm->memslots, log->slot);
|
||||
|
||||
dirty_bitmap = memslot->dirty_bitmap;
|
||||
r = -ENOENT;
|
||||
if (!dirty_bitmap)
|
||||
goto out;
|
||||
|
||||
n = kvm_dirty_bitmap_bytes(memslot);
|
||||
|
||||
dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
|
||||
memset(dirty_bitmap_buffer, 0, n);
|
||||
|
||||
spin_lock(&kvm->mmu_lock);
|
||||
|
||||
for (i = 0; i < n / sizeof(long); i++) {
|
||||
unsigned long mask;
|
||||
gfn_t offset;
|
||||
|
||||
if (!dirty_bitmap[i])
|
||||
continue;
|
||||
|
||||
is_dirty = true;
|
||||
|
||||
mask = xchg(&dirty_bitmap[i], 0);
|
||||
dirty_bitmap_buffer[i] = mask;
|
||||
|
||||
offset = i * BITS_PER_LONG;
|
||||
kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
|
||||
}
|
||||
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
|
||||
/* See the comments in kvm_mmu_slot_remove_write_access(). */
|
||||
lockdep_assert_held(&kvm->slots_lock);
|
||||
r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
|
||||
|
||||
/*
|
||||
* All the TLBs can be flushed out of mmu lock, see the comments in
|
||||
* kvm_mmu_slot_remove_write_access().
|
||||
*/
|
||||
lockdep_assert_held(&kvm->slots_lock);
|
||||
if (is_dirty)
|
||||
kvm_flush_remote_tlbs(kvm);
|
||||
|
||||
r = -EFAULT;
|
||||
if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
|
||||
goto out;
|
||||
|
||||
r = 0;
|
||||
out:
|
||||
mutex_unlock(&kvm->slots_lock);
|
||||
return r;
|
||||
}
|
||||
|
Reference in New Issue
Block a user