zsmalloc: zsmalloc documentation
Create zsmalloc doc which explains design concept and stat information. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Juneho Choi <juno.choi@lge.com> Cc: Gunho Lee <gunho.lee@lge.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Seth Jennings <sjennings@variantweb.net> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:

committed by
Linus Torvalds

parent
248ca1b053
commit
d02be50dba
@@ -12,35 +12,6 @@
|
||||
*/
|
||||
|
||||
/*
|
||||
* This allocator is designed for use with zram. Thus, the allocator is
|
||||
* supposed to work well under low memory conditions. In particular, it
|
||||
* never attempts higher order page allocation which is very likely to
|
||||
* fail under memory pressure. On the other hand, if we just use single
|
||||
* (0-order) pages, it would suffer from very high fragmentation --
|
||||
* any object of size PAGE_SIZE/2 or larger would occupy an entire page.
|
||||
* This was one of the major issues with its predecessor (xvmalloc).
|
||||
*
|
||||
* To overcome these issues, zsmalloc allocates a bunch of 0-order pages
|
||||
* and links them together using various 'struct page' fields. These linked
|
||||
* pages act as a single higher-order page i.e. an object can span 0-order
|
||||
* page boundaries. The code refers to these linked pages as a single entity
|
||||
* called zspage.
|
||||
*
|
||||
* For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
|
||||
* since this satisfies the requirements of all its current users (in the
|
||||
* worst case, page is incompressible and is thus stored "as-is" i.e. in
|
||||
* uncompressed form). For allocation requests larger than this size, failure
|
||||
* is returned (see zs_malloc).
|
||||
*
|
||||
* Additionally, zs_malloc() does not return a dereferenceable pointer.
|
||||
* Instead, it returns an opaque handle (unsigned long) which encodes actual
|
||||
* location of the allocated object. The reason for this indirection is that
|
||||
* zsmalloc does not keep zspages permanently mapped since that would cause
|
||||
* issues on 32-bit systems where the VA region for kernel space mappings
|
||||
* is very small. So, before using the allocating memory, the object has to
|
||||
* be mapped using zs_map_object() to get a usable pointer and subsequently
|
||||
* unmapped using zs_unmap_object().
|
||||
*
|
||||
* Following is how we use various fields and flags of underlying
|
||||
* struct page(s) to form a zspage.
|
||||
*
|
||||
|
Reference in New Issue
Block a user