x86/fpu: Move i387.c and xsave.c to arch/x86/kernel/fpu/
Create a new subdirectory for the FPU support code in arch/x86/kernel/fpu/. Rename 'i387.c' to 'core.c' - as this really collects the core FPU support code, nothing i387 specific. We'll better organize this directory in later patches. Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
5
arch/x86/kernel/fpu/Makefile
Normal file
5
arch/x86/kernel/fpu/Makefile
Normal file
@@ -0,0 +1,5 @@
|
||||
#
|
||||
# Build rules for the FPU support code:
|
||||
#
|
||||
|
||||
obj-y += core.o xsave.o
|
718
arch/x86/kernel/fpu/core.c
Normal file
718
arch/x86/kernel/fpu/core.c
Normal file
@@ -0,0 +1,718 @@
|
||||
/*
|
||||
* Copyright (C) 1994 Linus Torvalds
|
||||
*
|
||||
* Pentium III FXSR, SSE support
|
||||
* General FPU state handling cleanups
|
||||
* Gareth Hughes <gareth@valinux.com>, May 2000
|
||||
*/
|
||||
#include <linux/module.h>
|
||||
#include <linux/regset.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <asm/sigcontext.h>
|
||||
#include <asm/processor.h>
|
||||
#include <asm/math_emu.h>
|
||||
#include <asm/tlbflush.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/ptrace.h>
|
||||
#include <asm/i387.h>
|
||||
#include <asm/fpu-internal.h>
|
||||
#include <asm/user.h>
|
||||
|
||||
static DEFINE_PER_CPU(bool, in_kernel_fpu);
|
||||
|
||||
void kernel_fpu_disable(void)
|
||||
{
|
||||
WARN_ON(this_cpu_read(in_kernel_fpu));
|
||||
this_cpu_write(in_kernel_fpu, true);
|
||||
}
|
||||
|
||||
void kernel_fpu_enable(void)
|
||||
{
|
||||
this_cpu_write(in_kernel_fpu, false);
|
||||
}
|
||||
|
||||
/*
|
||||
* Were we in an interrupt that interrupted kernel mode?
|
||||
*
|
||||
* On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
|
||||
* pair does nothing at all: the thread must not have fpu (so
|
||||
* that we don't try to save the FPU state), and TS must
|
||||
* be set (so that the clts/stts pair does nothing that is
|
||||
* visible in the interrupted kernel thread).
|
||||
*
|
||||
* Except for the eagerfpu case when we return true; in the likely case
|
||||
* the thread has FPU but we are not going to set/clear TS.
|
||||
*/
|
||||
static inline bool interrupted_kernel_fpu_idle(void)
|
||||
{
|
||||
if (this_cpu_read(in_kernel_fpu))
|
||||
return false;
|
||||
|
||||
if (use_eager_fpu())
|
||||
return true;
|
||||
|
||||
return !__thread_has_fpu(current) &&
|
||||
(read_cr0() & X86_CR0_TS);
|
||||
}
|
||||
|
||||
/*
|
||||
* Were we in user mode (or vm86 mode) when we were
|
||||
* interrupted?
|
||||
*
|
||||
* Doing kernel_fpu_begin/end() is ok if we are running
|
||||
* in an interrupt context from user mode - we'll just
|
||||
* save the FPU state as required.
|
||||
*/
|
||||
static inline bool interrupted_user_mode(void)
|
||||
{
|
||||
struct pt_regs *regs = get_irq_regs();
|
||||
return regs && user_mode(regs);
|
||||
}
|
||||
|
||||
/*
|
||||
* Can we use the FPU in kernel mode with the
|
||||
* whole "kernel_fpu_begin/end()" sequence?
|
||||
*
|
||||
* It's always ok in process context (ie "not interrupt")
|
||||
* but it is sometimes ok even from an irq.
|
||||
*/
|
||||
bool irq_fpu_usable(void)
|
||||
{
|
||||
return !in_interrupt() ||
|
||||
interrupted_user_mode() ||
|
||||
interrupted_kernel_fpu_idle();
|
||||
}
|
||||
EXPORT_SYMBOL(irq_fpu_usable);
|
||||
|
||||
void __kernel_fpu_begin(void)
|
||||
{
|
||||
struct task_struct *me = current;
|
||||
|
||||
this_cpu_write(in_kernel_fpu, true);
|
||||
|
||||
if (__thread_has_fpu(me)) {
|
||||
__save_init_fpu(me);
|
||||
} else {
|
||||
this_cpu_write(fpu_owner_task, NULL);
|
||||
if (!use_eager_fpu())
|
||||
clts();
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(__kernel_fpu_begin);
|
||||
|
||||
void __kernel_fpu_end(void)
|
||||
{
|
||||
struct task_struct *me = current;
|
||||
|
||||
if (__thread_has_fpu(me)) {
|
||||
if (WARN_ON(restore_fpu_checking(me)))
|
||||
fpu_reset_state(me);
|
||||
} else if (!use_eager_fpu()) {
|
||||
stts();
|
||||
}
|
||||
|
||||
this_cpu_write(in_kernel_fpu, false);
|
||||
}
|
||||
EXPORT_SYMBOL(__kernel_fpu_end);
|
||||
|
||||
/*
|
||||
* Save the FPU state (initialize it if necessary):
|
||||
*
|
||||
* This only ever gets called for the current task.
|
||||
*/
|
||||
void fpu__save(struct task_struct *tsk)
|
||||
{
|
||||
WARN_ON(tsk != current);
|
||||
|
||||
preempt_disable();
|
||||
if (__thread_has_fpu(tsk)) {
|
||||
if (use_eager_fpu()) {
|
||||
__save_fpu(tsk);
|
||||
} else {
|
||||
__save_init_fpu(tsk);
|
||||
__thread_fpu_end(tsk);
|
||||
}
|
||||
}
|
||||
preempt_enable();
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fpu__save);
|
||||
|
||||
unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
|
||||
unsigned int xstate_size;
|
||||
EXPORT_SYMBOL_GPL(xstate_size);
|
||||
static struct i387_fxsave_struct fx_scratch;
|
||||
|
||||
static void mxcsr_feature_mask_init(void)
|
||||
{
|
||||
unsigned long mask = 0;
|
||||
|
||||
if (cpu_has_fxsr) {
|
||||
memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
|
||||
asm volatile("fxsave %0" : "+m" (fx_scratch));
|
||||
mask = fx_scratch.mxcsr_mask;
|
||||
if (mask == 0)
|
||||
mask = 0x0000ffbf;
|
||||
}
|
||||
mxcsr_feature_mask &= mask;
|
||||
}
|
||||
|
||||
static void fpstate_xstate_init_size(void)
|
||||
{
|
||||
/*
|
||||
* Note that xstate_size might be overwriten later during
|
||||
* xsave_init().
|
||||
*/
|
||||
|
||||
if (!cpu_has_fpu) {
|
||||
/*
|
||||
* Disable xsave as we do not support it if i387
|
||||
* emulation is enabled.
|
||||
*/
|
||||
setup_clear_cpu_cap(X86_FEATURE_XSAVE);
|
||||
setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
|
||||
xstate_size = sizeof(struct i387_soft_struct);
|
||||
return;
|
||||
}
|
||||
|
||||
if (cpu_has_fxsr)
|
||||
xstate_size = sizeof(struct i387_fxsave_struct);
|
||||
else
|
||||
xstate_size = sizeof(struct i387_fsave_struct);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called on the boot CPU at bootup to set up the initial FPU state that
|
||||
* is later cloned into all processes.
|
||||
*
|
||||
* Also called on secondary CPUs to set up the FPU state of their
|
||||
* idle threads.
|
||||
*/
|
||||
void fpu__cpu_init(void)
|
||||
{
|
||||
unsigned long cr0;
|
||||
unsigned long cr4_mask = 0;
|
||||
|
||||
#ifndef CONFIG_MATH_EMULATION
|
||||
if (!cpu_has_fpu) {
|
||||
pr_emerg("No FPU found and no math emulation present\n");
|
||||
pr_emerg("Giving up\n");
|
||||
for (;;)
|
||||
asm volatile("hlt");
|
||||
}
|
||||
#endif
|
||||
if (cpu_has_fxsr)
|
||||
cr4_mask |= X86_CR4_OSFXSR;
|
||||
if (cpu_has_xmm)
|
||||
cr4_mask |= X86_CR4_OSXMMEXCPT;
|
||||
if (cr4_mask)
|
||||
cr4_set_bits(cr4_mask);
|
||||
|
||||
cr0 = read_cr0();
|
||||
cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
|
||||
if (!cpu_has_fpu)
|
||||
cr0 |= X86_CR0_EM;
|
||||
write_cr0(cr0);
|
||||
|
||||
/*
|
||||
* fpstate_xstate_init_size() is only called once, to avoid overriding
|
||||
* 'xstate_size' during (secondary CPU) bootup or during CPU hotplug.
|
||||
*/
|
||||
if (xstate_size == 0)
|
||||
fpstate_xstate_init_size();
|
||||
|
||||
mxcsr_feature_mask_init();
|
||||
xsave_init();
|
||||
eager_fpu_init();
|
||||
}
|
||||
|
||||
void fpstate_init(struct fpu *fpu)
|
||||
{
|
||||
if (!cpu_has_fpu) {
|
||||
finit_soft_fpu(&fpu->state->soft);
|
||||
return;
|
||||
}
|
||||
|
||||
memset(fpu->state, 0, xstate_size);
|
||||
|
||||
if (cpu_has_fxsr) {
|
||||
fx_finit(&fpu->state->fxsave);
|
||||
} else {
|
||||
struct i387_fsave_struct *fp = &fpu->state->fsave;
|
||||
fp->cwd = 0xffff037fu;
|
||||
fp->swd = 0xffff0000u;
|
||||
fp->twd = 0xffffffffu;
|
||||
fp->fos = 0xffff0000u;
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fpstate_init);
|
||||
|
||||
int fpstate_alloc(struct fpu *fpu)
|
||||
{
|
||||
if (fpu->state)
|
||||
return 0;
|
||||
|
||||
fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
|
||||
if (!fpu->state)
|
||||
return -ENOMEM;
|
||||
|
||||
/* The CPU requires the FPU state to be aligned to 16 byte boundaries: */
|
||||
WARN_ON((unsigned long)fpu->state & 15);
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fpstate_alloc);
|
||||
|
||||
/*
|
||||
* Allocate the backing store for the current task's FPU registers
|
||||
* and initialize the registers themselves as well.
|
||||
*
|
||||
* Can fail.
|
||||
*/
|
||||
int fpstate_alloc_init(struct task_struct *curr)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (WARN_ON_ONCE(curr != current))
|
||||
return -EINVAL;
|
||||
if (WARN_ON_ONCE(curr->flags & PF_USED_MATH))
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* Memory allocation at the first usage of the FPU and other state.
|
||||
*/
|
||||
ret = fpstate_alloc(&curr->thread.fpu);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
fpstate_init(&curr->thread.fpu);
|
||||
|
||||
/* Safe to do for the current task: */
|
||||
curr->flags |= PF_USED_MATH;
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fpstate_alloc_init);
|
||||
|
||||
/*
|
||||
* The _current_ task is using the FPU for the first time
|
||||
* so initialize it and set the mxcsr to its default
|
||||
* value at reset if we support XMM instructions and then
|
||||
* remember the current task has used the FPU.
|
||||
*/
|
||||
static int fpu__unlazy_stopped(struct task_struct *child)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (WARN_ON_ONCE(child == current))
|
||||
return -EINVAL;
|
||||
|
||||
if (child->flags & PF_USED_MATH) {
|
||||
task_disable_lazy_fpu_restore(child);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Memory allocation at the first usage of the FPU and other state.
|
||||
*/
|
||||
ret = fpstate_alloc(&child->thread.fpu);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
fpstate_init(&child->thread.fpu);
|
||||
|
||||
/* Safe to do for stopped child tasks: */
|
||||
child->flags |= PF_USED_MATH;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* The xstateregs_active() routine is the same as the fpregs_active() routine,
|
||||
* as the "regset->n" for the xstate regset will be updated based on the feature
|
||||
* capabilites supported by the xsave.
|
||||
*/
|
||||
int fpregs_active(struct task_struct *target, const struct user_regset *regset)
|
||||
{
|
||||
return tsk_used_math(target) ? regset->n : 0;
|
||||
}
|
||||
|
||||
int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
|
||||
{
|
||||
return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
|
||||
}
|
||||
|
||||
int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
void *kbuf, void __user *ubuf)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!cpu_has_fxsr)
|
||||
return -ENODEV;
|
||||
|
||||
ret = fpu__unlazy_stopped(target);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
sanitize_i387_state(target);
|
||||
|
||||
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
||||
&target->thread.fpu.state->fxsave, 0, -1);
|
||||
}
|
||||
|
||||
int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
const void *kbuf, const void __user *ubuf)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!cpu_has_fxsr)
|
||||
return -ENODEV;
|
||||
|
||||
ret = fpu__unlazy_stopped(target);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
sanitize_i387_state(target);
|
||||
|
||||
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
||||
&target->thread.fpu.state->fxsave, 0, -1);
|
||||
|
||||
/*
|
||||
* mxcsr reserved bits must be masked to zero for security reasons.
|
||||
*/
|
||||
target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
|
||||
|
||||
/*
|
||||
* update the header bits in the xsave header, indicating the
|
||||
* presence of FP and SSE state.
|
||||
*/
|
||||
if (cpu_has_xsave)
|
||||
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
void *kbuf, void __user *ubuf)
|
||||
{
|
||||
struct xsave_struct *xsave;
|
||||
int ret;
|
||||
|
||||
if (!cpu_has_xsave)
|
||||
return -ENODEV;
|
||||
|
||||
ret = fpu__unlazy_stopped(target);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
xsave = &target->thread.fpu.state->xsave;
|
||||
|
||||
/*
|
||||
* Copy the 48bytes defined by the software first into the xstate
|
||||
* memory layout in the thread struct, so that we can copy the entire
|
||||
* xstateregs to the user using one user_regset_copyout().
|
||||
*/
|
||||
memcpy(&xsave->i387.sw_reserved,
|
||||
xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
|
||||
/*
|
||||
* Copy the xstate memory layout.
|
||||
*/
|
||||
ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
const void *kbuf, const void __user *ubuf)
|
||||
{
|
||||
struct xsave_struct *xsave;
|
||||
int ret;
|
||||
|
||||
if (!cpu_has_xsave)
|
||||
return -ENODEV;
|
||||
|
||||
ret = fpu__unlazy_stopped(target);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
xsave = &target->thread.fpu.state->xsave;
|
||||
|
||||
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
|
||||
/*
|
||||
* mxcsr reserved bits must be masked to zero for security reasons.
|
||||
*/
|
||||
xsave->i387.mxcsr &= mxcsr_feature_mask;
|
||||
xsave->xsave_hdr.xstate_bv &= pcntxt_mask;
|
||||
/*
|
||||
* These bits must be zero.
|
||||
*/
|
||||
memset(&xsave->xsave_hdr.reserved, 0, 48);
|
||||
return ret;
|
||||
}
|
||||
|
||||
#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
|
||||
|
||||
/*
|
||||
* FPU tag word conversions.
|
||||
*/
|
||||
|
||||
static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
|
||||
{
|
||||
unsigned int tmp; /* to avoid 16 bit prefixes in the code */
|
||||
|
||||
/* Transform each pair of bits into 01 (valid) or 00 (empty) */
|
||||
tmp = ~twd;
|
||||
tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
|
||||
/* and move the valid bits to the lower byte. */
|
||||
tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
|
||||
tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
|
||||
tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
|
||||
|
||||
return tmp;
|
||||
}
|
||||
|
||||
#define FPREG_ADDR(f, n) ((void *)&(f)->st_space + (n) * 16)
|
||||
#define FP_EXP_TAG_VALID 0
|
||||
#define FP_EXP_TAG_ZERO 1
|
||||
#define FP_EXP_TAG_SPECIAL 2
|
||||
#define FP_EXP_TAG_EMPTY 3
|
||||
|
||||
static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
|
||||
{
|
||||
struct _fpxreg *st;
|
||||
u32 tos = (fxsave->swd >> 11) & 7;
|
||||
u32 twd = (unsigned long) fxsave->twd;
|
||||
u32 tag;
|
||||
u32 ret = 0xffff0000u;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 8; i++, twd >>= 1) {
|
||||
if (twd & 0x1) {
|
||||
st = FPREG_ADDR(fxsave, (i - tos) & 7);
|
||||
|
||||
switch (st->exponent & 0x7fff) {
|
||||
case 0x7fff:
|
||||
tag = FP_EXP_TAG_SPECIAL;
|
||||
break;
|
||||
case 0x0000:
|
||||
if (!st->significand[0] &&
|
||||
!st->significand[1] &&
|
||||
!st->significand[2] &&
|
||||
!st->significand[3])
|
||||
tag = FP_EXP_TAG_ZERO;
|
||||
else
|
||||
tag = FP_EXP_TAG_SPECIAL;
|
||||
break;
|
||||
default:
|
||||
if (st->significand[3] & 0x8000)
|
||||
tag = FP_EXP_TAG_VALID;
|
||||
else
|
||||
tag = FP_EXP_TAG_SPECIAL;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
tag = FP_EXP_TAG_EMPTY;
|
||||
}
|
||||
ret |= tag << (2 * i);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* FXSR floating point environment conversions.
|
||||
*/
|
||||
|
||||
void
|
||||
convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
|
||||
{
|
||||
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
|
||||
struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
|
||||
struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
|
||||
int i;
|
||||
|
||||
env->cwd = fxsave->cwd | 0xffff0000u;
|
||||
env->swd = fxsave->swd | 0xffff0000u;
|
||||
env->twd = twd_fxsr_to_i387(fxsave);
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
env->fip = fxsave->rip;
|
||||
env->foo = fxsave->rdp;
|
||||
/*
|
||||
* should be actually ds/cs at fpu exception time, but
|
||||
* that information is not available in 64bit mode.
|
||||
*/
|
||||
env->fcs = task_pt_regs(tsk)->cs;
|
||||
if (tsk == current) {
|
||||
savesegment(ds, env->fos);
|
||||
} else {
|
||||
env->fos = tsk->thread.ds;
|
||||
}
|
||||
env->fos |= 0xffff0000;
|
||||
#else
|
||||
env->fip = fxsave->fip;
|
||||
env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
|
||||
env->foo = fxsave->foo;
|
||||
env->fos = fxsave->fos;
|
||||
#endif
|
||||
|
||||
for (i = 0; i < 8; ++i)
|
||||
memcpy(&to[i], &from[i], sizeof(to[0]));
|
||||
}
|
||||
|
||||
void convert_to_fxsr(struct task_struct *tsk,
|
||||
const struct user_i387_ia32_struct *env)
|
||||
|
||||
{
|
||||
struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
|
||||
struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
|
||||
struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
|
||||
int i;
|
||||
|
||||
fxsave->cwd = env->cwd;
|
||||
fxsave->swd = env->swd;
|
||||
fxsave->twd = twd_i387_to_fxsr(env->twd);
|
||||
fxsave->fop = (u16) ((u32) env->fcs >> 16);
|
||||
#ifdef CONFIG_X86_64
|
||||
fxsave->rip = env->fip;
|
||||
fxsave->rdp = env->foo;
|
||||
/* cs and ds ignored */
|
||||
#else
|
||||
fxsave->fip = env->fip;
|
||||
fxsave->fcs = (env->fcs & 0xffff);
|
||||
fxsave->foo = env->foo;
|
||||
fxsave->fos = env->fos;
|
||||
#endif
|
||||
|
||||
for (i = 0; i < 8; ++i)
|
||||
memcpy(&to[i], &from[i], sizeof(from[0]));
|
||||
}
|
||||
|
||||
int fpregs_get(struct task_struct *target, const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
void *kbuf, void __user *ubuf)
|
||||
{
|
||||
struct user_i387_ia32_struct env;
|
||||
int ret;
|
||||
|
||||
ret = fpu__unlazy_stopped(target);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (!static_cpu_has(X86_FEATURE_FPU))
|
||||
return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
|
||||
|
||||
if (!cpu_has_fxsr)
|
||||
return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
||||
&target->thread.fpu.state->fsave, 0,
|
||||
-1);
|
||||
|
||||
sanitize_i387_state(target);
|
||||
|
||||
if (kbuf && pos == 0 && count == sizeof(env)) {
|
||||
convert_from_fxsr(kbuf, target);
|
||||
return 0;
|
||||
}
|
||||
|
||||
convert_from_fxsr(&env, target);
|
||||
|
||||
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
||||
}
|
||||
|
||||
int fpregs_set(struct task_struct *target, const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
const void *kbuf, const void __user *ubuf)
|
||||
{
|
||||
struct user_i387_ia32_struct env;
|
||||
int ret;
|
||||
|
||||
ret = fpu__unlazy_stopped(target);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
sanitize_i387_state(target);
|
||||
|
||||
if (!static_cpu_has(X86_FEATURE_FPU))
|
||||
return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
|
||||
|
||||
if (!cpu_has_fxsr)
|
||||
return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
||||
&target->thread.fpu.state->fsave, 0,
|
||||
-1);
|
||||
|
||||
if (pos > 0 || count < sizeof(env))
|
||||
convert_from_fxsr(&env, target);
|
||||
|
||||
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
|
||||
if (!ret)
|
||||
convert_to_fxsr(target, &env);
|
||||
|
||||
/*
|
||||
* update the header bit in the xsave header, indicating the
|
||||
* presence of FP.
|
||||
*/
|
||||
if (cpu_has_xsave)
|
||||
target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* FPU state for core dumps.
|
||||
* This is only used for a.out dumps now.
|
||||
* It is declared generically using elf_fpregset_t (which is
|
||||
* struct user_i387_struct) but is in fact only used for 32-bit
|
||||
* dumps, so on 64-bit it is really struct user_i387_ia32_struct.
|
||||
*/
|
||||
int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
|
||||
{
|
||||
struct task_struct *tsk = current;
|
||||
int fpvalid;
|
||||
|
||||
fpvalid = !!used_math();
|
||||
if (fpvalid)
|
||||
fpvalid = !fpregs_get(tsk, NULL,
|
||||
0, sizeof(struct user_i387_ia32_struct),
|
||||
fpu, NULL);
|
||||
|
||||
return fpvalid;
|
||||
}
|
||||
EXPORT_SYMBOL(dump_fpu);
|
||||
|
||||
#endif /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
|
||||
|
||||
static int __init no_387(char *s)
|
||||
{
|
||||
setup_clear_cpu_cap(X86_FEATURE_FPU);
|
||||
return 1;
|
||||
}
|
||||
|
||||
__setup("no387", no_387);
|
||||
|
||||
/*
|
||||
* Set the X86_FEATURE_FPU CPU-capability bit based on
|
||||
* trying to execute an actual sequence of FPU instructions:
|
||||
*/
|
||||
void fpu__detect(struct cpuinfo_x86 *c)
|
||||
{
|
||||
unsigned long cr0;
|
||||
u16 fsw, fcw;
|
||||
|
||||
fsw = fcw = 0xffff;
|
||||
|
||||
cr0 = read_cr0();
|
||||
cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
|
||||
write_cr0(cr0);
|
||||
|
||||
asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
|
||||
: "+m" (fsw), "+m" (fcw));
|
||||
|
||||
if (fsw == 0 && (fcw & 0x103f) == 0x003f)
|
||||
set_cpu_cap(c, X86_FEATURE_FPU);
|
||||
else
|
||||
clear_cpu_cap(c, X86_FEATURE_FPU);
|
||||
|
||||
/* The final cr0 value is set in fpu_init() */
|
||||
}
|
724
arch/x86/kernel/fpu/xsave.c
Normal file
724
arch/x86/kernel/fpu/xsave.c
Normal file
@@ -0,0 +1,724 @@
|
||||
/*
|
||||
* xsave/xrstor support.
|
||||
*
|
||||
* Author: Suresh Siddha <suresh.b.siddha@intel.com>
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||||
|
||||
#include <linux/bootmem.h>
|
||||
#include <linux/compat.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <asm/i387.h>
|
||||
#include <asm/fpu-internal.h>
|
||||
#include <asm/sigframe.h>
|
||||
#include <asm/tlbflush.h>
|
||||
#include <asm/xcr.h>
|
||||
|
||||
/*
|
||||
* Supported feature mask by the CPU and the kernel.
|
||||
*/
|
||||
u64 pcntxt_mask;
|
||||
|
||||
/*
|
||||
* Represents init state for the supported extended state.
|
||||
*/
|
||||
struct xsave_struct *init_xstate_buf;
|
||||
|
||||
static struct _fpx_sw_bytes fx_sw_reserved, fx_sw_reserved_ia32;
|
||||
static unsigned int *xstate_offsets, *xstate_sizes;
|
||||
static unsigned int xstate_comp_offsets[sizeof(pcntxt_mask)*8];
|
||||
static unsigned int xstate_features;
|
||||
|
||||
/*
|
||||
* If a processor implementation discern that a processor state component is
|
||||
* in its initialized state it may modify the corresponding bit in the
|
||||
* xsave_hdr.xstate_bv as '0', with out modifying the corresponding memory
|
||||
* layout in the case of xsaveopt. While presenting the xstate information to
|
||||
* the user, we always ensure that the memory layout of a feature will be in
|
||||
* the init state if the corresponding header bit is zero. This is to ensure
|
||||
* that the user doesn't see some stale state in the memory layout during
|
||||
* signal handling, debugging etc.
|
||||
*/
|
||||
void __sanitize_i387_state(struct task_struct *tsk)
|
||||
{
|
||||
struct i387_fxsave_struct *fx = &tsk->thread.fpu.state->fxsave;
|
||||
int feature_bit = 0x2;
|
||||
u64 xstate_bv;
|
||||
|
||||
if (!fx)
|
||||
return;
|
||||
|
||||
xstate_bv = tsk->thread.fpu.state->xsave.xsave_hdr.xstate_bv;
|
||||
|
||||
/*
|
||||
* None of the feature bits are in init state. So nothing else
|
||||
* to do for us, as the memory layout is up to date.
|
||||
*/
|
||||
if ((xstate_bv & pcntxt_mask) == pcntxt_mask)
|
||||
return;
|
||||
|
||||
/*
|
||||
* FP is in init state
|
||||
*/
|
||||
if (!(xstate_bv & XSTATE_FP)) {
|
||||
fx->cwd = 0x37f;
|
||||
fx->swd = 0;
|
||||
fx->twd = 0;
|
||||
fx->fop = 0;
|
||||
fx->rip = 0;
|
||||
fx->rdp = 0;
|
||||
memset(&fx->st_space[0], 0, 128);
|
||||
}
|
||||
|
||||
/*
|
||||
* SSE is in init state
|
||||
*/
|
||||
if (!(xstate_bv & XSTATE_SSE))
|
||||
memset(&fx->xmm_space[0], 0, 256);
|
||||
|
||||
xstate_bv = (pcntxt_mask & ~xstate_bv) >> 2;
|
||||
|
||||
/*
|
||||
* Update all the other memory layouts for which the corresponding
|
||||
* header bit is in the init state.
|
||||
*/
|
||||
while (xstate_bv) {
|
||||
if (xstate_bv & 0x1) {
|
||||
int offset = xstate_offsets[feature_bit];
|
||||
int size = xstate_sizes[feature_bit];
|
||||
|
||||
memcpy(((void *) fx) + offset,
|
||||
((void *) init_xstate_buf) + offset,
|
||||
size);
|
||||
}
|
||||
|
||||
xstate_bv >>= 1;
|
||||
feature_bit++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Check for the presence of extended state information in the
|
||||
* user fpstate pointer in the sigcontext.
|
||||
*/
|
||||
static inline int check_for_xstate(struct i387_fxsave_struct __user *buf,
|
||||
void __user *fpstate,
|
||||
struct _fpx_sw_bytes *fx_sw)
|
||||
{
|
||||
int min_xstate_size = sizeof(struct i387_fxsave_struct) +
|
||||
sizeof(struct xsave_hdr_struct);
|
||||
unsigned int magic2;
|
||||
|
||||
if (__copy_from_user(fx_sw, &buf->sw_reserved[0], sizeof(*fx_sw)))
|
||||
return -1;
|
||||
|
||||
/* Check for the first magic field and other error scenarios. */
|
||||
if (fx_sw->magic1 != FP_XSTATE_MAGIC1 ||
|
||||
fx_sw->xstate_size < min_xstate_size ||
|
||||
fx_sw->xstate_size > xstate_size ||
|
||||
fx_sw->xstate_size > fx_sw->extended_size)
|
||||
return -1;
|
||||
|
||||
/*
|
||||
* Check for the presence of second magic word at the end of memory
|
||||
* layout. This detects the case where the user just copied the legacy
|
||||
* fpstate layout with out copying the extended state information
|
||||
* in the memory layout.
|
||||
*/
|
||||
if (__get_user(magic2, (__u32 __user *)(fpstate + fx_sw->xstate_size))
|
||||
|| magic2 != FP_XSTATE_MAGIC2)
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Signal frame handlers.
|
||||
*/
|
||||
static inline int save_fsave_header(struct task_struct *tsk, void __user *buf)
|
||||
{
|
||||
if (use_fxsr()) {
|
||||
struct xsave_struct *xsave = &tsk->thread.fpu.state->xsave;
|
||||
struct user_i387_ia32_struct env;
|
||||
struct _fpstate_ia32 __user *fp = buf;
|
||||
|
||||
convert_from_fxsr(&env, tsk);
|
||||
|
||||
if (__copy_to_user(buf, &env, sizeof(env)) ||
|
||||
__put_user(xsave->i387.swd, &fp->status) ||
|
||||
__put_user(X86_FXSR_MAGIC, &fp->magic))
|
||||
return -1;
|
||||
} else {
|
||||
struct i387_fsave_struct __user *fp = buf;
|
||||
u32 swd;
|
||||
if (__get_user(swd, &fp->swd) || __put_user(swd, &fp->status))
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int save_xstate_epilog(void __user *buf, int ia32_frame)
|
||||
{
|
||||
struct xsave_struct __user *x = buf;
|
||||
struct _fpx_sw_bytes *sw_bytes;
|
||||
u32 xstate_bv;
|
||||
int err;
|
||||
|
||||
/* Setup the bytes not touched by the [f]xsave and reserved for SW. */
|
||||
sw_bytes = ia32_frame ? &fx_sw_reserved_ia32 : &fx_sw_reserved;
|
||||
err = __copy_to_user(&x->i387.sw_reserved, sw_bytes, sizeof(*sw_bytes));
|
||||
|
||||
if (!use_xsave())
|
||||
return err;
|
||||
|
||||
err |= __put_user(FP_XSTATE_MAGIC2, (__u32 *)(buf + xstate_size));
|
||||
|
||||
/*
|
||||
* Read the xstate_bv which we copied (directly from the cpu or
|
||||
* from the state in task struct) to the user buffers.
|
||||
*/
|
||||
err |= __get_user(xstate_bv, (__u32 *)&x->xsave_hdr.xstate_bv);
|
||||
|
||||
/*
|
||||
* For legacy compatible, we always set FP/SSE bits in the bit
|
||||
* vector while saving the state to the user context. This will
|
||||
* enable us capturing any changes(during sigreturn) to
|
||||
* the FP/SSE bits by the legacy applications which don't touch
|
||||
* xstate_bv in the xsave header.
|
||||
*
|
||||
* xsave aware apps can change the xstate_bv in the xsave
|
||||
* header as well as change any contents in the memory layout.
|
||||
* xrestore as part of sigreturn will capture all the changes.
|
||||
*/
|
||||
xstate_bv |= XSTATE_FPSSE;
|
||||
|
||||
err |= __put_user(xstate_bv, (__u32 *)&x->xsave_hdr.xstate_bv);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static inline int save_user_xstate(struct xsave_struct __user *buf)
|
||||
{
|
||||
int err;
|
||||
|
||||
if (use_xsave())
|
||||
err = xsave_user(buf);
|
||||
else if (use_fxsr())
|
||||
err = fxsave_user((struct i387_fxsave_struct __user *) buf);
|
||||
else
|
||||
err = fsave_user((struct i387_fsave_struct __user *) buf);
|
||||
|
||||
if (unlikely(err) && __clear_user(buf, xstate_size))
|
||||
err = -EFAULT;
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Save the fpu, extended register state to the user signal frame.
|
||||
*
|
||||
* 'buf_fx' is the 64-byte aligned pointer at which the [f|fx|x]save
|
||||
* state is copied.
|
||||
* 'buf' points to the 'buf_fx' or to the fsave header followed by 'buf_fx'.
|
||||
*
|
||||
* buf == buf_fx for 64-bit frames and 32-bit fsave frame.
|
||||
* buf != buf_fx for 32-bit frames with fxstate.
|
||||
*
|
||||
* If the fpu, extended register state is live, save the state directly
|
||||
* to the user frame pointed by the aligned pointer 'buf_fx'. Otherwise,
|
||||
* copy the thread's fpu state to the user frame starting at 'buf_fx'.
|
||||
*
|
||||
* If this is a 32-bit frame with fxstate, put a fsave header before
|
||||
* the aligned state at 'buf_fx'.
|
||||
*
|
||||
* For [f]xsave state, update the SW reserved fields in the [f]xsave frame
|
||||
* indicating the absence/presence of the extended state to the user.
|
||||
*/
|
||||
int save_xstate_sig(void __user *buf, void __user *buf_fx, int size)
|
||||
{
|
||||
struct xsave_struct *xsave = ¤t->thread.fpu.state->xsave;
|
||||
struct task_struct *tsk = current;
|
||||
int ia32_fxstate = (buf != buf_fx);
|
||||
|
||||
ia32_fxstate &= (config_enabled(CONFIG_X86_32) ||
|
||||
config_enabled(CONFIG_IA32_EMULATION));
|
||||
|
||||
if (!access_ok(VERIFY_WRITE, buf, size))
|
||||
return -EACCES;
|
||||
|
||||
if (!static_cpu_has(X86_FEATURE_FPU))
|
||||
return fpregs_soft_get(current, NULL, 0,
|
||||
sizeof(struct user_i387_ia32_struct), NULL,
|
||||
(struct _fpstate_ia32 __user *) buf) ? -1 : 1;
|
||||
|
||||
if (user_has_fpu()) {
|
||||
/* Save the live register state to the user directly. */
|
||||
if (save_user_xstate(buf_fx))
|
||||
return -1;
|
||||
/* Update the thread's fxstate to save the fsave header. */
|
||||
if (ia32_fxstate)
|
||||
fpu_fxsave(&tsk->thread.fpu);
|
||||
} else {
|
||||
sanitize_i387_state(tsk);
|
||||
if (__copy_to_user(buf_fx, xsave, xstate_size))
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Save the fsave header for the 32-bit frames. */
|
||||
if ((ia32_fxstate || !use_fxsr()) && save_fsave_header(tsk, buf))
|
||||
return -1;
|
||||
|
||||
if (use_fxsr() && save_xstate_epilog(buf_fx, ia32_fxstate))
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void
|
||||
sanitize_restored_xstate(struct task_struct *tsk,
|
||||
struct user_i387_ia32_struct *ia32_env,
|
||||
u64 xstate_bv, int fx_only)
|
||||
{
|
||||
struct xsave_struct *xsave = &tsk->thread.fpu.state->xsave;
|
||||
struct xsave_hdr_struct *xsave_hdr = &xsave->xsave_hdr;
|
||||
|
||||
if (use_xsave()) {
|
||||
/* These bits must be zero. */
|
||||
memset(xsave_hdr->reserved, 0, 48);
|
||||
|
||||
/*
|
||||
* Init the state that is not present in the memory
|
||||
* layout and not enabled by the OS.
|
||||
*/
|
||||
if (fx_only)
|
||||
xsave_hdr->xstate_bv = XSTATE_FPSSE;
|
||||
else
|
||||
xsave_hdr->xstate_bv &= (pcntxt_mask & xstate_bv);
|
||||
}
|
||||
|
||||
if (use_fxsr()) {
|
||||
/*
|
||||
* mscsr reserved bits must be masked to zero for security
|
||||
* reasons.
|
||||
*/
|
||||
xsave->i387.mxcsr &= mxcsr_feature_mask;
|
||||
|
||||
convert_to_fxsr(tsk, ia32_env);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Restore the extended state if present. Otherwise, restore the FP/SSE state.
|
||||
*/
|
||||
static inline int restore_user_xstate(void __user *buf, u64 xbv, int fx_only)
|
||||
{
|
||||
if (use_xsave()) {
|
||||
if ((unsigned long)buf % 64 || fx_only) {
|
||||
u64 init_bv = pcntxt_mask & ~XSTATE_FPSSE;
|
||||
xrstor_state(init_xstate_buf, init_bv);
|
||||
return fxrstor_user(buf);
|
||||
} else {
|
||||
u64 init_bv = pcntxt_mask & ~xbv;
|
||||
if (unlikely(init_bv))
|
||||
xrstor_state(init_xstate_buf, init_bv);
|
||||
return xrestore_user(buf, xbv);
|
||||
}
|
||||
} else if (use_fxsr()) {
|
||||
return fxrstor_user(buf);
|
||||
} else
|
||||
return frstor_user(buf);
|
||||
}
|
||||
|
||||
int __restore_xstate_sig(void __user *buf, void __user *buf_fx, int size)
|
||||
{
|
||||
int ia32_fxstate = (buf != buf_fx);
|
||||
struct task_struct *tsk = current;
|
||||
int state_size = xstate_size;
|
||||
u64 xstate_bv = 0;
|
||||
int fx_only = 0;
|
||||
|
||||
ia32_fxstate &= (config_enabled(CONFIG_X86_32) ||
|
||||
config_enabled(CONFIG_IA32_EMULATION));
|
||||
|
||||
if (!buf) {
|
||||
fpu_reset_state(tsk);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!access_ok(VERIFY_READ, buf, size))
|
||||
return -EACCES;
|
||||
|
||||
if (!used_math() && fpstate_alloc_init(tsk))
|
||||
return -1;
|
||||
|
||||
if (!static_cpu_has(X86_FEATURE_FPU))
|
||||
return fpregs_soft_set(current, NULL,
|
||||
0, sizeof(struct user_i387_ia32_struct),
|
||||
NULL, buf) != 0;
|
||||
|
||||
if (use_xsave()) {
|
||||
struct _fpx_sw_bytes fx_sw_user;
|
||||
if (unlikely(check_for_xstate(buf_fx, buf_fx, &fx_sw_user))) {
|
||||
/*
|
||||
* Couldn't find the extended state information in the
|
||||
* memory layout. Restore just the FP/SSE and init all
|
||||
* the other extended state.
|
||||
*/
|
||||
state_size = sizeof(struct i387_fxsave_struct);
|
||||
fx_only = 1;
|
||||
} else {
|
||||
state_size = fx_sw_user.xstate_size;
|
||||
xstate_bv = fx_sw_user.xstate_bv;
|
||||
}
|
||||
}
|
||||
|
||||
if (ia32_fxstate) {
|
||||
/*
|
||||
* For 32-bit frames with fxstate, copy the user state to the
|
||||
* thread's fpu state, reconstruct fxstate from the fsave
|
||||
* header. Sanitize the copied state etc.
|
||||
*/
|
||||
struct fpu *fpu = &tsk->thread.fpu;
|
||||
struct user_i387_ia32_struct env;
|
||||
int err = 0;
|
||||
|
||||
/*
|
||||
* Drop the current fpu which clears used_math(). This ensures
|
||||
* that any context-switch during the copy of the new state,
|
||||
* avoids the intermediate state from getting restored/saved.
|
||||
* Thus avoiding the new restored state from getting corrupted.
|
||||
* We will be ready to restore/save the state only after
|
||||
* set_used_math() is again set.
|
||||
*/
|
||||
drop_fpu(tsk);
|
||||
|
||||
if (__copy_from_user(&fpu->state->xsave, buf_fx, state_size) ||
|
||||
__copy_from_user(&env, buf, sizeof(env))) {
|
||||
fpstate_init(fpu);
|
||||
err = -1;
|
||||
} else {
|
||||
sanitize_restored_xstate(tsk, &env, xstate_bv, fx_only);
|
||||
}
|
||||
|
||||
set_used_math();
|
||||
if (use_eager_fpu()) {
|
||||
preempt_disable();
|
||||
math_state_restore();
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
return err;
|
||||
} else {
|
||||
/*
|
||||
* For 64-bit frames and 32-bit fsave frames, restore the user
|
||||
* state to the registers directly (with exceptions handled).
|
||||
*/
|
||||
user_fpu_begin();
|
||||
if (restore_user_xstate(buf_fx, xstate_bv, fx_only)) {
|
||||
fpu_reset_state(tsk);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Prepare the SW reserved portion of the fxsave memory layout, indicating
|
||||
* the presence of the extended state information in the memory layout
|
||||
* pointed by the fpstate pointer in the sigcontext.
|
||||
* This will be saved when ever the FP and extended state context is
|
||||
* saved on the user stack during the signal handler delivery to the user.
|
||||
*/
|
||||
static void prepare_fx_sw_frame(void)
|
||||
{
|
||||
int fsave_header_size = sizeof(struct i387_fsave_struct);
|
||||
int size = xstate_size + FP_XSTATE_MAGIC2_SIZE;
|
||||
|
||||
if (config_enabled(CONFIG_X86_32))
|
||||
size += fsave_header_size;
|
||||
|
||||
fx_sw_reserved.magic1 = FP_XSTATE_MAGIC1;
|
||||
fx_sw_reserved.extended_size = size;
|
||||
fx_sw_reserved.xstate_bv = pcntxt_mask;
|
||||
fx_sw_reserved.xstate_size = xstate_size;
|
||||
|
||||
if (config_enabled(CONFIG_IA32_EMULATION)) {
|
||||
fx_sw_reserved_ia32 = fx_sw_reserved;
|
||||
fx_sw_reserved_ia32.extended_size += fsave_header_size;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Enable the extended processor state save/restore feature
|
||||
*/
|
||||
static inline void xstate_enable(void)
|
||||
{
|
||||
cr4_set_bits(X86_CR4_OSXSAVE);
|
||||
xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask);
|
||||
}
|
||||
|
||||
/*
|
||||
* Record the offsets and sizes of different state managed by the xsave
|
||||
* memory layout.
|
||||
*/
|
||||
static void __init setup_xstate_features(void)
|
||||
{
|
||||
int eax, ebx, ecx, edx, leaf = 0x2;
|
||||
|
||||
xstate_features = fls64(pcntxt_mask);
|
||||
xstate_offsets = alloc_bootmem(xstate_features * sizeof(int));
|
||||
xstate_sizes = alloc_bootmem(xstate_features * sizeof(int));
|
||||
|
||||
do {
|
||||
cpuid_count(XSTATE_CPUID, leaf, &eax, &ebx, &ecx, &edx);
|
||||
|
||||
if (eax == 0)
|
||||
break;
|
||||
|
||||
xstate_offsets[leaf] = ebx;
|
||||
xstate_sizes[leaf] = eax;
|
||||
|
||||
leaf++;
|
||||
} while (1);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function sets up offsets and sizes of all extended states in
|
||||
* xsave area. This supports both standard format and compacted format
|
||||
* of the xsave aread.
|
||||
*
|
||||
* Input: void
|
||||
* Output: void
|
||||
*/
|
||||
void setup_xstate_comp(void)
|
||||
{
|
||||
unsigned int xstate_comp_sizes[sizeof(pcntxt_mask)*8];
|
||||
int i;
|
||||
|
||||
/*
|
||||
* The FP xstates and SSE xstates are legacy states. They are always
|
||||
* in the fixed offsets in the xsave area in either compacted form
|
||||
* or standard form.
|
||||
*/
|
||||
xstate_comp_offsets[0] = 0;
|
||||
xstate_comp_offsets[1] = offsetof(struct i387_fxsave_struct, xmm_space);
|
||||
|
||||
if (!cpu_has_xsaves) {
|
||||
for (i = 2; i < xstate_features; i++) {
|
||||
if (test_bit(i, (unsigned long *)&pcntxt_mask)) {
|
||||
xstate_comp_offsets[i] = xstate_offsets[i];
|
||||
xstate_comp_sizes[i] = xstate_sizes[i];
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
xstate_comp_offsets[2] = FXSAVE_SIZE + XSAVE_HDR_SIZE;
|
||||
|
||||
for (i = 2; i < xstate_features; i++) {
|
||||
if (test_bit(i, (unsigned long *)&pcntxt_mask))
|
||||
xstate_comp_sizes[i] = xstate_sizes[i];
|
||||
else
|
||||
xstate_comp_sizes[i] = 0;
|
||||
|
||||
if (i > 2)
|
||||
xstate_comp_offsets[i] = xstate_comp_offsets[i-1]
|
||||
+ xstate_comp_sizes[i-1];
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* setup the xstate image representing the init state
|
||||
*/
|
||||
static void __init setup_init_fpu_buf(void)
|
||||
{
|
||||
/*
|
||||
* Setup init_xstate_buf to represent the init state of
|
||||
* all the features managed by the xsave
|
||||
*/
|
||||
init_xstate_buf = alloc_bootmem_align(xstate_size,
|
||||
__alignof__(struct xsave_struct));
|
||||
fx_finit(&init_xstate_buf->i387);
|
||||
|
||||
if (!cpu_has_xsave)
|
||||
return;
|
||||
|
||||
setup_xstate_features();
|
||||
|
||||
if (cpu_has_xsaves) {
|
||||
init_xstate_buf->xsave_hdr.xcomp_bv =
|
||||
(u64)1 << 63 | pcntxt_mask;
|
||||
init_xstate_buf->xsave_hdr.xstate_bv = pcntxt_mask;
|
||||
}
|
||||
|
||||
/*
|
||||
* Init all the features state with header_bv being 0x0
|
||||
*/
|
||||
xrstor_state_booting(init_xstate_buf, -1);
|
||||
/*
|
||||
* Dump the init state again. This is to identify the init state
|
||||
* of any feature which is not represented by all zero's.
|
||||
*/
|
||||
xsave_state_booting(init_xstate_buf, -1);
|
||||
}
|
||||
|
||||
static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;
|
||||
static int __init eager_fpu_setup(char *s)
|
||||
{
|
||||
if (!strcmp(s, "on"))
|
||||
eagerfpu = ENABLE;
|
||||
else if (!strcmp(s, "off"))
|
||||
eagerfpu = DISABLE;
|
||||
else if (!strcmp(s, "auto"))
|
||||
eagerfpu = AUTO;
|
||||
return 1;
|
||||
}
|
||||
__setup("eagerfpu=", eager_fpu_setup);
|
||||
|
||||
|
||||
/*
|
||||
* Calculate total size of enabled xstates in XCR0/pcntxt_mask.
|
||||
*/
|
||||
static void __init init_xstate_size(void)
|
||||
{
|
||||
unsigned int eax, ebx, ecx, edx;
|
||||
int i;
|
||||
|
||||
if (!cpu_has_xsaves) {
|
||||
cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
|
||||
xstate_size = ebx;
|
||||
return;
|
||||
}
|
||||
|
||||
xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
|
||||
for (i = 2; i < 64; i++) {
|
||||
if (test_bit(i, (unsigned long *)&pcntxt_mask)) {
|
||||
cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
|
||||
xstate_size += eax;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Enable and initialize the xsave feature.
|
||||
*/
|
||||
static void __init xstate_enable_boot_cpu(void)
|
||||
{
|
||||
unsigned int eax, ebx, ecx, edx;
|
||||
|
||||
if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
|
||||
WARN(1, KERN_ERR "XSTATE_CPUID missing\n");
|
||||
return;
|
||||
}
|
||||
|
||||
cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
|
||||
pcntxt_mask = eax + ((u64)edx << 32);
|
||||
|
||||
if ((pcntxt_mask & XSTATE_FPSSE) != XSTATE_FPSSE) {
|
||||
pr_err("FP/SSE not shown under xsave features 0x%llx\n",
|
||||
pcntxt_mask);
|
||||
BUG();
|
||||
}
|
||||
|
||||
/*
|
||||
* Support only the state known to OS.
|
||||
*/
|
||||
pcntxt_mask = pcntxt_mask & XCNTXT_MASK;
|
||||
|
||||
xstate_enable();
|
||||
|
||||
/*
|
||||
* Recompute the context size for enabled features
|
||||
*/
|
||||
init_xstate_size();
|
||||
|
||||
update_regset_xstate_info(xstate_size, pcntxt_mask);
|
||||
prepare_fx_sw_frame();
|
||||
setup_init_fpu_buf();
|
||||
|
||||
/* Auto enable eagerfpu for xsaveopt */
|
||||
if (cpu_has_xsaveopt && eagerfpu != DISABLE)
|
||||
eagerfpu = ENABLE;
|
||||
|
||||
if (pcntxt_mask & XSTATE_EAGER) {
|
||||
if (eagerfpu == DISABLE) {
|
||||
pr_err("eagerfpu not present, disabling some xstate features: 0x%llx\n",
|
||||
pcntxt_mask & XSTATE_EAGER);
|
||||
pcntxt_mask &= ~XSTATE_EAGER;
|
||||
} else {
|
||||
eagerfpu = ENABLE;
|
||||
}
|
||||
}
|
||||
|
||||
pr_info("enabled xstate_bv 0x%llx, cntxt size 0x%x using %s\n",
|
||||
pcntxt_mask, xstate_size,
|
||||
cpu_has_xsaves ? "compacted form" : "standard form");
|
||||
}
|
||||
|
||||
/*
|
||||
* For the very first instance, this calls xstate_enable_boot_cpu();
|
||||
* for all subsequent instances, this calls xstate_enable().
|
||||
*
|
||||
* This is somewhat obfuscated due to the lack of powerful enough
|
||||
* overrides for the section checks.
|
||||
*/
|
||||
void xsave_init(void)
|
||||
{
|
||||
static __refdata void (*next_func)(void) = xstate_enable_boot_cpu;
|
||||
void (*this_func)(void);
|
||||
|
||||
if (!cpu_has_xsave)
|
||||
return;
|
||||
|
||||
this_func = next_func;
|
||||
next_func = xstate_enable;
|
||||
this_func();
|
||||
}
|
||||
|
||||
/*
|
||||
* setup_init_fpu_buf() is __init and it is OK to call it here because
|
||||
* init_xstate_buf will be unset only once during boot.
|
||||
*/
|
||||
void __init_refok eager_fpu_init(void)
|
||||
{
|
||||
WARN_ON(used_math());
|
||||
current_thread_info()->status = 0;
|
||||
|
||||
if (eagerfpu == ENABLE)
|
||||
setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
|
||||
|
||||
if (!cpu_has_eager_fpu) {
|
||||
stts();
|
||||
return;
|
||||
}
|
||||
|
||||
if (!init_xstate_buf)
|
||||
setup_init_fpu_buf();
|
||||
}
|
||||
|
||||
/*
|
||||
* Given the xsave area and a state inside, this function returns the
|
||||
* address of the state.
|
||||
*
|
||||
* This is the API that is called to get xstate address in either
|
||||
* standard format or compacted format of xsave area.
|
||||
*
|
||||
* Inputs:
|
||||
* xsave: base address of the xsave area;
|
||||
* xstate: state which is defined in xsave.h (e.g. XSTATE_FP, XSTATE_SSE,
|
||||
* etc.)
|
||||
* Output:
|
||||
* address of the state in the xsave area.
|
||||
*/
|
||||
void *get_xsave_addr(struct xsave_struct *xsave, int xstate)
|
||||
{
|
||||
int feature = fls64(xstate) - 1;
|
||||
if (!test_bit(feature, (unsigned long *)&pcntxt_mask))
|
||||
return NULL;
|
||||
|
||||
return (void *)xsave + xstate_comp_offsets[feature];
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(get_xsave_addr);
|
Reference in New Issue
Block a user