VME: Move API documentation to Documentation folder
The documentation for the VME device driver API is currently in drivers/vme/vme_api.txt, move this to Documentation/vme_api.txt Signed-of-by: Martyn Welch <martyn.welch@ge.com> Acked-by: Rob Landley <rob@landley.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:

committed by
Greg Kroah-Hartman

parent
a11cfdf458
commit
cc4729826f
396
Documentation/vme_api.txt
Normal file
396
Documentation/vme_api.txt
Normal file
@@ -0,0 +1,396 @@
|
||||
VME Device Driver API
|
||||
=====================
|
||||
|
||||
Driver registration
|
||||
===================
|
||||
|
||||
As with other subsystems within the Linux kernel, VME device drivers register
|
||||
with the VME subsystem, typically called from the devices init routine. This is
|
||||
achieved via a call to the following function:
|
||||
|
||||
int vme_register_driver (struct vme_driver *driver);
|
||||
|
||||
If driver registration is successful this function returns zero, if an error
|
||||
occurred a negative error code will be returned.
|
||||
|
||||
A pointer to a structure of type 'vme_driver' must be provided to the
|
||||
registration function. The structure is as follows:
|
||||
|
||||
struct vme_driver {
|
||||
struct list_head node;
|
||||
const char *name;
|
||||
int (*match)(struct vme_dev *);
|
||||
int (*probe)(struct vme_dev *);
|
||||
int (*remove)(struct vme_dev *);
|
||||
void (*shutdown)(void);
|
||||
struct device_driver driver;
|
||||
struct list_head devices;
|
||||
unsigned int ndev;
|
||||
};
|
||||
|
||||
At the minimum, the '.name', '.match' and '.probe' elements of this structure
|
||||
should be correctly set. The '.name' element is a pointer to a string holding
|
||||
the device driver's name.
|
||||
|
||||
The '.match' function allows controlling the number of devices that need to
|
||||
be registered. The match function should return 1 if a device should be
|
||||
probed and 0 otherwise. This example match function (from vme_user.c) limits
|
||||
the number of devices probed to one:
|
||||
|
||||
#define USER_BUS_MAX 1
|
||||
...
|
||||
static int vme_user_match(struct vme_dev *vdev)
|
||||
{
|
||||
if (vdev->id.num >= USER_BUS_MAX)
|
||||
return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
The '.probe' element should contain a pointer to the probe routine. The
|
||||
probe routine is passed a 'struct vme_dev' pointer as an argument. The
|
||||
'struct vme_dev' structure looks like the following:
|
||||
|
||||
struct vme_dev {
|
||||
int num;
|
||||
struct vme_bridge *bridge;
|
||||
struct device dev;
|
||||
struct list_head drv_list;
|
||||
struct list_head bridge_list;
|
||||
};
|
||||
|
||||
Here, the 'num' field refers to the sequential device ID for this specific
|
||||
driver. The bridge number (or bus number) can be accessed using
|
||||
dev->bridge->num.
|
||||
|
||||
A function is also provided to unregister the driver from the VME core and is
|
||||
usually called from the device driver's exit routine:
|
||||
|
||||
void vme_unregister_driver (struct vme_driver *driver);
|
||||
|
||||
|
||||
Resource management
|
||||
===================
|
||||
|
||||
Once a driver has registered with the VME core the provided match routine will
|
||||
be called the number of times specified during the registration. If a match
|
||||
succeeds, a non-zero value should be returned. A zero return value indicates
|
||||
failure. For all successful matches, the probe routine of the corresponding
|
||||
driver is called. The probe routine is passed a pointer to the devices
|
||||
device structure. This pointer should be saved, it will be required for
|
||||
requesting VME resources.
|
||||
|
||||
The driver can request ownership of one or more master windows, slave windows
|
||||
and/or dma channels. Rather than allowing the device driver to request a
|
||||
specific window or DMA channel (which may be used by a different driver) this
|
||||
driver allows a resource to be assigned based on the required attributes of the
|
||||
driver in question:
|
||||
|
||||
struct vme_resource * vme_master_request(struct vme_dev *dev,
|
||||
u32 aspace, u32 cycle, u32 width);
|
||||
|
||||
struct vme_resource * vme_slave_request(struct vme_dev *dev, u32 aspace,
|
||||
u32 cycle);
|
||||
|
||||
struct vme_resource *vme_dma_request(struct vme_dev *dev, u32 route);
|
||||
|
||||
For slave windows these attributes are split into the VME address spaces that
|
||||
need to be accessed in 'aspace' and VME bus cycle types required in 'cycle'.
|
||||
Master windows add a further set of attributes in 'width' specifying the
|
||||
required data transfer widths. These attributes are defined as bitmasks and as
|
||||
such any combination of the attributes can be requested for a single window,
|
||||
the core will assign a window that meets the requirements, returning a pointer
|
||||
of type vme_resource that should be used to identify the allocated resource
|
||||
when it is used. For DMA controllers, the request function requires the
|
||||
potential direction of any transfers to be provided in the route attributes.
|
||||
This is typically VME-to-MEM and/or MEM-to-VME, though some hardware can
|
||||
support VME-to-VME and MEM-to-MEM transfers as well as test pattern generation.
|
||||
If an unallocated window fitting the requirements can not be found a NULL
|
||||
pointer will be returned.
|
||||
|
||||
Functions are also provided to free window allocations once they are no longer
|
||||
required. These functions should be passed the pointer to the resource provided
|
||||
during resource allocation:
|
||||
|
||||
void vme_master_free(struct vme_resource *res);
|
||||
|
||||
void vme_slave_free(struct vme_resource *res);
|
||||
|
||||
void vme_dma_free(struct vme_resource *res);
|
||||
|
||||
|
||||
Master windows
|
||||
==============
|
||||
|
||||
Master windows provide access from the local processor[s] out onto the VME bus.
|
||||
The number of windows available and the available access modes is dependent on
|
||||
the underlying chipset. A window must be configured before it can be used.
|
||||
|
||||
|
||||
Master window configuration
|
||||
---------------------------
|
||||
|
||||
Once a master window has been assigned the following functions can be used to
|
||||
configure it and retrieve the current settings:
|
||||
|
||||
int vme_master_set (struct vme_resource *res, int enabled,
|
||||
unsigned long long base, unsigned long long size, u32 aspace,
|
||||
u32 cycle, u32 width);
|
||||
|
||||
int vme_master_get (struct vme_resource *res, int *enabled,
|
||||
unsigned long long *base, unsigned long long *size, u32 *aspace,
|
||||
u32 *cycle, u32 *width);
|
||||
|
||||
The address spaces, transfer widths and cycle types are the same as described
|
||||
under resource management, however some of the options are mutually exclusive.
|
||||
For example, only one address space may be specified.
|
||||
|
||||
These functions return 0 on success or an error code should the call fail.
|
||||
|
||||
|
||||
Master window access
|
||||
--------------------
|
||||
|
||||
The following functions can be used to read from and write to configured master
|
||||
windows. These functions return the number of bytes copied:
|
||||
|
||||
ssize_t vme_master_read(struct vme_resource *res, void *buf,
|
||||
size_t count, loff_t offset);
|
||||
|
||||
ssize_t vme_master_write(struct vme_resource *res, void *buf,
|
||||
size_t count, loff_t offset);
|
||||
|
||||
In addition to simple reads and writes, a function is provided to do a
|
||||
read-modify-write transaction. This function returns the original value of the
|
||||
VME bus location :
|
||||
|
||||
unsigned int vme_master_rmw (struct vme_resource *res,
|
||||
unsigned int mask, unsigned int compare, unsigned int swap,
|
||||
loff_t offset);
|
||||
|
||||
This functions by reading the offset, applying the mask. If the bits selected in
|
||||
the mask match with the values of the corresponding bits in the compare field,
|
||||
the value of swap is written the specified offset.
|
||||
|
||||
|
||||
Slave windows
|
||||
=============
|
||||
|
||||
Slave windows provide devices on the VME bus access into mapped portions of the
|
||||
local memory. The number of windows available and the access modes that can be
|
||||
used is dependent on the underlying chipset. A window must be configured before
|
||||
it can be used.
|
||||
|
||||
|
||||
Slave window configuration
|
||||
--------------------------
|
||||
|
||||
Once a slave window has been assigned the following functions can be used to
|
||||
configure it and retrieve the current settings:
|
||||
|
||||
int vme_slave_set (struct vme_resource *res, int enabled,
|
||||
unsigned long long base, unsigned long long size,
|
||||
dma_addr_t mem, u32 aspace, u32 cycle);
|
||||
|
||||
int vme_slave_get (struct vme_resource *res, int *enabled,
|
||||
unsigned long long *base, unsigned long long *size,
|
||||
dma_addr_t *mem, u32 *aspace, u32 *cycle);
|
||||
|
||||
The address spaces, transfer widths and cycle types are the same as described
|
||||
under resource management, however some of the options are mutually exclusive.
|
||||
For example, only one address space may be specified.
|
||||
|
||||
These functions return 0 on success or an error code should the call fail.
|
||||
|
||||
|
||||
Slave window buffer allocation
|
||||
------------------------------
|
||||
|
||||
Functions are provided to allow the user to allocate and free a contiguous
|
||||
buffers which will be accessible by the VME bridge. These functions do not have
|
||||
to be used, other methods can be used to allocate a buffer, though care must be
|
||||
taken to ensure that they are contiguous and accessible by the VME bridge:
|
||||
|
||||
void * vme_alloc_consistent(struct vme_resource *res, size_t size,
|
||||
dma_addr_t *mem);
|
||||
|
||||
void vme_free_consistent(struct vme_resource *res, size_t size,
|
||||
void *virt, dma_addr_t mem);
|
||||
|
||||
|
||||
Slave window access
|
||||
-------------------
|
||||
|
||||
Slave windows map local memory onto the VME bus, the standard methods for
|
||||
accessing memory should be used.
|
||||
|
||||
|
||||
DMA channels
|
||||
============
|
||||
|
||||
The VME DMA transfer provides the ability to run link-list DMA transfers. The
|
||||
API introduces the concept of DMA lists. Each DMA list is a link-list which can
|
||||
be passed to a DMA controller. Multiple lists can be created, extended,
|
||||
executed, reused and destroyed.
|
||||
|
||||
|
||||
List Management
|
||||
---------------
|
||||
|
||||
The following functions are provided to create and destroy DMA lists. Execution
|
||||
of a list will not automatically destroy the list, thus enabling a list to be
|
||||
reused for repetitive tasks:
|
||||
|
||||
struct vme_dma_list *vme_new_dma_list(struct vme_resource *res);
|
||||
|
||||
int vme_dma_list_free(struct vme_dma_list *list);
|
||||
|
||||
|
||||
List Population
|
||||
---------------
|
||||
|
||||
An item can be added to a list using the following function ( the source and
|
||||
destination attributes need to be created before calling this function, this is
|
||||
covered under "Transfer Attributes"):
|
||||
|
||||
int vme_dma_list_add(struct vme_dma_list *list,
|
||||
struct vme_dma_attr *src, struct vme_dma_attr *dest,
|
||||
size_t count);
|
||||
|
||||
NOTE: The detailed attributes of the transfers source and destination
|
||||
are not checked until an entry is added to a DMA list, the request
|
||||
for a DMA channel purely checks the directions in which the
|
||||
controller is expected to transfer data. As a result it is
|
||||
possible for this call to return an error, for example if the
|
||||
source or destination is in an unsupported VME address space.
|
||||
|
||||
Transfer Attributes
|
||||
-------------------
|
||||
|
||||
The attributes for the source and destination are handled separately from adding
|
||||
an item to a list. This is due to the diverse attributes required for each type
|
||||
of source and destination. There are functions to create attributes for PCI, VME
|
||||
and pattern sources and destinations (where appropriate):
|
||||
|
||||
Pattern source:
|
||||
|
||||
struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type);
|
||||
|
||||
PCI source or destination:
|
||||
|
||||
struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t mem);
|
||||
|
||||
VME source or destination:
|
||||
|
||||
struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long base,
|
||||
u32 aspace, u32 cycle, u32 width);
|
||||
|
||||
The following function should be used to free an attribute:
|
||||
|
||||
void vme_dma_free_attribute(struct vme_dma_attr *attr);
|
||||
|
||||
|
||||
List Execution
|
||||
--------------
|
||||
|
||||
The following function queues a list for execution. The function will return
|
||||
once the list has been executed:
|
||||
|
||||
int vme_dma_list_exec(struct vme_dma_list *list);
|
||||
|
||||
|
||||
Interrupts
|
||||
==========
|
||||
|
||||
The VME API provides functions to attach and detach callbacks to specific VME
|
||||
level and status ID combinations and for the generation of VME interrupts with
|
||||
specific VME level and status IDs.
|
||||
|
||||
|
||||
Attaching Interrupt Handlers
|
||||
----------------------------
|
||||
|
||||
The following functions can be used to attach and free a specific VME level and
|
||||
status ID combination. Any given combination can only be assigned a single
|
||||
callback function. A void pointer parameter is provided, the value of which is
|
||||
passed to the callback function, the use of this pointer is user undefined:
|
||||
|
||||
int vme_irq_request(struct vme_dev *dev, int level, int statid,
|
||||
void (*callback)(int, int, void *), void *priv);
|
||||
|
||||
void vme_irq_free(struct vme_dev *dev, int level, int statid);
|
||||
|
||||
The callback parameters are as follows. Care must be taken in writing a callback
|
||||
function, callback functions run in interrupt context:
|
||||
|
||||
void callback(int level, int statid, void *priv);
|
||||
|
||||
|
||||
Interrupt Generation
|
||||
--------------------
|
||||
|
||||
The following function can be used to generate a VME interrupt at a given VME
|
||||
level and VME status ID:
|
||||
|
||||
int vme_irq_generate(struct vme_dev *dev, int level, int statid);
|
||||
|
||||
|
||||
Location monitors
|
||||
=================
|
||||
|
||||
The VME API provides the following functionality to configure the location
|
||||
monitor.
|
||||
|
||||
|
||||
Location Monitor Management
|
||||
---------------------------
|
||||
|
||||
The following functions are provided to request the use of a block of location
|
||||
monitors and to free them after they are no longer required:
|
||||
|
||||
struct vme_resource * vme_lm_request(struct vme_dev *dev);
|
||||
|
||||
void vme_lm_free(struct vme_resource * res);
|
||||
|
||||
Each block may provide a number of location monitors, monitoring adjacent
|
||||
locations. The following function can be used to determine how many locations
|
||||
are provided:
|
||||
|
||||
int vme_lm_count(struct vme_resource * res);
|
||||
|
||||
|
||||
Location Monitor Configuration
|
||||
------------------------------
|
||||
|
||||
Once a bank of location monitors has been allocated, the following functions
|
||||
are provided to configure the location and mode of the location monitor:
|
||||
|
||||
int vme_lm_set(struct vme_resource *res, unsigned long long base,
|
||||
u32 aspace, u32 cycle);
|
||||
|
||||
int vme_lm_get(struct vme_resource *res, unsigned long long *base,
|
||||
u32 *aspace, u32 *cycle);
|
||||
|
||||
|
||||
Location Monitor Use
|
||||
--------------------
|
||||
|
||||
The following functions allow a callback to be attached and detached from each
|
||||
location monitor location. Each location monitor can monitor a number of
|
||||
adjacent locations:
|
||||
|
||||
int vme_lm_attach(struct vme_resource *res, int num,
|
||||
void (*callback)(int));
|
||||
|
||||
int vme_lm_detach(struct vme_resource *res, int num);
|
||||
|
||||
The callback function is declared as follows.
|
||||
|
||||
void callback(int num);
|
||||
|
||||
|
||||
Slot Detection
|
||||
==============
|
||||
|
||||
This function returns the slot ID of the provided bridge.
|
||||
|
||||
int vme_slot_get(struct vme_dev *dev);
|
Reference in New Issue
Block a user