bcache: A block layer cache
Does writethrough and writeback caching, handles unclean shutdown, and has a bunch of other nifty features motivated by real world usage. See the wiki at http://bcache.evilpiepirate.org for more. Signed-off-by: Kent Overstreet <koverstreet@google.com>
This commit is contained in:
583
drivers/md/bcache/alloc.c
Normal file
583
drivers/md/bcache/alloc.c
Normal file
@@ -0,0 +1,583 @@
|
||||
/*
|
||||
* Primary bucket allocation code
|
||||
*
|
||||
* Copyright 2012 Google, Inc.
|
||||
*
|
||||
* Allocation in bcache is done in terms of buckets:
|
||||
*
|
||||
* Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
|
||||
* btree pointers - they must match for the pointer to be considered valid.
|
||||
*
|
||||
* Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
|
||||
* bucket simply by incrementing its gen.
|
||||
*
|
||||
* The gens (along with the priorities; it's really the gens are important but
|
||||
* the code is named as if it's the priorities) are written in an arbitrary list
|
||||
* of buckets on disk, with a pointer to them in the journal header.
|
||||
*
|
||||
* When we invalidate a bucket, we have to write its new gen to disk and wait
|
||||
* for that write to complete before we use it - otherwise after a crash we
|
||||
* could have pointers that appeared to be good but pointed to data that had
|
||||
* been overwritten.
|
||||
*
|
||||
* Since the gens and priorities are all stored contiguously on disk, we can
|
||||
* batch this up: We fill up the free_inc list with freshly invalidated buckets,
|
||||
* call prio_write(), and when prio_write() finishes we pull buckets off the
|
||||
* free_inc list and optionally discard them.
|
||||
*
|
||||
* free_inc isn't the only freelist - if it was, we'd often to sleep while
|
||||
* priorities and gens were being written before we could allocate. c->free is a
|
||||
* smaller freelist, and buckets on that list are always ready to be used.
|
||||
*
|
||||
* If we've got discards enabled, that happens when a bucket moves from the
|
||||
* free_inc list to the free list.
|
||||
*
|
||||
* There is another freelist, because sometimes we have buckets that we know
|
||||
* have nothing pointing into them - these we can reuse without waiting for
|
||||
* priorities to be rewritten. These come from freed btree nodes and buckets
|
||||
* that garbage collection discovered no longer had valid keys pointing into
|
||||
* them (because they were overwritten). That's the unused list - buckets on the
|
||||
* unused list move to the free list, optionally being discarded in the process.
|
||||
*
|
||||
* It's also important to ensure that gens don't wrap around - with respect to
|
||||
* either the oldest gen in the btree or the gen on disk. This is quite
|
||||
* difficult to do in practice, but we explicitly guard against it anyways - if
|
||||
* a bucket is in danger of wrapping around we simply skip invalidating it that
|
||||
* time around, and we garbage collect or rewrite the priorities sooner than we
|
||||
* would have otherwise.
|
||||
*
|
||||
* bch_bucket_alloc() allocates a single bucket from a specific cache.
|
||||
*
|
||||
* bch_bucket_alloc_set() allocates one or more buckets from different caches
|
||||
* out of a cache set.
|
||||
*
|
||||
* free_some_buckets() drives all the processes described above. It's called
|
||||
* from bch_bucket_alloc() and a few other places that need to make sure free
|
||||
* buckets are ready.
|
||||
*
|
||||
* invalidate_buckets_(lru|fifo)() find buckets that are available to be
|
||||
* invalidated, and then invalidate them and stick them on the free_inc list -
|
||||
* in either lru or fifo order.
|
||||
*/
|
||||
|
||||
#include "bcache.h"
|
||||
#include "btree.h"
|
||||
|
||||
#include <linux/random.h>
|
||||
|
||||
#define MAX_IN_FLIGHT_DISCARDS 8U
|
||||
|
||||
/* Bucket heap / gen */
|
||||
|
||||
uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
|
||||
{
|
||||
uint8_t ret = ++b->gen;
|
||||
|
||||
ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
|
||||
WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
|
||||
|
||||
if (CACHE_SYNC(&ca->set->sb)) {
|
||||
ca->need_save_prio = max(ca->need_save_prio,
|
||||
bucket_disk_gen(b));
|
||||
WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void bch_rescale_priorities(struct cache_set *c, int sectors)
|
||||
{
|
||||
struct cache *ca;
|
||||
struct bucket *b;
|
||||
unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
|
||||
unsigned i;
|
||||
int r;
|
||||
|
||||
atomic_sub(sectors, &c->rescale);
|
||||
|
||||
do {
|
||||
r = atomic_read(&c->rescale);
|
||||
|
||||
if (r >= 0)
|
||||
return;
|
||||
} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
|
||||
|
||||
mutex_lock(&c->bucket_lock);
|
||||
|
||||
c->min_prio = USHRT_MAX;
|
||||
|
||||
for_each_cache(ca, c, i)
|
||||
for_each_bucket(b, ca)
|
||||
if (b->prio &&
|
||||
b->prio != BTREE_PRIO &&
|
||||
!atomic_read(&b->pin)) {
|
||||
b->prio--;
|
||||
c->min_prio = min(c->min_prio, b->prio);
|
||||
}
|
||||
|
||||
mutex_unlock(&c->bucket_lock);
|
||||
}
|
||||
|
||||
/* Discard/TRIM */
|
||||
|
||||
struct discard {
|
||||
struct list_head list;
|
||||
struct work_struct work;
|
||||
struct cache *ca;
|
||||
long bucket;
|
||||
|
||||
struct bio bio;
|
||||
struct bio_vec bv;
|
||||
};
|
||||
|
||||
static void discard_finish(struct work_struct *w)
|
||||
{
|
||||
struct discard *d = container_of(w, struct discard, work);
|
||||
struct cache *ca = d->ca;
|
||||
char buf[BDEVNAME_SIZE];
|
||||
|
||||
if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) {
|
||||
pr_notice("discard error on %s, disabling",
|
||||
bdevname(ca->bdev, buf));
|
||||
d->ca->discard = 0;
|
||||
}
|
||||
|
||||
mutex_lock(&ca->set->bucket_lock);
|
||||
|
||||
fifo_push(&ca->free, d->bucket);
|
||||
list_add(&d->list, &ca->discards);
|
||||
atomic_dec(&ca->discards_in_flight);
|
||||
|
||||
mutex_unlock(&ca->set->bucket_lock);
|
||||
|
||||
closure_wake_up(&ca->set->bucket_wait);
|
||||
wake_up(&ca->set->alloc_wait);
|
||||
|
||||
closure_put(&ca->set->cl);
|
||||
}
|
||||
|
||||
static void discard_endio(struct bio *bio, int error)
|
||||
{
|
||||
struct discard *d = container_of(bio, struct discard, bio);
|
||||
schedule_work(&d->work);
|
||||
}
|
||||
|
||||
static void do_discard(struct cache *ca, long bucket)
|
||||
{
|
||||
struct discard *d = list_first_entry(&ca->discards,
|
||||
struct discard, list);
|
||||
|
||||
list_del(&d->list);
|
||||
d->bucket = bucket;
|
||||
|
||||
atomic_inc(&ca->discards_in_flight);
|
||||
closure_get(&ca->set->cl);
|
||||
|
||||
bio_init(&d->bio);
|
||||
|
||||
d->bio.bi_sector = bucket_to_sector(ca->set, d->bucket);
|
||||
d->bio.bi_bdev = ca->bdev;
|
||||
d->bio.bi_rw = REQ_WRITE|REQ_DISCARD;
|
||||
d->bio.bi_max_vecs = 1;
|
||||
d->bio.bi_io_vec = d->bio.bi_inline_vecs;
|
||||
d->bio.bi_size = bucket_bytes(ca);
|
||||
d->bio.bi_end_io = discard_endio;
|
||||
bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
|
||||
|
||||
submit_bio(0, &d->bio);
|
||||
}
|
||||
|
||||
/* Allocation */
|
||||
|
||||
static inline bool can_inc_bucket_gen(struct bucket *b)
|
||||
{
|
||||
return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
|
||||
bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
|
||||
}
|
||||
|
||||
bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
|
||||
{
|
||||
BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
|
||||
|
||||
if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] &&
|
||||
CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
|
||||
return false;
|
||||
|
||||
b->prio = 0;
|
||||
|
||||
if (can_inc_bucket_gen(b) &&
|
||||
fifo_push(&ca->unused, b - ca->buckets)) {
|
||||
atomic_inc(&b->pin);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
|
||||
{
|
||||
return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
|
||||
!atomic_read(&b->pin) &&
|
||||
can_inc_bucket_gen(b);
|
||||
}
|
||||
|
||||
static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
|
||||
{
|
||||
bch_inc_gen(ca, b);
|
||||
b->prio = INITIAL_PRIO;
|
||||
atomic_inc(&b->pin);
|
||||
fifo_push(&ca->free_inc, b - ca->buckets);
|
||||
}
|
||||
|
||||
static void invalidate_buckets_lru(struct cache *ca)
|
||||
{
|
||||
unsigned bucket_prio(struct bucket *b)
|
||||
{
|
||||
return ((unsigned) (b->prio - ca->set->min_prio)) *
|
||||
GC_SECTORS_USED(b);
|
||||
}
|
||||
|
||||
bool bucket_max_cmp(struct bucket *l, struct bucket *r)
|
||||
{
|
||||
return bucket_prio(l) < bucket_prio(r);
|
||||
}
|
||||
|
||||
bool bucket_min_cmp(struct bucket *l, struct bucket *r)
|
||||
{
|
||||
return bucket_prio(l) > bucket_prio(r);
|
||||
}
|
||||
|
||||
struct bucket *b;
|
||||
ssize_t i;
|
||||
|
||||
ca->heap.used = 0;
|
||||
|
||||
for_each_bucket(b, ca) {
|
||||
if (!can_invalidate_bucket(ca, b))
|
||||
continue;
|
||||
|
||||
if (!GC_SECTORS_USED(b)) {
|
||||
if (!bch_bucket_add_unused(ca, b))
|
||||
return;
|
||||
} else {
|
||||
if (!heap_full(&ca->heap))
|
||||
heap_add(&ca->heap, b, bucket_max_cmp);
|
||||
else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
|
||||
ca->heap.data[0] = b;
|
||||
heap_sift(&ca->heap, 0, bucket_max_cmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (ca->heap.used * 2 < ca->heap.size)
|
||||
bch_queue_gc(ca->set);
|
||||
|
||||
for (i = ca->heap.used / 2 - 1; i >= 0; --i)
|
||||
heap_sift(&ca->heap, i, bucket_min_cmp);
|
||||
|
||||
while (!fifo_full(&ca->free_inc)) {
|
||||
if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
|
||||
/* We don't want to be calling invalidate_buckets()
|
||||
* multiple times when it can't do anything
|
||||
*/
|
||||
ca->invalidate_needs_gc = 1;
|
||||
bch_queue_gc(ca->set);
|
||||
return;
|
||||
}
|
||||
|
||||
invalidate_one_bucket(ca, b);
|
||||
}
|
||||
}
|
||||
|
||||
static void invalidate_buckets_fifo(struct cache *ca)
|
||||
{
|
||||
struct bucket *b;
|
||||
size_t checked = 0;
|
||||
|
||||
while (!fifo_full(&ca->free_inc)) {
|
||||
if (ca->fifo_last_bucket < ca->sb.first_bucket ||
|
||||
ca->fifo_last_bucket >= ca->sb.nbuckets)
|
||||
ca->fifo_last_bucket = ca->sb.first_bucket;
|
||||
|
||||
b = ca->buckets + ca->fifo_last_bucket++;
|
||||
|
||||
if (can_invalidate_bucket(ca, b))
|
||||
invalidate_one_bucket(ca, b);
|
||||
|
||||
if (++checked >= ca->sb.nbuckets) {
|
||||
ca->invalidate_needs_gc = 1;
|
||||
bch_queue_gc(ca->set);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void invalidate_buckets_random(struct cache *ca)
|
||||
{
|
||||
struct bucket *b;
|
||||
size_t checked = 0;
|
||||
|
||||
while (!fifo_full(&ca->free_inc)) {
|
||||
size_t n;
|
||||
get_random_bytes(&n, sizeof(n));
|
||||
|
||||
n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
|
||||
n += ca->sb.first_bucket;
|
||||
|
||||
b = ca->buckets + n;
|
||||
|
||||
if (can_invalidate_bucket(ca, b))
|
||||
invalidate_one_bucket(ca, b);
|
||||
|
||||
if (++checked >= ca->sb.nbuckets / 2) {
|
||||
ca->invalidate_needs_gc = 1;
|
||||
bch_queue_gc(ca->set);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void invalidate_buckets(struct cache *ca)
|
||||
{
|
||||
if (ca->invalidate_needs_gc)
|
||||
return;
|
||||
|
||||
switch (CACHE_REPLACEMENT(&ca->sb)) {
|
||||
case CACHE_REPLACEMENT_LRU:
|
||||
invalidate_buckets_lru(ca);
|
||||
break;
|
||||
case CACHE_REPLACEMENT_FIFO:
|
||||
invalidate_buckets_fifo(ca);
|
||||
break;
|
||||
case CACHE_REPLACEMENT_RANDOM:
|
||||
invalidate_buckets_random(ca);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
#define allocator_wait(ca, cond) \
|
||||
do { \
|
||||
DEFINE_WAIT(__wait); \
|
||||
\
|
||||
while (!(cond)) { \
|
||||
prepare_to_wait(&ca->set->alloc_wait, \
|
||||
&__wait, TASK_INTERRUPTIBLE); \
|
||||
\
|
||||
mutex_unlock(&(ca)->set->bucket_lock); \
|
||||
if (test_bit(CACHE_SET_STOPPING_2, &ca->set->flags)) { \
|
||||
finish_wait(&ca->set->alloc_wait, &__wait); \
|
||||
closure_return(cl); \
|
||||
} \
|
||||
\
|
||||
schedule(); \
|
||||
__set_current_state(TASK_RUNNING); \
|
||||
mutex_lock(&(ca)->set->bucket_lock); \
|
||||
} \
|
||||
\
|
||||
finish_wait(&ca->set->alloc_wait, &__wait); \
|
||||
} while (0)
|
||||
|
||||
void bch_allocator_thread(struct closure *cl)
|
||||
{
|
||||
struct cache *ca = container_of(cl, struct cache, alloc);
|
||||
|
||||
mutex_lock(&ca->set->bucket_lock);
|
||||
|
||||
while (1) {
|
||||
while (1) {
|
||||
long bucket;
|
||||
|
||||
if ((!atomic_read(&ca->set->prio_blocked) ||
|
||||
!CACHE_SYNC(&ca->set->sb)) &&
|
||||
!fifo_empty(&ca->unused))
|
||||
fifo_pop(&ca->unused, bucket);
|
||||
else if (!fifo_empty(&ca->free_inc))
|
||||
fifo_pop(&ca->free_inc, bucket);
|
||||
else
|
||||
break;
|
||||
|
||||
allocator_wait(ca, (int) fifo_free(&ca->free) >
|
||||
atomic_read(&ca->discards_in_flight));
|
||||
|
||||
if (ca->discard) {
|
||||
allocator_wait(ca, !list_empty(&ca->discards));
|
||||
do_discard(ca, bucket);
|
||||
} else {
|
||||
fifo_push(&ca->free, bucket);
|
||||
closure_wake_up(&ca->set->bucket_wait);
|
||||
}
|
||||
}
|
||||
|
||||
allocator_wait(ca, ca->set->gc_mark_valid);
|
||||
invalidate_buckets(ca);
|
||||
|
||||
allocator_wait(ca, !atomic_read(&ca->set->prio_blocked) ||
|
||||
!CACHE_SYNC(&ca->set->sb));
|
||||
|
||||
if (CACHE_SYNC(&ca->set->sb) &&
|
||||
(!fifo_empty(&ca->free_inc) ||
|
||||
ca->need_save_prio > 64)) {
|
||||
bch_prio_write(ca);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl)
|
||||
{
|
||||
long r = -1;
|
||||
again:
|
||||
wake_up(&ca->set->alloc_wait);
|
||||
|
||||
if (fifo_used(&ca->free) > ca->watermark[watermark] &&
|
||||
fifo_pop(&ca->free, r)) {
|
||||
struct bucket *b = ca->buckets + r;
|
||||
#ifdef CONFIG_BCACHE_EDEBUG
|
||||
size_t iter;
|
||||
long i;
|
||||
|
||||
for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
|
||||
BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
|
||||
|
||||
fifo_for_each(i, &ca->free, iter)
|
||||
BUG_ON(i == r);
|
||||
fifo_for_each(i, &ca->free_inc, iter)
|
||||
BUG_ON(i == r);
|
||||
fifo_for_each(i, &ca->unused, iter)
|
||||
BUG_ON(i == r);
|
||||
#endif
|
||||
BUG_ON(atomic_read(&b->pin) != 1);
|
||||
|
||||
SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
|
||||
|
||||
if (watermark <= WATERMARK_METADATA) {
|
||||
SET_GC_MARK(b, GC_MARK_METADATA);
|
||||
b->prio = BTREE_PRIO;
|
||||
} else {
|
||||
SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
|
||||
b->prio = INITIAL_PRIO;
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
pr_debug("alloc failure: blocked %i free %zu free_inc %zu unused %zu",
|
||||
atomic_read(&ca->set->prio_blocked), fifo_used(&ca->free),
|
||||
fifo_used(&ca->free_inc), fifo_used(&ca->unused));
|
||||
|
||||
if (cl) {
|
||||
closure_wait(&ca->set->bucket_wait, cl);
|
||||
|
||||
if (closure_blocking(cl)) {
|
||||
mutex_unlock(&ca->set->bucket_lock);
|
||||
closure_sync(cl);
|
||||
mutex_lock(&ca->set->bucket_lock);
|
||||
goto again;
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
void bch_bucket_free(struct cache_set *c, struct bkey *k)
|
||||
{
|
||||
unsigned i;
|
||||
|
||||
for (i = 0; i < KEY_PTRS(k); i++) {
|
||||
struct bucket *b = PTR_BUCKET(c, k, i);
|
||||
|
||||
SET_GC_MARK(b, 0);
|
||||
SET_GC_SECTORS_USED(b, 0);
|
||||
bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
|
||||
}
|
||||
}
|
||||
|
||||
int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
|
||||
struct bkey *k, int n, struct closure *cl)
|
||||
{
|
||||
int i;
|
||||
|
||||
lockdep_assert_held(&c->bucket_lock);
|
||||
BUG_ON(!n || n > c->caches_loaded || n > 8);
|
||||
|
||||
bkey_init(k);
|
||||
|
||||
/* sort by free space/prio of oldest data in caches */
|
||||
|
||||
for (i = 0; i < n; i++) {
|
||||
struct cache *ca = c->cache_by_alloc[i];
|
||||
long b = bch_bucket_alloc(ca, watermark, cl);
|
||||
|
||||
if (b == -1)
|
||||
goto err;
|
||||
|
||||
k->ptr[i] = PTR(ca->buckets[b].gen,
|
||||
bucket_to_sector(c, b),
|
||||
ca->sb.nr_this_dev);
|
||||
|
||||
SET_KEY_PTRS(k, i + 1);
|
||||
}
|
||||
|
||||
return 0;
|
||||
err:
|
||||
bch_bucket_free(c, k);
|
||||
__bkey_put(c, k);
|
||||
return -1;
|
||||
}
|
||||
|
||||
int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
|
||||
struct bkey *k, int n, struct closure *cl)
|
||||
{
|
||||
int ret;
|
||||
mutex_lock(&c->bucket_lock);
|
||||
ret = __bch_bucket_alloc_set(c, watermark, k, n, cl);
|
||||
mutex_unlock(&c->bucket_lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Init */
|
||||
|
||||
void bch_cache_allocator_exit(struct cache *ca)
|
||||
{
|
||||
struct discard *d;
|
||||
|
||||
while (!list_empty(&ca->discards)) {
|
||||
d = list_first_entry(&ca->discards, struct discard, list);
|
||||
cancel_work_sync(&d->work);
|
||||
list_del(&d->list);
|
||||
kfree(d);
|
||||
}
|
||||
}
|
||||
|
||||
int bch_cache_allocator_init(struct cache *ca)
|
||||
{
|
||||
unsigned i;
|
||||
|
||||
/*
|
||||
* Reserve:
|
||||
* Prio/gen writes first
|
||||
* Then 8 for btree allocations
|
||||
* Then half for the moving garbage collector
|
||||
*/
|
||||
|
||||
ca->watermark[WATERMARK_PRIO] = 0;
|
||||
|
||||
ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
|
||||
|
||||
ca->watermark[WATERMARK_MOVINGGC] = 8 +
|
||||
ca->watermark[WATERMARK_METADATA];
|
||||
|
||||
ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
|
||||
ca->watermark[WATERMARK_MOVINGGC];
|
||||
|
||||
for (i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) {
|
||||
struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL);
|
||||
if (!d)
|
||||
return -ENOMEM;
|
||||
|
||||
d->ca = ca;
|
||||
INIT_WORK(&d->work, discard_finish);
|
||||
list_add(&d->list, &ca->discards);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user