[SPARC64] PCI: Consolidate PCI access code into pci_common.c

All the sun4u controllers do the same thing to compute the physical
I/O address to poke, and we can move the sun4v code into this common
location too.

This one needs a bit of testing, in particular the Sabre code had some
funny stuff that would break up u16 and/or u32 accesses into pieces
and I didn't think that was needed any more.  If it is we need to find
out why and add back code to do it again.

Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
David S. Miller
2007-05-09 02:35:27 -07:00
parent de372ecd80
commit ca3dd88e41
7 changed files with 210 additions and 740 deletions

View File

@@ -205,294 +205,9 @@
#define SABRE_MEMSPACE 0x100000000UL
#define SABRE_MEMSPACE_SIZE 0x07fffffffUL
/* UltraSparc-IIi Programmer's Manual, page 325, PCI
* configuration space address format:
*
* 32 24 23 16 15 11 10 8 7 2 1 0
* ---------------------------------------------------------
* |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
* ---------------------------------------------------------
*/
#define SABRE_CONFIG_BASE(PBM) \
((PBM)->config_space | (1UL << 24))
#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
(((unsigned long)(BUS) << 16) | \
((unsigned long)(DEVFN) << 8) | \
((unsigned long)(REG)))
static int hummingbird_p;
static struct pci_bus *sabre_root_bus;
static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
unsigned char bus,
unsigned int devfn,
int where)
{
if (!pbm)
return NULL;
return (void *)
(SABRE_CONFIG_BASE(pbm) |
SABRE_CONFIG_ENCODE(bus, devfn, where));
}
static int sabre_out_of_range(unsigned char devfn)
{
if (hummingbird_p)
return 0;
return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
(PCI_SLOT(devfn) > 1));
}
static int __sabre_out_of_range(struct pci_pbm_info *pbm,
unsigned char bus,
unsigned char devfn)
{
if (hummingbird_p)
return 0;
return ((pbm->parent == 0) ||
((pbm == &pbm->parent->pbm_A) &&
(bus == pbm->pci_first_busno) &&
PCI_SLOT(devfn) > 8));
}
static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
u16 tmp16;
u8 tmp8;
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
if (__sabre_out_of_range(pbm, bus, devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_read8((u8 *) addr, &tmp8);
*value = tmp8;
break;
case 2:
if (where & 0x01) {
printk("pci_read_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read16((u16 *) addr, &tmp16);
*value = tmp16;
break;
case 4:
if (where & 0x03) {
printk("pci_read_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus->sysdata;
if (bus == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_read_pci_cfg(bus, devfn, where,
size, value);
if (!bus->number && sabre_out_of_range(devfn)) {
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
return PCIBIOS_SUCCESSFUL;
}
if (bus->number || PCI_SLOT(devfn))
return __sabre_read_pci_cfg(bus, devfn, where, size, value);
/* When accessing PCI config space of the PCI controller itself (bus
* 0, device slot 0, function 0) there are restrictions. Each
* register must be accessed as it's natural size. Thus, for example
* the Vendor ID must be accessed as a 16-bit quantity.
*/
switch (size) {
case 1:
if (where < 8) {
u32 tmp32;
u16 tmp16;
__sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
tmp16 = (u16) tmp32;
if (where & 1)
*value = tmp16 >> 8;
else
*value = tmp16 & 0xff;
} else
return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
break;
case 2:
if (where < 8)
return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
else {
u32 tmp32;
u8 tmp8;
__sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
tmp8 = (u8) tmp32;
*value = tmp8;
__sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
tmp8 = (u8) tmp32;
*value |= tmp8 << 8;
}
break;
case 4: {
u32 tmp32;
u16 tmp16;
sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
tmp16 = (u16) tmp32;
*value = tmp16;
sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
tmp16 = (u16) tmp32;
*value |= tmp16 << 16;
break;
}
}
return PCIBIOS_SUCCESSFUL;
}
static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
if (__sabre_out_of_range(pbm, bus, devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_write8((u8 *) addr, value);
break;
case 2:
if (where & 0x01) {
printk("pci_write_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write16((u16 *) addr, value);
break;
case 4:
if (where & 0x03) {
printk("pci_write_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus->sysdata;
if (bus == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_write_pci_cfg(bus, devfn, where,
size, value);
if (bus->number)
return __sabre_write_pci_cfg(bus, devfn, where, size, value);
if (sabre_out_of_range(devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
if (where < 8) {
u32 tmp32;
u16 tmp16;
__sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
tmp16 = (u16) tmp32;
if (where & 1) {
value &= 0x00ff;
value |= tmp16 << 8;
} else {
value &= 0xff00;
value |= tmp16;
}
tmp32 = (u32) tmp16;
return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
} else
return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
break;
case 2:
if (where < 8)
return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
else {
__sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
__sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
}
break;
case 4:
sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops sabre_ops = {
.read = sabre_read_pci_cfg,
.write = sabre_write_pci_cfg,
};
/* SABRE error handling support. */
static void sabre_check_iommu_error(struct pci_pbm_info *pbm,
unsigned long afsr,
@@ -1010,7 +725,8 @@ static void sabre_pbm_init(struct pci_controller_info *p, struct pci_pbm_info *p
printk("%s: SABRE PCI Bus Module\n", pbm->name);
pbm->scan_bus = sabre_scan_bus;
pbm->pci_ops = &sabre_ops;
pbm->pci_ops = &sun4u_pci_ops;
pbm->config_space_reg_bits = 8;
pbm->index = pci_num_pbms++;