spi: Extend the core to ease integration of SPI memory controllers
Some controllers are exposing high-level interfaces to access various kind of SPI memories. Unfortunately they do not fit in the current spi_controller model and usually have drivers placed in drivers/mtd/spi-nor which are only supporting SPI NORs and not SPI memories in general. This is an attempt at defining a SPI memory interface which works for all kinds of SPI memories (NORs, NANDs, SRAMs). Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com> Reviewed-by: Frieder Schrempf <frieder.schrempf@exceet.de> Tested-by: Frieder Schrempf <frieder.schrempf@exceet.de> Signed-off-by: Mark Brown <broonie@kernel.org>
This commit is contained in:

committato da
Mark Brown

parent
055ed0dabc
commit
c36ff266dc
@@ -47,6 +47,13 @@ config SPI_MASTER
|
||||
|
||||
if SPI_MASTER
|
||||
|
||||
config SPI_MEM
|
||||
bool "SPI memory extension"
|
||||
help
|
||||
Enable this option if you want to enable the SPI memory extension.
|
||||
This extension is meant to simplify interaction with SPI memories
|
||||
by providing an high-level interface to send memory-like commands.
|
||||
|
||||
comment "SPI Master Controller Drivers"
|
||||
|
||||
config SPI_ALTERA
|
||||
|
@@ -8,6 +8,7 @@ ccflags-$(CONFIG_SPI_DEBUG) := -DDEBUG
|
||||
# small core, mostly translating board-specific
|
||||
# config declarations into driver model code
|
||||
obj-$(CONFIG_SPI_MASTER) += spi.o
|
||||
obj-$(CONFIG_SPI_MEM) += spi-mem.o
|
||||
obj-$(CONFIG_SPI_SPIDEV) += spidev.o
|
||||
obj-$(CONFIG_SPI_LOOPBACK_TEST) += spi-loopback-test.o
|
||||
|
||||
|
410
drivers/spi/spi-mem.c
Normal file
410
drivers/spi/spi-mem.c
Normal file
@@ -0,0 +1,410 @@
|
||||
// SPDX-License-Identifier: GPL-2.0+
|
||||
/*
|
||||
* Copyright (C) 2018 Exceet Electronics GmbH
|
||||
* Copyright (C) 2018 Bootlin
|
||||
*
|
||||
* Author: Boris Brezillon <boris.brezillon@bootlin.com>
|
||||
*/
|
||||
#include <linux/dmaengine.h>
|
||||
#include <linux/pm_runtime.h>
|
||||
#include <linux/spi/spi.h>
|
||||
#include <linux/spi/spi-mem.h>
|
||||
|
||||
#include "internals.h"
|
||||
|
||||
/**
|
||||
* spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
|
||||
* memory operation
|
||||
* @ctlr: the SPI controller requesting this dma_map()
|
||||
* @op: the memory operation containing the buffer to map
|
||||
* @sgt: a pointer to a non-initialized sg_table that will be filled by this
|
||||
* function
|
||||
*
|
||||
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
||||
* This helper prepares everything for you and provides a ready-to-use
|
||||
* sg_table. This function is not intended to be called from spi drivers.
|
||||
* Only SPI controller drivers should use it.
|
||||
* Note that the caller must ensure the memory region pointed by
|
||||
* op->data.buf.{in,out} is DMA-able before calling this function.
|
||||
*
|
||||
* Return: 0 in case of success, a negative error code otherwise.
|
||||
*/
|
||||
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
|
||||
const struct spi_mem_op *op,
|
||||
struct sg_table *sgt)
|
||||
{
|
||||
struct device *dmadev;
|
||||
|
||||
if (!op->data.nbytes)
|
||||
return -EINVAL;
|
||||
|
||||
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
||||
dmadev = ctlr->dma_tx->device->dev;
|
||||
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
||||
dmadev = ctlr->dma_rx->device->dev;
|
||||
else
|
||||
dmadev = ctlr->dev.parent;
|
||||
|
||||
if (!dmadev)
|
||||
return -EINVAL;
|
||||
|
||||
return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
|
||||
op->data.dir == SPI_MEM_DATA_IN ?
|
||||
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
|
||||
|
||||
/**
|
||||
* spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
|
||||
* memory operation
|
||||
* @ctlr: the SPI controller requesting this dma_unmap()
|
||||
* @op: the memory operation containing the buffer to unmap
|
||||
* @sgt: a pointer to an sg_table previously initialized by
|
||||
* spi_controller_dma_map_mem_op_data()
|
||||
*
|
||||
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
||||
* This helper prepares things so that the CPU can access the
|
||||
* op->data.buf.{in,out} buffer again.
|
||||
*
|
||||
* This function is not intended to be called from SPI drivers. Only SPI
|
||||
* controller drivers should use it.
|
||||
*
|
||||
* This function should be called after the DMA operation has finished and is
|
||||
* only valid if the previous spi_controller_dma_map_mem_op_data() call
|
||||
* returned 0.
|
||||
*
|
||||
* Return: 0 in case of success, a negative error code otherwise.
|
||||
*/
|
||||
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
|
||||
const struct spi_mem_op *op,
|
||||
struct sg_table *sgt)
|
||||
{
|
||||
struct device *dmadev;
|
||||
|
||||
if (!op->data.nbytes)
|
||||
return;
|
||||
|
||||
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
||||
dmadev = ctlr->dma_tx->device->dev;
|
||||
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
||||
dmadev = ctlr->dma_rx->device->dev;
|
||||
else
|
||||
dmadev = ctlr->dev.parent;
|
||||
|
||||
spi_unmap_buf(ctlr, dmadev, sgt,
|
||||
op->data.dir == SPI_MEM_DATA_IN ?
|
||||
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
|
||||
|
||||
static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
|
||||
{
|
||||
u32 mode = mem->spi->mode;
|
||||
|
||||
switch (buswidth) {
|
||||
case 1:
|
||||
return 0;
|
||||
|
||||
case 2:
|
||||
if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
|
||||
(!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
|
||||
return 0;
|
||||
|
||||
break;
|
||||
|
||||
case 4:
|
||||
if ((tx && (mode & SPI_TX_QUAD)) ||
|
||||
(!tx && (mode & SPI_RX_QUAD)))
|
||||
return 0;
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
|
||||
static bool spi_mem_default_supports_op(struct spi_mem *mem,
|
||||
const struct spi_mem_op *op)
|
||||
{
|
||||
if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
|
||||
return false;
|
||||
|
||||
if (op->addr.nbytes &&
|
||||
spi_check_buswidth_req(mem, op->addr.buswidth, true))
|
||||
return false;
|
||||
|
||||
if (op->dummy.nbytes &&
|
||||
spi_check_buswidth_req(mem, op->dummy.buswidth, true))
|
||||
return false;
|
||||
|
||||
if (op->data.nbytes &&
|
||||
spi_check_buswidth_req(mem, op->data.buswidth,
|
||||
op->data.dir == SPI_MEM_DATA_OUT))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
|
||||
|
||||
/**
|
||||
* spi_mem_supports_op() - Check if a memory device and the controller it is
|
||||
* connected to support a specific memory operation
|
||||
* @mem: the SPI memory
|
||||
* @op: the memory operation to check
|
||||
*
|
||||
* Some controllers are only supporting Single or Dual IOs, others might only
|
||||
* support specific opcodes, or it can even be that the controller and device
|
||||
* both support Quad IOs but the hardware prevents you from using it because
|
||||
* only 2 IO lines are connected.
|
||||
*
|
||||
* This function checks whether a specific operation is supported.
|
||||
*
|
||||
* Return: true if @op is supported, false otherwise.
|
||||
*/
|
||||
bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
|
||||
{
|
||||
struct spi_controller *ctlr = mem->spi->controller;
|
||||
|
||||
if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
|
||||
return ctlr->mem_ops->supports_op(mem, op);
|
||||
|
||||
return spi_mem_default_supports_op(mem, op);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_supports_op);
|
||||
|
||||
/**
|
||||
* spi_mem_exec_op() - Execute a memory operation
|
||||
* @mem: the SPI memory
|
||||
* @op: the memory operation to execute
|
||||
*
|
||||
* Executes a memory operation.
|
||||
*
|
||||
* This function first checks that @op is supported and then tries to execute
|
||||
* it.
|
||||
*
|
||||
* Return: 0 in case of success, a negative error code otherwise.
|
||||
*/
|
||||
int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
|
||||
{
|
||||
unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
|
||||
struct spi_controller *ctlr = mem->spi->controller;
|
||||
struct spi_transfer xfers[4] = { };
|
||||
struct spi_message msg;
|
||||
u8 *tmpbuf;
|
||||
int ret;
|
||||
|
||||
if (!spi_mem_supports_op(mem, op))
|
||||
return -ENOTSUPP;
|
||||
|
||||
if (ctlr->mem_ops) {
|
||||
/*
|
||||
* Flush the message queue before executing our SPI memory
|
||||
* operation to prevent preemption of regular SPI transfers.
|
||||
*/
|
||||
spi_flush_queue(ctlr);
|
||||
|
||||
if (ctlr->auto_runtime_pm) {
|
||||
ret = pm_runtime_get_sync(ctlr->dev.parent);
|
||||
if (ret < 0) {
|
||||
dev_err(&ctlr->dev,
|
||||
"Failed to power device: %d\n",
|
||||
ret);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
mutex_lock(&ctlr->bus_lock_mutex);
|
||||
mutex_lock(&ctlr->io_mutex);
|
||||
ret = ctlr->mem_ops->exec_op(mem, op);
|
||||
mutex_unlock(&ctlr->io_mutex);
|
||||
mutex_unlock(&ctlr->bus_lock_mutex);
|
||||
|
||||
if (ctlr->auto_runtime_pm)
|
||||
pm_runtime_put(ctlr->dev.parent);
|
||||
|
||||
/*
|
||||
* Some controllers only optimize specific paths (typically the
|
||||
* read path) and expect the core to use the regular SPI
|
||||
* interface in other cases.
|
||||
*/
|
||||
if (!ret || ret != -ENOTSUPP)
|
||||
return ret;
|
||||
}
|
||||
|
||||
tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
|
||||
op->dummy.nbytes;
|
||||
|
||||
/*
|
||||
* Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
|
||||
* we're guaranteed that this buffer is DMA-able, as required by the
|
||||
* SPI layer.
|
||||
*/
|
||||
tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
|
||||
if (!tmpbuf)
|
||||
return -ENOMEM;
|
||||
|
||||
spi_message_init(&msg);
|
||||
|
||||
tmpbuf[0] = op->cmd.opcode;
|
||||
xfers[xferpos].tx_buf = tmpbuf;
|
||||
xfers[xferpos].len = sizeof(op->cmd.opcode);
|
||||
xfers[xferpos].tx_nbits = op->cmd.buswidth;
|
||||
spi_message_add_tail(&xfers[xferpos], &msg);
|
||||
xferpos++;
|
||||
totalxferlen++;
|
||||
|
||||
if (op->addr.nbytes) {
|
||||
int i;
|
||||
|
||||
for (i = 0; i < op->addr.nbytes; i++)
|
||||
tmpbuf[i + 1] = op->addr.val >>
|
||||
(8 * (op->addr.nbytes - i - 1));
|
||||
|
||||
xfers[xferpos].tx_buf = tmpbuf + 1;
|
||||
xfers[xferpos].len = op->addr.nbytes;
|
||||
xfers[xferpos].tx_nbits = op->addr.buswidth;
|
||||
spi_message_add_tail(&xfers[xferpos], &msg);
|
||||
xferpos++;
|
||||
totalxferlen += op->addr.nbytes;
|
||||
}
|
||||
|
||||
if (op->dummy.nbytes) {
|
||||
memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
|
||||
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
|
||||
xfers[xferpos].len = op->dummy.nbytes;
|
||||
xfers[xferpos].tx_nbits = op->dummy.buswidth;
|
||||
spi_message_add_tail(&xfers[xferpos], &msg);
|
||||
xferpos++;
|
||||
totalxferlen += op->dummy.nbytes;
|
||||
}
|
||||
|
||||
if (op->data.nbytes) {
|
||||
if (op->data.dir == SPI_MEM_DATA_IN) {
|
||||
xfers[xferpos].rx_buf = op->data.buf.in;
|
||||
xfers[xferpos].rx_nbits = op->data.buswidth;
|
||||
} else {
|
||||
xfers[xferpos].tx_buf = op->data.buf.out;
|
||||
xfers[xferpos].tx_nbits = op->data.buswidth;
|
||||
}
|
||||
|
||||
xfers[xferpos].len = op->data.nbytes;
|
||||
spi_message_add_tail(&xfers[xferpos], &msg);
|
||||
xferpos++;
|
||||
totalxferlen += op->data.nbytes;
|
||||
}
|
||||
|
||||
ret = spi_sync(mem->spi, &msg);
|
||||
|
||||
kfree(tmpbuf);
|
||||
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (msg.actual_length != totalxferlen)
|
||||
return -EIO;
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_exec_op);
|
||||
|
||||
/**
|
||||
* spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
|
||||
* match controller limitations
|
||||
* @mem: the SPI memory
|
||||
* @op: the operation to adjust
|
||||
*
|
||||
* Some controllers have FIFO limitations and must split a data transfer
|
||||
* operation into multiple ones, others require a specific alignment for
|
||||
* optimized accesses. This function allows SPI mem drivers to split a single
|
||||
* operation into multiple sub-operations when required.
|
||||
*
|
||||
* Return: a negative error code if the controller can't properly adjust @op,
|
||||
* 0 otherwise. Note that @op->data.nbytes will be updated if @op
|
||||
* can't be handled in a single step.
|
||||
*/
|
||||
int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
|
||||
{
|
||||
struct spi_controller *ctlr = mem->spi->controller;
|
||||
|
||||
if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
|
||||
return ctlr->mem_ops->adjust_op_size(mem, op);
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
|
||||
|
||||
static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
|
||||
{
|
||||
return container_of(drv, struct spi_mem_driver, spidrv.driver);
|
||||
}
|
||||
|
||||
static int spi_mem_probe(struct spi_device *spi)
|
||||
{
|
||||
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
||||
struct spi_mem *mem;
|
||||
|
||||
mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
|
||||
if (!mem)
|
||||
return -ENOMEM;
|
||||
|
||||
mem->spi = spi;
|
||||
spi_set_drvdata(spi, mem);
|
||||
|
||||
return memdrv->probe(mem);
|
||||
}
|
||||
|
||||
static int spi_mem_remove(struct spi_device *spi)
|
||||
{
|
||||
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
||||
struct spi_mem *mem = spi_get_drvdata(spi);
|
||||
|
||||
if (memdrv->remove)
|
||||
return memdrv->remove(mem);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void spi_mem_shutdown(struct spi_device *spi)
|
||||
{
|
||||
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
||||
struct spi_mem *mem = spi_get_drvdata(spi);
|
||||
|
||||
if (memdrv->shutdown)
|
||||
memdrv->shutdown(mem);
|
||||
}
|
||||
|
||||
/**
|
||||
* spi_mem_driver_register_with_owner() - Register a SPI memory driver
|
||||
* @memdrv: the SPI memory driver to register
|
||||
* @owner: the owner of this driver
|
||||
*
|
||||
* Registers a SPI memory driver.
|
||||
*
|
||||
* Return: 0 in case of success, a negative error core otherwise.
|
||||
*/
|
||||
|
||||
int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
|
||||
struct module *owner)
|
||||
{
|
||||
memdrv->spidrv.probe = spi_mem_probe;
|
||||
memdrv->spidrv.remove = spi_mem_remove;
|
||||
memdrv->spidrv.shutdown = spi_mem_shutdown;
|
||||
|
||||
return __spi_register_driver(owner, &memdrv->spidrv);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
|
||||
|
||||
/**
|
||||
* spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
|
||||
* @memdrv: the SPI memory driver to unregister
|
||||
*
|
||||
* Unregisters a SPI memory driver.
|
||||
*/
|
||||
void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
|
||||
{
|
||||
spi_unregister_driver(&memdrv->spidrv);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
|
Fai riferimento in un nuovo problema
Block a user