Merge branch 'for-chris-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.7

Signed-off-by: Chris Mason <clm@fb.com>
This commit is contained in:
Chris Mason
2016-05-17 14:43:19 -07:00
419 changed files with 4858 additions and 2268 deletions

View File

@@ -196,6 +196,16 @@ struct btrfs_inode {
struct list_head delayed_iput;
long delayed_iput_count;
/*
* To avoid races between lockless (i_mutex not held) direct IO writes
* and concurrent fsync requests. Direct IO writes must acquire read
* access on this semaphore for creating an extent map and its
* corresponding ordered extent. The fast fsync path must acquire write
* access on this semaphore before it collects ordered extents and
* extent maps.
*/
struct rw_semaphore dio_sem;
struct inode vfs_inode;
};

View File

@@ -618,6 +618,27 @@ struct btrfs_block_group_cache {
struct btrfs_io_ctl io_ctl;
/*
* Incremented when doing extent allocations and holding a read lock
* on the space_info's groups_sem semaphore.
* Decremented when an ordered extent that represents an IO against this
* block group's range is created (after it's added to its inode's
* root's list of ordered extents) or immediately after the allocation
* if it's a metadata extent or fallocate extent (for these cases we
* don't create ordered extents).
*/
atomic_t reservations;
/*
* Incremented while holding the spinlock *lock* by a task checking if
* it can perform a nocow write (incremented if the value for the *ro*
* field is 0). Decremented by such tasks once they create an ordered
* extent or before that if some error happens before reaching that step.
* This is to prevent races between block group relocation and nocow
* writes through direct IO.
*/
atomic_t nocow_writers;
/* Lock for free space tree operations. */
struct mutex free_space_lock;
@@ -2487,6 +2508,12 @@ int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
const u64 start);
void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg);
bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg);
void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
struct btrfs_root *root, unsigned long count);

View File

@@ -385,7 +385,7 @@ int btrfs_dev_replace_start(struct btrfs_root *root, char *tgtdev_name,
if (ret)
btrfs_err(fs_info, "kobj add dev failed %d\n", ret);
btrfs_wait_ordered_roots(fs_info, -1);
btrfs_wait_ordered_roots(root->fs_info, -1, 0, (u64)-1);
/* force writing the updated state information to disk */
trans = btrfs_start_transaction(root, 0);
@@ -504,7 +504,7 @@ static int btrfs_dev_replace_finishing(struct btrfs_fs_info *fs_info,
mutex_unlock(&dev_replace->lock_finishing_cancel_unmount);
return ret;
}
btrfs_wait_ordered_roots(root->fs_info, -1);
btrfs_wait_ordered_roots(root->fs_info, -1, 0, (u64)-1);
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {

View File

@@ -3824,6 +3824,59 @@ int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
return readonly;
}
bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_block_group_cache *bg;
bool ret = true;
bg = btrfs_lookup_block_group(fs_info, bytenr);
if (!bg)
return false;
spin_lock(&bg->lock);
if (bg->ro)
ret = false;
else
atomic_inc(&bg->nocow_writers);
spin_unlock(&bg->lock);
/* no put on block group, done by btrfs_dec_nocow_writers */
if (!ret)
btrfs_put_block_group(bg);
return ret;
}
void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_block_group_cache *bg;
bg = btrfs_lookup_block_group(fs_info, bytenr);
ASSERT(bg);
if (atomic_dec_and_test(&bg->nocow_writers))
wake_up_atomic_t(&bg->nocow_writers);
/*
* Once for our lookup and once for the lookup done by a previous call
* to btrfs_inc_nocow_writers()
*/
btrfs_put_block_group(bg);
btrfs_put_block_group(bg);
}
static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
{
schedule();
return 0;
}
void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
{
wait_on_atomic_t(&bg->nocow_writers,
btrfs_wait_nocow_writers_atomic_t,
TASK_UNINTERRUPTIBLE);
}
static const char *alloc_name(u64 flags)
{
switch (flags) {
@@ -4141,7 +4194,7 @@ commit_trans:
if (need_commit > 0) {
btrfs_start_delalloc_roots(fs_info, 0, -1);
btrfs_wait_ordered_roots(fs_info, -1);
btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
}
trans = btrfs_join_transaction(root);
@@ -4583,7 +4636,8 @@ static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
*/
btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
if (!current->journal_info)
btrfs_wait_ordered_roots(root->fs_info, nr_items);
btrfs_wait_ordered_roots(root->fs_info, nr_items,
0, (u64)-1);
}
}
@@ -4632,7 +4686,8 @@ static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
if (trans)
return;
if (wait_ordered)
btrfs_wait_ordered_roots(root->fs_info, items);
btrfs_wait_ordered_roots(root->fs_info, items,
0, (u64)-1);
return;
}
@@ -4671,7 +4726,8 @@ skip_async:
loops++;
if (wait_ordered && !trans) {
btrfs_wait_ordered_roots(root->fs_info, items);
btrfs_wait_ordered_roots(root->fs_info, items,
0, (u64)-1);
} else {
time_left = schedule_timeout_killable(1);
if (time_left)
@@ -6172,6 +6228,57 @@ int btrfs_exclude_logged_extents(struct btrfs_root *log,
return 0;
}
static void
btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
{
atomic_inc(&bg->reservations);
}
void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
const u64 start)
{
struct btrfs_block_group_cache *bg;
bg = btrfs_lookup_block_group(fs_info, start);
ASSERT(bg);
if (atomic_dec_and_test(&bg->reservations))
wake_up_atomic_t(&bg->reservations);
btrfs_put_block_group(bg);
}
static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
{
schedule();
return 0;
}
void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
{
struct btrfs_space_info *space_info = bg->space_info;
ASSERT(bg->ro);
if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
return;
/*
* Our block group is read only but before we set it to read only,
* some task might have had allocated an extent from it already, but it
* has not yet created a respective ordered extent (and added it to a
* root's list of ordered extents).
* Therefore wait for any task currently allocating extents, since the
* block group's reservations counter is incremented while a read lock
* on the groups' semaphore is held and decremented after releasing
* the read access on that semaphore and creating the ordered extent.
*/
down_write(&space_info->groups_sem);
up_write(&space_info->groups_sem);
wait_on_atomic_t(&bg->reservations,
btrfs_wait_bg_reservations_atomic_t,
TASK_UNINTERRUPTIBLE);
}
/**
* btrfs_update_reserved_bytes - update the block_group and space info counters
* @cache: The cache we are manipulating
@@ -7430,6 +7537,7 @@ checks:
btrfs_add_free_space(block_group, offset, num_bytes);
goto loop;
}
btrfs_inc_block_group_reservations(block_group);
/* we are all good, lets return */
ins->objectid = search_start;
@@ -7611,8 +7719,10 @@ again:
WARN_ON(num_bytes < root->sectorsize);
ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
flags, delalloc);
if (ret == -ENOSPC) {
if (!ret && !is_data) {
btrfs_dec_block_group_reservations(root->fs_info,
ins->objectid);
} else if (ret == -ENOSPC) {
if (!final_tried && ins->offset) {
num_bytes = min(num_bytes >> 1, ins->offset);
num_bytes = round_down(num_bytes, root->sectorsize);

View File

@@ -824,6 +824,7 @@ retry:
async_extent->ram_size - 1, 0);
goto out_free_reserve;
}
btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
/*
* clear dirty, set writeback and unlock the pages.
@@ -861,6 +862,7 @@ retry:
}
return;
out_free_reserve:
btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
out_free:
extent_clear_unlock_delalloc(inode, async_extent->start,
@@ -1038,6 +1040,8 @@ static noinline int cow_file_range(struct inode *inode,
goto out_drop_extent_cache;
}
btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
if (disk_num_bytes < cur_alloc_size)
break;
@@ -1066,6 +1070,7 @@ out:
out_drop_extent_cache:
btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
out_reserve:
btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
out_unlock:
extent_clear_unlock_delalloc(inode, start, end, locked_page,
@@ -1377,6 +1382,9 @@ next_slot:
*/
if (csum_exist_in_range(root, disk_bytenr, num_bytes))
goto out_check;
if (!btrfs_inc_nocow_writers(root->fs_info,
disk_bytenr))
goto out_check;
nocow = 1;
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
extent_end = found_key.offset +
@@ -1391,6 +1399,9 @@ out_check:
path->slots[0]++;
if (!nolock && nocow)
btrfs_end_write_no_snapshoting(root);
if (nocow)
btrfs_dec_nocow_writers(root->fs_info,
disk_bytenr);
goto next_slot;
}
if (!nocow) {
@@ -1411,6 +1422,9 @@ out_check:
if (ret) {
if (!nolock && nocow)
btrfs_end_write_no_snapshoting(root);
if (nocow)
btrfs_dec_nocow_writers(root->fs_info,
disk_bytenr);
goto error;
}
cow_start = (u64)-1;
@@ -1453,6 +1467,8 @@ out_check:
ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
num_bytes, num_bytes, type);
if (nocow)
btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
BUG_ON(ret); /* -ENOMEM */
if (root->root_key.objectid ==
@@ -7129,6 +7145,43 @@ out:
return em;
}
static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
const u64 start,
const u64 len,
const u64 orig_start,
const u64 block_start,
const u64 block_len,
const u64 orig_block_len,
const u64 ram_bytes,
const int type)
{
struct extent_map *em = NULL;
int ret;
down_read(&BTRFS_I(inode)->dio_sem);
if (type != BTRFS_ORDERED_NOCOW) {
em = create_pinned_em(inode, start, len, orig_start,
block_start, block_len, orig_block_len,
ram_bytes, type);
if (IS_ERR(em))
goto out;
}
ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
len, block_len, type);
if (ret) {
if (em) {
free_extent_map(em);
btrfs_drop_extent_cache(inode, start,
start + len - 1, 0);
}
em = ERR_PTR(ret);
}
out:
up_read(&BTRFS_I(inode)->dio_sem);
return em;
}
static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
u64 start, u64 len)
{
@@ -7144,41 +7197,13 @@ static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
if (ret)
return ERR_PTR(ret);
/*
* Create the ordered extent before the extent map. This is to avoid
* races with the fast fsync path that would lead to it logging file
* extent items that point to disk extents that were not yet written to.
* The fast fsync path collects ordered extents into a local list and
* then collects all the new extent maps, so we must create the ordered
* extent first and make sure the fast fsync path collects any new
* ordered extents after collecting new extent maps as well.
* The fsync path simply can not rely on inode_dio_wait() because it
* causes deadlock with AIO.
*/
ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
ins.offset, ins.offset, 0);
if (ret) {
em = btrfs_create_dio_extent(inode, start, ins.offset, start,
ins.objectid, ins.offset, ins.offset,
ins.offset, 0);
btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
if (IS_ERR(em))
btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
return ERR_PTR(ret);
}
em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
ins.offset, ins.offset, ins.offset, 0);
if (IS_ERR(em)) {
struct btrfs_ordered_extent *oe;
btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
oe = btrfs_lookup_ordered_extent(inode, start);
ASSERT(oe);
if (WARN_ON(!oe))
return em;
set_bit(BTRFS_ORDERED_IOERR, &oe->flags);
set_bit(BTRFS_ORDERED_IO_DONE, &oe->flags);
btrfs_remove_ordered_extent(inode, oe);
/* Once for our lookup and once for the ordered extents tree. */
btrfs_put_ordered_extent(oe);
btrfs_put_ordered_extent(oe);
}
return em;
}
@@ -7650,24 +7675,21 @@ static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
block_start = em->block_start + (start - em->start);
if (can_nocow_extent(inode, start, &len, &orig_start,
&orig_block_len, &ram_bytes) == 1) {
&orig_block_len, &ram_bytes) == 1 &&
btrfs_inc_nocow_writers(root->fs_info, block_start)) {
struct extent_map *em2;
em2 = btrfs_create_dio_extent(inode, start, len,
orig_start, block_start,
len, orig_block_len,
ram_bytes, type);
btrfs_dec_nocow_writers(root->fs_info, block_start);
if (type == BTRFS_ORDERED_PREALLOC) {
free_extent_map(em);
em = create_pinned_em(inode, start, len,
orig_start,
block_start, len,
orig_block_len,
ram_bytes, type);
if (IS_ERR(em)) {
ret = PTR_ERR(em);
goto unlock_err;
}
em = em2;
}
ret = btrfs_add_ordered_extent_dio(inode, start,
block_start, len, len, type);
if (ret) {
free_extent_map(em);
if (em2 && IS_ERR(em2)) {
ret = PTR_ERR(em2);
goto unlock_err;
}
goto unlock;
@@ -9230,6 +9252,7 @@ struct inode *btrfs_alloc_inode(struct super_block *sb)
INIT_LIST_HEAD(&ei->delalloc_inodes);
INIT_LIST_HEAD(&ei->delayed_iput);
RB_CLEAR_NODE(&ei->rb_node);
init_rwsem(&ei->dio_sem);
return inode;
}
@@ -9387,18 +9410,290 @@ static int btrfs_getattr(struct vfsmount *mnt,
return 0;
}
static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
static int btrfs_rename_exchange(struct inode *old_dir,
struct dentry *old_dentry,
struct inode *new_dir,
struct dentry *new_dentry)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = BTRFS_I(old_dir)->root;
struct btrfs_root *dest = BTRFS_I(new_dir)->root;
struct inode *new_inode = new_dentry->d_inode;
struct inode *old_inode = old_dentry->d_inode;
struct timespec ctime = CURRENT_TIME;
struct dentry *parent;
u64 old_ino = btrfs_ino(old_inode);
u64 new_ino = btrfs_ino(new_inode);
u64 old_idx = 0;
u64 new_idx = 0;
u64 root_objectid;
int ret;
bool root_log_pinned = false;
bool dest_log_pinned = false;
/* we only allow rename subvolume link between subvolumes */
if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
return -EXDEV;
/* close the race window with snapshot create/destroy ioctl */
if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
down_read(&root->fs_info->subvol_sem);
if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
down_read(&dest->fs_info->subvol_sem);
/*
* We want to reserve the absolute worst case amount of items. So if
* both inodes are subvols and we need to unlink them then that would
* require 4 item modifications, but if they are both normal inodes it
* would require 5 item modifications, so we'll assume their normal
* inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
* should cover the worst case number of items we'll modify.
*/
trans = btrfs_start_transaction(root, 12);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_notrans;
}
/*
* We need to find a free sequence number both in the source and
* in the destination directory for the exchange.
*/
ret = btrfs_set_inode_index(new_dir, &old_idx);
if (ret)
goto out_fail;
ret = btrfs_set_inode_index(old_dir, &new_idx);
if (ret)
goto out_fail;
BTRFS_I(old_inode)->dir_index = 0ULL;
BTRFS_I(new_inode)->dir_index = 0ULL;
/* Reference for the source. */
if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
/* force full log commit if subvolume involved. */
btrfs_set_log_full_commit(root->fs_info, trans);
} else {
btrfs_pin_log_trans(root);
root_log_pinned = true;
ret = btrfs_insert_inode_ref(trans, dest,
new_dentry->d_name.name,
new_dentry->d_name.len,
old_ino,
btrfs_ino(new_dir), old_idx);
if (ret)
goto out_fail;
}
/* And now for the dest. */
if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
/* force full log commit if subvolume involved. */
btrfs_set_log_full_commit(dest->fs_info, trans);
} else {
btrfs_pin_log_trans(dest);
dest_log_pinned = true;
ret = btrfs_insert_inode_ref(trans, root,
old_dentry->d_name.name,
old_dentry->d_name.len,
new_ino,
btrfs_ino(old_dir), new_idx);
if (ret)
goto out_fail;
}
/* Update inode version and ctime/mtime. */
inode_inc_iversion(old_dir);
inode_inc_iversion(new_dir);
inode_inc_iversion(old_inode);
inode_inc_iversion(new_inode);
old_dir->i_ctime = old_dir->i_mtime = ctime;
new_dir->i_ctime = new_dir->i_mtime = ctime;
old_inode->i_ctime = ctime;
new_inode->i_ctime = ctime;
if (old_dentry->d_parent != new_dentry->d_parent) {
btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
}
/* src is a subvolume */
if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
ret = btrfs_unlink_subvol(trans, root, old_dir,
root_objectid,
old_dentry->d_name.name,
old_dentry->d_name.len);
} else { /* src is an inode */
ret = __btrfs_unlink_inode(trans, root, old_dir,
old_dentry->d_inode,
old_dentry->d_name.name,
old_dentry->d_name.len);
if (!ret)
ret = btrfs_update_inode(trans, root, old_inode);
}
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out_fail;
}
/* dest is a subvolume */
if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
ret = btrfs_unlink_subvol(trans, dest, new_dir,
root_objectid,
new_dentry->d_name.name,
new_dentry->d_name.len);
} else { /* dest is an inode */
ret = __btrfs_unlink_inode(trans, dest, new_dir,
new_dentry->d_inode,
new_dentry->d_name.name,
new_dentry->d_name.len);
if (!ret)
ret = btrfs_update_inode(trans, dest, new_inode);
}
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out_fail;
}
ret = btrfs_add_link(trans, new_dir, old_inode,
new_dentry->d_name.name,
new_dentry->d_name.len, 0, old_idx);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out_fail;
}
ret = btrfs_add_link(trans, old_dir, new_inode,
old_dentry->d_name.name,
old_dentry->d_name.len, 0, new_idx);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out_fail;
}
if (old_inode->i_nlink == 1)
BTRFS_I(old_inode)->dir_index = old_idx;
if (new_inode->i_nlink == 1)
BTRFS_I(new_inode)->dir_index = new_idx;
if (root_log_pinned) {
parent = new_dentry->d_parent;
btrfs_log_new_name(trans, old_inode, old_dir, parent);
btrfs_end_log_trans(root);
root_log_pinned = false;
}
if (dest_log_pinned) {
parent = old_dentry->d_parent;
btrfs_log_new_name(trans, new_inode, new_dir, parent);
btrfs_end_log_trans(dest);
dest_log_pinned = false;
}
out_fail:
/*
* If we have pinned a log and an error happened, we unpin tasks
* trying to sync the log and force them to fallback to a transaction
* commit if the log currently contains any of the inodes involved in
* this rename operation (to ensure we do not persist a log with an
* inconsistent state for any of these inodes or leading to any
* inconsistencies when replayed). If the transaction was aborted, the
* abortion reason is propagated to userspace when attempting to commit
* the transaction. If the log does not contain any of these inodes, we
* allow the tasks to sync it.
*/
if (ret && (root_log_pinned || dest_log_pinned)) {
if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
(new_inode &&
btrfs_inode_in_log(new_inode, root->fs_info->generation)))
btrfs_set_log_full_commit(root->fs_info, trans);
if (root_log_pinned) {
btrfs_end_log_trans(root);
root_log_pinned = false;
}
if (dest_log_pinned) {
btrfs_end_log_trans(dest);
dest_log_pinned = false;
}
}
ret = btrfs_end_transaction(trans, root);
out_notrans:
if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
up_read(&dest->fs_info->subvol_sem);
if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
up_read(&root->fs_info->subvol_sem);
return ret;
}
static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *dir,
struct dentry *dentry)
{
int ret;
struct inode *inode;
u64 objectid;
u64 index;
ret = btrfs_find_free_ino(root, &objectid);
if (ret)
return ret;
inode = btrfs_new_inode(trans, root, dir,
dentry->d_name.name,
dentry->d_name.len,
btrfs_ino(dir),
objectid,
S_IFCHR | WHITEOUT_MODE,
&index);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
return ret;
}
inode->i_op = &btrfs_special_inode_operations;
init_special_inode(inode, inode->i_mode,
WHITEOUT_DEV);
ret = btrfs_init_inode_security(trans, inode, dir,
&dentry->d_name);
if (ret)
goto out;
ret = btrfs_add_nondir(trans, dir, dentry,
inode, 0, index);
if (ret)
goto out;
ret = btrfs_update_inode(trans, root, inode);
out:
unlock_new_inode(inode);
if (ret)
inode_dec_link_count(inode);
iput(inode);
return ret;
}
static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
struct btrfs_trans_handle *trans;
unsigned int trans_num_items;
struct btrfs_root *root = BTRFS_I(old_dir)->root;
struct btrfs_root *dest = BTRFS_I(new_dir)->root;
struct inode *new_inode = d_inode(new_dentry);
struct inode *old_inode = d_inode(old_dentry);
u64 index = 0;
u64 root_objectid;
int ret;
u64 old_ino = btrfs_ino(old_inode);
bool log_pinned = false;
if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
return -EPERM;
@@ -9449,15 +9744,21 @@ static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
* We want to reserve the absolute worst case amount of items. So if
* both inodes are subvols and we need to unlink them then that would
* require 4 item modifications, but if they are both normal inodes it
* would require 5 item modifications, so we'll assume their normal
* would require 5 item modifications, so we'll assume they are normal
* inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
* should cover the worst case number of items we'll modify.
* If our rename has the whiteout flag, we need more 5 units for the
* new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
* when selinux is enabled).
*/
trans = btrfs_start_transaction(root, 11);
trans_num_items = 11;
if (flags & RENAME_WHITEOUT)
trans_num_items += 5;
trans = btrfs_start_transaction(root, trans_num_items);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_notrans;
}
ret = PTR_ERR(trans);
goto out_notrans;
}
if (dest != root)
btrfs_record_root_in_trans(trans, dest);
@@ -9471,6 +9772,8 @@ static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
/* force full log commit if subvolume involved. */
btrfs_set_log_full_commit(root->fs_info, trans);
} else {
btrfs_pin_log_trans(root);
log_pinned = true;
ret = btrfs_insert_inode_ref(trans, dest,
new_dentry->d_name.name,
new_dentry->d_name.len,
@@ -9478,14 +9781,6 @@ static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
btrfs_ino(new_dir), index);
if (ret)
goto out_fail;
/*
* this is an ugly little race, but the rename is required
* to make sure that if we crash, the inode is either at the
* old name or the new one. pinning the log transaction lets
* us make sure we don't allow a log commit to come in after
* we unlink the name but before we add the new name back in.
*/
btrfs_pin_log_trans(root);
}
inode_inc_iversion(old_dir);
@@ -9552,12 +9847,46 @@ static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
if (old_inode->i_nlink == 1)
BTRFS_I(old_inode)->dir_index = index;
if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
if (log_pinned) {
struct dentry *parent = new_dentry->d_parent;
btrfs_log_new_name(trans, old_inode, old_dir, parent);
btrfs_end_log_trans(root);
log_pinned = false;
}
if (flags & RENAME_WHITEOUT) {
ret = btrfs_whiteout_for_rename(trans, root, old_dir,
old_dentry);
if (ret) {
btrfs_abort_transaction(trans, root, ret);
goto out_fail;
}
}
out_fail:
/*
* If we have pinned the log and an error happened, we unpin tasks
* trying to sync the log and force them to fallback to a transaction
* commit if the log currently contains any of the inodes involved in
* this rename operation (to ensure we do not persist a log with an
* inconsistent state for any of these inodes or leading to any
* inconsistencies when replayed). If the transaction was aborted, the
* abortion reason is propagated to userspace when attempting to commit
* the transaction. If the log does not contain any of these inodes, we
* allow the tasks to sync it.
*/
if (ret && log_pinned) {
if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
(new_inode &&
btrfs_inode_in_log(new_inode, root->fs_info->generation)))
btrfs_set_log_full_commit(root->fs_info, trans);
btrfs_end_log_trans(root);
log_pinned = false;
}
btrfs_end_transaction(trans, root);
out_notrans:
if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
@@ -9570,10 +9899,14 @@ static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
if (flags & ~RENAME_NOREPLACE)
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
return -EINVAL;
return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
if (flags & RENAME_EXCHANGE)
return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
new_dentry);
return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
}
static void btrfs_run_delalloc_work(struct btrfs_work *work)
@@ -9942,6 +10275,7 @@ static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
btrfs_end_transaction(trans, root);
break;
}
btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
last_alloc = ins.offset;
ret = insert_reserved_file_extent(trans, inode,

View File

@@ -690,7 +690,7 @@ static int create_snapshot(struct btrfs_root *root, struct inode *dir,
if (ret)
goto dec_and_free;
btrfs_wait_ordered_extents(root, -1);
btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
btrfs_init_block_rsv(&pending_snapshot->block_rsv,
BTRFS_BLOCK_RSV_TEMP);

View File

@@ -661,14 +661,15 @@ static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
* wait for all the ordered extents in a root. This is done when balancing
* space between drives.
*/
int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr,
const u64 range_start, const u64 range_len)
{
struct list_head splice, works;
LIST_HEAD(splice);
LIST_HEAD(skipped);
LIST_HEAD(works);
struct btrfs_ordered_extent *ordered, *next;
int count = 0;
INIT_LIST_HEAD(&splice);
INIT_LIST_HEAD(&works);
const u64 range_end = range_start + range_len;
mutex_lock(&root->ordered_extent_mutex);
spin_lock(&root->ordered_extent_lock);
@@ -676,6 +677,14 @@ int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
while (!list_empty(&splice) && nr) {
ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
root_extent_list);
if (range_end <= ordered->start ||
ordered->start + ordered->disk_len <= range_start) {
list_move_tail(&ordered->root_extent_list, &skipped);
cond_resched_lock(&root->ordered_extent_lock);
continue;
}
list_move_tail(&ordered->root_extent_list,
&root->ordered_extents);
atomic_inc(&ordered->refs);
@@ -694,6 +703,7 @@ int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
nr--;
count++;
}
list_splice_tail(&skipped, &root->ordered_extents);
list_splice_tail(&splice, &root->ordered_extents);
spin_unlock(&root->ordered_extent_lock);
@@ -708,7 +718,8 @@ int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
return count;
}
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr,
const u64 range_start, const u64 range_len)
{
struct btrfs_root *root;
struct list_head splice;
@@ -728,7 +739,8 @@ void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
&fs_info->ordered_roots);
spin_unlock(&fs_info->ordered_root_lock);
done = btrfs_wait_ordered_extents(root, nr);
done = btrfs_wait_ordered_extents(root, nr,
range_start, range_len);
btrfs_put_fs_root(root);
spin_lock(&fs_info->ordered_root_lock);

View File

@@ -197,8 +197,10 @@ int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
struct btrfs_ordered_extent *ordered);
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
u32 *sum, int len);
int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr);
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr);
int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr,
const u64 range_start, const u64 range_len);
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr,
const u64 range_start, const u64 range_len);
void btrfs_get_logged_extents(struct inode *inode,
struct list_head *logged_list,
const loff_t start,

View File

@@ -4254,12 +4254,11 @@ int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
rc->block_group->key.objectid, rc->block_group->flags);
ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
if (ret < 0) {
err = ret;
goto out;
}
btrfs_wait_ordered_roots(fs_info, -1);
btrfs_wait_block_group_reservations(rc->block_group);
btrfs_wait_nocow_writers(rc->block_group);
btrfs_wait_ordered_roots(fs_info, -1,
rc->block_group->key.objectid,
rc->block_group->key.offset);
while (1) {
mutex_lock(&fs_info->cleaner_mutex);

View File

@@ -1156,7 +1156,7 @@ int btrfs_sync_fs(struct super_block *sb, int wait)
return 0;
}
btrfs_wait_ordered_roots(fs_info, -1);
btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
trans = btrfs_attach_transaction_barrier(root);
if (IS_ERR(trans)) {

View File

@@ -1907,7 +1907,7 @@ static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
{
if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
btrfs_wait_ordered_roots(fs_info, -1);
btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
}
static inline void

View File

@@ -4141,6 +4141,7 @@ static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
INIT_LIST_HEAD(&extents);
down_write(&BTRFS_I(inode)->dio_sem);
write_lock(&tree->lock);
test_gen = root->fs_info->last_trans_committed;
@@ -4169,13 +4170,20 @@ static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
}
list_sort(NULL, &extents, extent_cmp);
/*
* Collect any new ordered extents within the range. This is to
* prevent logging file extent items without waiting for the disk
* location they point to being written. We do this only to deal
* with races against concurrent lockless direct IO writes.
*/
btrfs_get_logged_extents(inode, logged_list, start, end);
/*
* Some ordered extents started by fsync might have completed
* before we could collect them into the list logged_list, which
* means they're gone, not in our logged_list nor in the inode's
* ordered tree. We want the application/user space to know an
* error happened while attempting to persist file data so that
* it can take proper action. If such error happened, we leave
* without writing to the log tree and the fsync must report the
* file data write error and not commit the current transaction.
*/
ret = btrfs_inode_check_errors(inode);
if (ret)
ctx->io_err = ret;
process:
while (!list_empty(&extents)) {
em = list_entry(extents.next, struct extent_map, list);
@@ -4202,6 +4210,7 @@ process:
}
WARN_ON(!list_empty(&extents));
write_unlock(&tree->lock);
up_write(&BTRFS_I(inode)->dio_sem);
btrfs_release_path(path);
return ret;
@@ -4622,23 +4631,6 @@ static int btrfs_log_inode(struct btrfs_trans_handle *trans,
mutex_lock(&BTRFS_I(inode)->log_mutex);
/*
* Collect ordered extents only if we are logging data. This is to
* ensure a subsequent request to log this inode in LOG_INODE_ALL mode
* will process the ordered extents if they still exists at the time,
* because when we collect them we test and set for the flag
* BTRFS_ORDERED_LOGGED to prevent multiple log requests to process the
* same ordered extents. The consequence for the LOG_INODE_ALL log mode
* not processing the ordered extents is that we end up logging the
* corresponding file extent items, based on the extent maps in the
* inode's extent_map_tree's modified_list, without logging the
* respective checksums (since the may still be only attached to the
* ordered extents and have not been inserted in the csum tree by
* btrfs_finish_ordered_io() yet).
*/
if (inode_only == LOG_INODE_ALL)
btrfs_get_logged_extents(inode, &logged_list, start, end);
/*
* a brute force approach to making sure we get the most uptodate
* copies of everything.
@@ -4846,21 +4838,6 @@ log_extents:
goto out_unlock;
}
if (fast_search) {
/*
* Some ordered extents started by fsync might have completed
* before we collected the ordered extents in logged_list, which
* means they're gone, not in our logged_list nor in the inode's
* ordered tree. We want the application/user space to know an
* error happened while attempting to persist file data so that
* it can take proper action. If such error happened, we leave
* without writing to the log tree and the fsync must report the
* file data write error and not commit the current transaction.
*/
err = btrfs_inode_check_errors(inode);
if (err) {
ctx->io_err = err;
goto out_unlock;
}
ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
&logged_list, ctx, start, end);
if (ret) {
@@ -5158,7 +5135,7 @@ process_leaf:
}
ctx->log_new_dentries = false;
if (type == BTRFS_FT_DIR)
if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
log_mode = LOG_INODE_ALL;
btrfs_release_path(path);
ret = btrfs_log_inode(trans, root, di_inode,
@@ -5278,11 +5255,16 @@ static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
if (IS_ERR(dir_inode))
continue;
if (ctx)
ctx->log_new_dentries = false;
ret = btrfs_log_inode(trans, root, dir_inode,
LOG_INODE_ALL, 0, LLONG_MAX, ctx);
if (!ret &&
btrfs_must_commit_transaction(trans, dir_inode))
ret = 1;
if (!ret && ctx && ctx->log_new_dentries)
ret = log_new_dir_dentries(trans, root,
dir_inode, ctx);
iput(dir_inode);
if (ret)
goto out;
@@ -5652,11 +5634,9 @@ void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
* into the file. When the file is logged we check it and
* don't log the parents if the file is fully on disk.
*/
if (S_ISREG(inode->i_mode)) {
mutex_lock(&BTRFS_I(inode)->log_mutex);
BTRFS_I(inode)->last_unlink_trans = trans->transid;
mutex_unlock(&BTRFS_I(inode)->log_mutex);
}
mutex_lock(&BTRFS_I(inode)->log_mutex);
BTRFS_I(inode)->last_unlink_trans = trans->transid;
mutex_unlock(&BTRFS_I(inode)->log_mutex);
/*
* if this directory was already logged any new