Merge commit '8700c95adb03' into timers/nohz
The full dynticks tree needs the latest RCU and sched upstream updates in order to fix some dependencies. Merge a common upstream merge point that has these updates. Conflicts: include/linux/perf_event.h kernel/rcutree.h kernel/rcutree_plugin.h Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
This commit is contained in:
@@ -86,11 +86,21 @@ static void __init rcu_bootup_announce_oddness(void)
|
||||
if (nr_cpu_ids != NR_CPUS)
|
||||
printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
|
||||
#ifdef CONFIG_RCU_NOCB_CPU
|
||||
#ifndef CONFIG_RCU_NOCB_CPU_NONE
|
||||
if (!have_rcu_nocb_mask) {
|
||||
alloc_bootmem_cpumask_var(&rcu_nocb_mask);
|
||||
have_rcu_nocb_mask = true;
|
||||
}
|
||||
#ifdef CONFIG_RCU_NOCB_CPU_ZERO
|
||||
pr_info("\tExperimental no-CBs CPU 0\n");
|
||||
cpumask_set_cpu(0, rcu_nocb_mask);
|
||||
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
|
||||
#ifdef CONFIG_RCU_NOCB_CPU_ALL
|
||||
pr_info("\tExperimental no-CBs for all CPUs\n");
|
||||
cpumask_setall(rcu_nocb_mask);
|
||||
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
|
||||
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
|
||||
if (have_rcu_nocb_mask) {
|
||||
if (cpumask_test_cpu(0, rcu_nocb_mask)) {
|
||||
cpumask_clear_cpu(0, rcu_nocb_mask);
|
||||
pr_info("\tCPU 0: illegal no-CBs CPU (cleared).\n");
|
||||
}
|
||||
cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
|
||||
pr_info("\tExperimental no-CBs CPUs: %s.\n", nocb_buf);
|
||||
if (rcu_nocb_poll)
|
||||
@@ -102,7 +112,7 @@ static void __init rcu_bootup_announce_oddness(void)
|
||||
#ifdef CONFIG_TREE_PREEMPT_RCU
|
||||
|
||||
struct rcu_state rcu_preempt_state =
|
||||
RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
|
||||
RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
|
||||
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
|
||||
static struct rcu_state *rcu_state = &rcu_preempt_state;
|
||||
|
||||
@@ -1534,14 +1544,7 @@ static void __cpuinit rcu_prepare_kthreads(int cpu)
|
||||
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
|
||||
{
|
||||
*delta_jiffies = ULONG_MAX;
|
||||
return rcu_cpu_has_callbacks(cpu);
|
||||
}
|
||||
|
||||
/*
|
||||
* Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
|
||||
*/
|
||||
static void rcu_prepare_for_idle_init(int cpu)
|
||||
{
|
||||
return rcu_cpu_has_callbacks(cpu, NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -1578,16 +1581,6 @@ static void rcu_idle_count_callbacks_posted(void)
|
||||
*
|
||||
* The following three proprocessor symbols control this state machine:
|
||||
*
|
||||
* RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
|
||||
* to satisfy RCU. Beyond this point, it is better to incur a periodic
|
||||
* scheduling-clock interrupt than to loop through the state machine
|
||||
* at full power.
|
||||
* RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
|
||||
* optional if RCU does not need anything immediately from this
|
||||
* CPU, even if this CPU still has RCU callbacks queued. The first
|
||||
* times through the state machine are mandatory: we need to give
|
||||
* the state machine a chance to communicate a quiescent state
|
||||
* to the RCU core.
|
||||
* RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
|
||||
* to sleep in dyntick-idle mode with RCU callbacks pending. This
|
||||
* is sized to be roughly one RCU grace period. Those energy-efficiency
|
||||
@@ -1603,186 +1596,108 @@ static void rcu_idle_count_callbacks_posted(void)
|
||||
* adjustment, they can be converted into kernel config parameters, though
|
||||
* making the state machine smarter might be a better option.
|
||||
*/
|
||||
#define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
|
||||
#define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
|
||||
#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
|
||||
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
|
||||
|
||||
static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
|
||||
module_param(rcu_idle_gp_delay, int, 0644);
|
||||
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
|
||||
module_param(rcu_idle_lazy_gp_delay, int, 0644);
|
||||
|
||||
extern int tick_nohz_enabled;
|
||||
|
||||
/*
|
||||
* Does the specified flavor of RCU have non-lazy callbacks pending on
|
||||
* the specified CPU? Both RCU flavor and CPU are specified by the
|
||||
* rcu_data structure.
|
||||
* Try to advance callbacks for all flavors of RCU on the current CPU.
|
||||
* Afterwards, if there are any callbacks ready for immediate invocation,
|
||||
* return true.
|
||||
*/
|
||||
static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
|
||||
static bool rcu_try_advance_all_cbs(void)
|
||||
{
|
||||
return rdp->qlen != rdp->qlen_lazy;
|
||||
}
|
||||
bool cbs_ready = false;
|
||||
struct rcu_data *rdp;
|
||||
struct rcu_node *rnp;
|
||||
struct rcu_state *rsp;
|
||||
|
||||
#ifdef CONFIG_TREE_PREEMPT_RCU
|
||||
for_each_rcu_flavor(rsp) {
|
||||
rdp = this_cpu_ptr(rsp->rda);
|
||||
rnp = rdp->mynode;
|
||||
|
||||
/*
|
||||
* Are there non-lazy RCU-preempt callbacks? (There cannot be if there
|
||||
* is no RCU-preempt in the kernel.)
|
||||
*/
|
||||
static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
|
||||
{
|
||||
struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
|
||||
/*
|
||||
* Don't bother checking unless a grace period has
|
||||
* completed since we last checked and there are
|
||||
* callbacks not yet ready to invoke.
|
||||
*/
|
||||
if (rdp->completed != rnp->completed &&
|
||||
rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
|
||||
rcu_process_gp_end(rsp, rdp);
|
||||
|
||||
return __rcu_cpu_has_nonlazy_callbacks(rdp);
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
|
||||
|
||||
static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
|
||||
|
||||
/*
|
||||
* Does any flavor of RCU have non-lazy callbacks on the specified CPU?
|
||||
*/
|
||||
static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
|
||||
{
|
||||
return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
|
||||
__rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
|
||||
rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
|
||||
if (cpu_has_callbacks_ready_to_invoke(rdp))
|
||||
cbs_ready = true;
|
||||
}
|
||||
return cbs_ready;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allow the CPU to enter dyntick-idle mode if either: (1) There are no
|
||||
* callbacks on this CPU, (2) this CPU has not yet attempted to enter
|
||||
* dyntick-idle mode, or (3) this CPU is in the process of attempting to
|
||||
* enter dyntick-idle mode. Otherwise, if we have recently tried and failed
|
||||
* to enter dyntick-idle mode, we refuse to try to enter it. After all,
|
||||
* it is better to incur scheduling-clock interrupts than to spin
|
||||
* continuously for the same time duration!
|
||||
* Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
|
||||
* to invoke. If the CPU has callbacks, try to advance them. Tell the
|
||||
* caller to set the timeout based on whether or not there are non-lazy
|
||||
* callbacks.
|
||||
*
|
||||
* The delta_jiffies argument is used to store the time when RCU is
|
||||
* going to need the CPU again if it still has callbacks. The reason
|
||||
* for this is that rcu_prepare_for_idle() might need to post a timer,
|
||||
* but if so, it will do so after tick_nohz_stop_sched_tick() has set
|
||||
* the wakeup time for this CPU. This means that RCU's timer can be
|
||||
* delayed until the wakeup time, which defeats the purpose of posting
|
||||
* a timer.
|
||||
* The caller must have disabled interrupts.
|
||||
*/
|
||||
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
|
||||
int rcu_needs_cpu(int cpu, unsigned long *dj)
|
||||
{
|
||||
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
||||
|
||||
/* Flag a new idle sojourn to the idle-entry state machine. */
|
||||
rdtp->idle_first_pass = 1;
|
||||
/* Snapshot to detect later posting of non-lazy callback. */
|
||||
rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
|
||||
|
||||
/* If no callbacks, RCU doesn't need the CPU. */
|
||||
if (!rcu_cpu_has_callbacks(cpu)) {
|
||||
*delta_jiffies = ULONG_MAX;
|
||||
if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
|
||||
*dj = ULONG_MAX;
|
||||
return 0;
|
||||
}
|
||||
if (rdtp->dyntick_holdoff == jiffies) {
|
||||
/* RCU recently tried and failed, so don't try again. */
|
||||
*delta_jiffies = 1;
|
||||
|
||||
/* Attempt to advance callbacks. */
|
||||
if (rcu_try_advance_all_cbs()) {
|
||||
/* Some ready to invoke, so initiate later invocation. */
|
||||
invoke_rcu_core();
|
||||
return 1;
|
||||
}
|
||||
/* Set up for the possibility that RCU will post a timer. */
|
||||
if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
|
||||
*delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
|
||||
RCU_IDLE_GP_DELAY) - jiffies;
|
||||
rdtp->last_accelerate = jiffies;
|
||||
|
||||
/* Request timer delay depending on laziness, and round. */
|
||||
if (rdtp->all_lazy) {
|
||||
*dj = round_up(rcu_idle_gp_delay + jiffies,
|
||||
rcu_idle_gp_delay) - jiffies;
|
||||
} else {
|
||||
*delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
|
||||
*delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
|
||||
*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Handler for smp_call_function_single(). The only point of this
|
||||
* handler is to wake the CPU up, so the handler does only tracing.
|
||||
*/
|
||||
void rcu_idle_demigrate(void *unused)
|
||||
{
|
||||
trace_rcu_prep_idle("Demigrate");
|
||||
}
|
||||
|
||||
/*
|
||||
* Timer handler used to force CPU to start pushing its remaining RCU
|
||||
* callbacks in the case where it entered dyntick-idle mode with callbacks
|
||||
* pending. The hander doesn't really need to do anything because the
|
||||
* real work is done upon re-entry to idle, or by the next scheduling-clock
|
||||
* interrupt should idle not be re-entered.
|
||||
*
|
||||
* One special case: the timer gets migrated without awakening the CPU
|
||||
* on which the timer was scheduled on. In this case, we must wake up
|
||||
* that CPU. We do so with smp_call_function_single().
|
||||
*/
|
||||
static void rcu_idle_gp_timer_func(unsigned long cpu_in)
|
||||
{
|
||||
int cpu = (int)cpu_in;
|
||||
|
||||
trace_rcu_prep_idle("Timer");
|
||||
if (cpu != smp_processor_id())
|
||||
smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
|
||||
else
|
||||
WARN_ON_ONCE(1); /* Getting here can hang the system... */
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize the timer used to pull CPUs out of dyntick-idle mode.
|
||||
*/
|
||||
static void rcu_prepare_for_idle_init(int cpu)
|
||||
{
|
||||
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
||||
|
||||
rdtp->dyntick_holdoff = jiffies - 1;
|
||||
setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
|
||||
rdtp->idle_gp_timer_expires = jiffies - 1;
|
||||
rdtp->idle_first_pass = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Clean up for exit from idle. Because we are exiting from idle, there
|
||||
* is no longer any point to ->idle_gp_timer, so cancel it. This will
|
||||
* do nothing if this timer is not active, so just cancel it unconditionally.
|
||||
*/
|
||||
static void rcu_cleanup_after_idle(int cpu)
|
||||
{
|
||||
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
||||
|
||||
del_timer(&rdtp->idle_gp_timer);
|
||||
trace_rcu_prep_idle("Cleanup after idle");
|
||||
rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
|
||||
}
|
||||
|
||||
/*
|
||||
* Check to see if any RCU-related work can be done by the current CPU,
|
||||
* and if so, schedule a softirq to get it done. This function is part
|
||||
* of the RCU implementation; it is -not- an exported member of the RCU API.
|
||||
*
|
||||
* The idea is for the current CPU to clear out all work required by the
|
||||
* RCU core for the current grace period, so that this CPU can be permitted
|
||||
* to enter dyntick-idle mode. In some cases, it will need to be awakened
|
||||
* at the end of the grace period by whatever CPU ends the grace period.
|
||||
* This allows CPUs to go dyntick-idle more quickly, and to reduce the
|
||||
* number of wakeups by a modest integer factor.
|
||||
*
|
||||
* Because it is not legal to invoke rcu_process_callbacks() with irqs
|
||||
* disabled, we do one pass of force_quiescent_state(), then do a
|
||||
* invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
|
||||
* later. The ->dyntick_drain field controls the sequencing.
|
||||
* Prepare a CPU for idle from an RCU perspective. The first major task
|
||||
* is to sense whether nohz mode has been enabled or disabled via sysfs.
|
||||
* The second major task is to check to see if a non-lazy callback has
|
||||
* arrived at a CPU that previously had only lazy callbacks. The third
|
||||
* major task is to accelerate (that is, assign grace-period numbers to)
|
||||
* any recently arrived callbacks.
|
||||
*
|
||||
* The caller must have disabled interrupts.
|
||||
*/
|
||||
static void rcu_prepare_for_idle(int cpu)
|
||||
{
|
||||
struct timer_list *tp;
|
||||
struct rcu_data *rdp;
|
||||
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
||||
struct rcu_node *rnp;
|
||||
struct rcu_state *rsp;
|
||||
int tne;
|
||||
|
||||
/* Handle nohz enablement switches conservatively. */
|
||||
tne = ACCESS_ONCE(tick_nohz_enabled);
|
||||
if (tne != rdtp->tick_nohz_enabled_snap) {
|
||||
if (rcu_cpu_has_callbacks(cpu))
|
||||
if (rcu_cpu_has_callbacks(cpu, NULL))
|
||||
invoke_rcu_core(); /* force nohz to see update. */
|
||||
rdtp->tick_nohz_enabled_snap = tne;
|
||||
return;
|
||||
@@ -1790,125 +1705,56 @@ static void rcu_prepare_for_idle(int cpu)
|
||||
if (!tne)
|
||||
return;
|
||||
|
||||
/* Adaptive-tick mode, where usermode execution is idle to RCU. */
|
||||
if (!is_idle_task(current)) {
|
||||
rdtp->dyntick_holdoff = jiffies - 1;
|
||||
if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
|
||||
trace_rcu_prep_idle("User dyntick with callbacks");
|
||||
rdtp->idle_gp_timer_expires =
|
||||
round_up(jiffies + RCU_IDLE_GP_DELAY,
|
||||
RCU_IDLE_GP_DELAY);
|
||||
} else if (rcu_cpu_has_callbacks(cpu)) {
|
||||
rdtp->idle_gp_timer_expires =
|
||||
round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
|
||||
trace_rcu_prep_idle("User dyntick with lazy callbacks");
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
tp = &rdtp->idle_gp_timer;
|
||||
mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
|
||||
/* If this is a no-CBs CPU, no callbacks, just return. */
|
||||
if (is_nocb_cpu(cpu))
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* If this is an idle re-entry, for example, due to use of
|
||||
* RCU_NONIDLE() or the new idle-loop tracing API within the idle
|
||||
* loop, then don't take any state-machine actions, unless the
|
||||
* momentary exit from idle queued additional non-lazy callbacks.
|
||||
* Instead, repost the ->idle_gp_timer if this CPU has callbacks
|
||||
* pending.
|
||||
* If a non-lazy callback arrived at a CPU having only lazy
|
||||
* callbacks, invoke RCU core for the side-effect of recalculating
|
||||
* idle duration on re-entry to idle.
|
||||
*/
|
||||
if (!rdtp->idle_first_pass &&
|
||||
(rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
|
||||
if (rcu_cpu_has_callbacks(cpu)) {
|
||||
tp = &rdtp->idle_gp_timer;
|
||||
mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
|
||||
}
|
||||
return;
|
||||
}
|
||||
rdtp->idle_first_pass = 0;
|
||||
rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
|
||||
|
||||
/*
|
||||
* If there are no callbacks on this CPU, enter dyntick-idle mode.
|
||||
* Also reset state to avoid prejudicing later attempts.
|
||||
*/
|
||||
if (!rcu_cpu_has_callbacks(cpu)) {
|
||||
rdtp->dyntick_holdoff = jiffies - 1;
|
||||
rdtp->dyntick_drain = 0;
|
||||
trace_rcu_prep_idle("No callbacks");
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* If in holdoff mode, just return. We will presumably have
|
||||
* refrained from disabling the scheduling-clock tick.
|
||||
*/
|
||||
if (rdtp->dyntick_holdoff == jiffies) {
|
||||
trace_rcu_prep_idle("In holdoff");
|
||||
return;
|
||||
}
|
||||
|
||||
/* Check and update the ->dyntick_drain sequencing. */
|
||||
if (rdtp->dyntick_drain <= 0) {
|
||||
/* First time through, initialize the counter. */
|
||||
rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
|
||||
} else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
|
||||
!rcu_pending(cpu) &&
|
||||
!local_softirq_pending()) {
|
||||
/* Can we go dyntick-idle despite still having callbacks? */
|
||||
rdtp->dyntick_drain = 0;
|
||||
rdtp->dyntick_holdoff = jiffies;
|
||||
if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
|
||||
trace_rcu_prep_idle("Dyntick with callbacks");
|
||||
rdtp->idle_gp_timer_expires =
|
||||
round_up(jiffies + RCU_IDLE_GP_DELAY,
|
||||
RCU_IDLE_GP_DELAY);
|
||||
} else {
|
||||
rdtp->idle_gp_timer_expires =
|
||||
round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
|
||||
trace_rcu_prep_idle("Dyntick with lazy callbacks");
|
||||
}
|
||||
tp = &rdtp->idle_gp_timer;
|
||||
mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
|
||||
rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
|
||||
return; /* Nothing more to do immediately. */
|
||||
} else if (--(rdtp->dyntick_drain) <= 0) {
|
||||
/* We have hit the limit, so time to give up. */
|
||||
rdtp->dyntick_holdoff = jiffies;
|
||||
trace_rcu_prep_idle("Begin holdoff");
|
||||
invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Do one step of pushing the remaining RCU callbacks through
|
||||
* the RCU core state machine.
|
||||
*/
|
||||
#ifdef CONFIG_TREE_PREEMPT_RCU
|
||||
if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
|
||||
rcu_preempt_qs(cpu);
|
||||
force_quiescent_state(&rcu_preempt_state);
|
||||
}
|
||||
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
|
||||
if (per_cpu(rcu_sched_data, cpu).nxtlist) {
|
||||
rcu_sched_qs(cpu);
|
||||
force_quiescent_state(&rcu_sched_state);
|
||||
}
|
||||
if (per_cpu(rcu_bh_data, cpu).nxtlist) {
|
||||
rcu_bh_qs(cpu);
|
||||
force_quiescent_state(&rcu_bh_state);
|
||||
}
|
||||
|
||||
/*
|
||||
* If RCU callbacks are still pending, RCU still needs this CPU.
|
||||
* So try forcing the callbacks through the grace period.
|
||||
*/
|
||||
if (rcu_cpu_has_callbacks(cpu)) {
|
||||
trace_rcu_prep_idle("More callbacks");
|
||||
if (rdtp->all_lazy &&
|
||||
rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
|
||||
invoke_rcu_core();
|
||||
} else {
|
||||
trace_rcu_prep_idle("Callbacks drained");
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we have not yet accelerated this jiffy, accelerate all
|
||||
* callbacks on this CPU.
|
||||
*/
|
||||
if (rdtp->last_accelerate == jiffies)
|
||||
return;
|
||||
rdtp->last_accelerate = jiffies;
|
||||
for_each_rcu_flavor(rsp) {
|
||||
rdp = per_cpu_ptr(rsp->rda, cpu);
|
||||
if (!*rdp->nxttail[RCU_DONE_TAIL])
|
||||
continue;
|
||||
rnp = rdp->mynode;
|
||||
raw_spin_lock(&rnp->lock); /* irqs already disabled. */
|
||||
rcu_accelerate_cbs(rsp, rnp, rdp);
|
||||
raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Clean up for exit from idle. Attempt to advance callbacks based on
|
||||
* any grace periods that elapsed while the CPU was idle, and if any
|
||||
* callbacks are now ready to invoke, initiate invocation.
|
||||
*/
|
||||
static void rcu_cleanup_after_idle(int cpu)
|
||||
{
|
||||
struct rcu_data *rdp;
|
||||
struct rcu_state *rsp;
|
||||
|
||||
if (is_nocb_cpu(cpu))
|
||||
return;
|
||||
rcu_try_advance_all_cbs();
|
||||
for_each_rcu_flavor(rsp) {
|
||||
rdp = per_cpu_ptr(rsp->rda, cpu);
|
||||
if (cpu_has_callbacks_ready_to_invoke(rdp))
|
||||
invoke_rcu_core();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2016,16 +1862,13 @@ early_initcall(rcu_register_oom_notifier);
|
||||
static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
|
||||
{
|
||||
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
||||
struct timer_list *tltp = &rdtp->idle_gp_timer;
|
||||
char c;
|
||||
unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
|
||||
|
||||
c = rdtp->dyntick_holdoff == jiffies ? 'H' : '.';
|
||||
if (timer_pending(tltp))
|
||||
sprintf(cp, "drain=%d %c timer=%lu",
|
||||
rdtp->dyntick_drain, c, tltp->expires - jiffies);
|
||||
else
|
||||
sprintf(cp, "drain=%d %c timer not pending",
|
||||
rdtp->dyntick_drain, c);
|
||||
sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
|
||||
rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
|
||||
ulong2long(nlpd),
|
||||
rdtp->all_lazy ? 'L' : '.',
|
||||
rdtp->tick_nohz_enabled_snap ? '.' : 'D');
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
|
||||
@@ -2071,10 +1914,11 @@ static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
|
||||
ticks_value = rsp->gpnum - rdp->gpnum;
|
||||
}
|
||||
print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
|
||||
printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
|
||||
printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
|
||||
cpu, ticks_value, ticks_title,
|
||||
atomic_read(&rdtp->dynticks) & 0xfff,
|
||||
rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
|
||||
rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
|
||||
fast_no_hz);
|
||||
}
|
||||
|
||||
@@ -2088,6 +1932,7 @@ static void print_cpu_stall_info_end(void)
|
||||
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
|
||||
{
|
||||
rdp->ticks_this_gp = 0;
|
||||
rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
|
||||
}
|
||||
|
||||
/* Increment ->ticks_this_gp for all flavors of RCU. */
|
||||
@@ -2166,6 +2011,47 @@ static int __init parse_rcu_nocb_poll(char *arg)
|
||||
}
|
||||
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
|
||||
|
||||
/*
|
||||
* Do any no-CBs CPUs need another grace period?
|
||||
*
|
||||
* Interrupts must be disabled. If the caller does not hold the root
|
||||
* rnp_node structure's ->lock, the results are advisory only.
|
||||
*/
|
||||
static int rcu_nocb_needs_gp(struct rcu_state *rsp)
|
||||
{
|
||||
struct rcu_node *rnp = rcu_get_root(rsp);
|
||||
|
||||
return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
|
||||
}
|
||||
|
||||
/*
|
||||
* Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
|
||||
* grace period.
|
||||
*/
|
||||
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
|
||||
{
|
||||
wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the root rcu_node structure's ->need_future_gp field
|
||||
* based on the sum of those of all rcu_node structures. This does
|
||||
* double-count the root rcu_node structure's requests, but this
|
||||
* is necessary to handle the possibility of a rcu_nocb_kthread()
|
||||
* having awakened during the time that the rcu_node structures
|
||||
* were being updated for the end of the previous grace period.
|
||||
*/
|
||||
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
|
||||
{
|
||||
rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
|
||||
}
|
||||
|
||||
static void rcu_init_one_nocb(struct rcu_node *rnp)
|
||||
{
|
||||
init_waitqueue_head(&rnp->nocb_gp_wq[0]);
|
||||
init_waitqueue_head(&rnp->nocb_gp_wq[1]);
|
||||
}
|
||||
|
||||
/* Is the specified CPU a no-CPUs CPU? */
|
||||
bool rcu_is_nocb_cpu(int cpu)
|
||||
{
|
||||
@@ -2228,6 +2114,13 @@ static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
|
||||
if (!rcu_is_nocb_cpu(rdp->cpu))
|
||||
return 0;
|
||||
__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
|
||||
if (__is_kfree_rcu_offset((unsigned long)rhp->func))
|
||||
trace_rcu_kfree_callback(rdp->rsp->name, rhp,
|
||||
(unsigned long)rhp->func,
|
||||
rdp->qlen_lazy, rdp->qlen);
|
||||
else
|
||||
trace_rcu_callback(rdp->rsp->name, rhp,
|
||||
rdp->qlen_lazy, rdp->qlen);
|
||||
return 1;
|
||||
}
|
||||
|
||||
@@ -2266,95 +2159,36 @@ static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
|
||||
}
|
||||
|
||||
/*
|
||||
* There must be at least one non-no-CBs CPU in operation at any given
|
||||
* time, because no-CBs CPUs are not capable of initiating grace periods
|
||||
* independently. This function therefore complains if the specified
|
||||
* CPU is the last non-no-CBs CPU, allowing the CPU-hotplug system to
|
||||
* avoid offlining the last such CPU. (Recursion is a wonderful thing,
|
||||
* but you have to have a base case!)
|
||||
* If necessary, kick off a new grace period, and either way wait
|
||||
* for a subsequent grace period to complete.
|
||||
*/
|
||||
static bool nocb_cpu_expendable(int cpu)
|
||||
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
|
||||
{
|
||||
cpumask_var_t non_nocb_cpus;
|
||||
int ret;
|
||||
unsigned long c;
|
||||
bool d;
|
||||
unsigned long flags;
|
||||
struct rcu_node *rnp = rdp->mynode;
|
||||
|
||||
raw_spin_lock_irqsave(&rnp->lock, flags);
|
||||
c = rcu_start_future_gp(rnp, rdp);
|
||||
raw_spin_unlock_irqrestore(&rnp->lock, flags);
|
||||
|
||||
/*
|
||||
* If there are no no-CB CPUs or if this CPU is not a no-CB CPU,
|
||||
* then offlining this CPU is harmless. Let it happen.
|
||||
* Wait for the grace period. Do so interruptibly to avoid messing
|
||||
* up the load average.
|
||||
*/
|
||||
if (!have_rcu_nocb_mask || rcu_is_nocb_cpu(cpu))
|
||||
return 1;
|
||||
|
||||
/* If no memory, play it safe and keep the CPU around. */
|
||||
if (!alloc_cpumask_var(&non_nocb_cpus, GFP_NOIO))
|
||||
return 0;
|
||||
cpumask_andnot(non_nocb_cpus, cpu_online_mask, rcu_nocb_mask);
|
||||
cpumask_clear_cpu(cpu, non_nocb_cpus);
|
||||
ret = !cpumask_empty(non_nocb_cpus);
|
||||
free_cpumask_var(non_nocb_cpus);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper structure for remote registry of RCU callbacks.
|
||||
* This is needed for when a no-CBs CPU needs to start a grace period.
|
||||
* If it just invokes call_rcu(), the resulting callback will be queued,
|
||||
* which can result in deadlock.
|
||||
*/
|
||||
struct rcu_head_remote {
|
||||
struct rcu_head *rhp;
|
||||
call_rcu_func_t *crf;
|
||||
void (*func)(struct rcu_head *rhp);
|
||||
};
|
||||
|
||||
/*
|
||||
* Register a callback as specified by the rcu_head_remote struct.
|
||||
* This function is intended to be invoked via smp_call_function_single().
|
||||
*/
|
||||
static void call_rcu_local(void *arg)
|
||||
{
|
||||
struct rcu_head_remote *rhrp =
|
||||
container_of(arg, struct rcu_head_remote, rhp);
|
||||
|
||||
rhrp->crf(rhrp->rhp, rhrp->func);
|
||||
}
|
||||
|
||||
/*
|
||||
* Set up an rcu_head_remote structure and the invoke call_rcu_local()
|
||||
* on CPU 0 (which is guaranteed to be a non-no-CBs CPU) via
|
||||
* smp_call_function_single().
|
||||
*/
|
||||
static void invoke_crf_remote(struct rcu_head *rhp,
|
||||
void (*func)(struct rcu_head *rhp),
|
||||
call_rcu_func_t crf)
|
||||
{
|
||||
struct rcu_head_remote rhr;
|
||||
|
||||
rhr.rhp = rhp;
|
||||
rhr.crf = crf;
|
||||
rhr.func = func;
|
||||
smp_call_function_single(0, call_rcu_local, &rhr, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper functions to be passed to wait_rcu_gp(), each of which
|
||||
* invokes invoke_crf_remote() to register a callback appropriately.
|
||||
*/
|
||||
static void __maybe_unused
|
||||
call_rcu_preempt_remote(struct rcu_head *rhp,
|
||||
void (*func)(struct rcu_head *rhp))
|
||||
{
|
||||
invoke_crf_remote(rhp, func, call_rcu);
|
||||
}
|
||||
static void call_rcu_bh_remote(struct rcu_head *rhp,
|
||||
void (*func)(struct rcu_head *rhp))
|
||||
{
|
||||
invoke_crf_remote(rhp, func, call_rcu_bh);
|
||||
}
|
||||
static void call_rcu_sched_remote(struct rcu_head *rhp,
|
||||
void (*func)(struct rcu_head *rhp))
|
||||
{
|
||||
invoke_crf_remote(rhp, func, call_rcu_sched);
|
||||
trace_rcu_future_gp(rnp, rdp, c, "StartWait");
|
||||
for (;;) {
|
||||
wait_event_interruptible(
|
||||
rnp->nocb_gp_wq[c & 0x1],
|
||||
(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
|
||||
if (likely(d))
|
||||
break;
|
||||
flush_signals(current);
|
||||
trace_rcu_future_gp(rnp, rdp, c, "ResumeWait");
|
||||
}
|
||||
trace_rcu_future_gp(rnp, rdp, c, "EndWait");
|
||||
smp_mb(); /* Ensure that CB invocation happens after GP end. */
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -2391,7 +2225,7 @@ static int rcu_nocb_kthread(void *arg)
|
||||
cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
|
||||
ACCESS_ONCE(rdp->nocb_p_count) += c;
|
||||
ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
|
||||
wait_rcu_gp(rdp->rsp->call_remote);
|
||||
rcu_nocb_wait_gp(rdp);
|
||||
|
||||
/* Each pass through the following loop invokes a callback. */
|
||||
trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
|
||||
@@ -2437,33 +2271,42 @@ static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
|
||||
return;
|
||||
for_each_cpu(cpu, rcu_nocb_mask) {
|
||||
rdp = per_cpu_ptr(rsp->rda, cpu);
|
||||
t = kthread_run(rcu_nocb_kthread, rdp, "rcuo%d", cpu);
|
||||
t = kthread_run(rcu_nocb_kthread, rdp,
|
||||
"rcuo%c/%d", rsp->abbr, cpu);
|
||||
BUG_ON(IS_ERR(t));
|
||||
ACCESS_ONCE(rdp->nocb_kthread) = t;
|
||||
}
|
||||
}
|
||||
|
||||
/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
|
||||
static void init_nocb_callback_list(struct rcu_data *rdp)
|
||||
static bool init_nocb_callback_list(struct rcu_data *rdp)
|
||||
{
|
||||
if (rcu_nocb_mask == NULL ||
|
||||
!cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
|
||||
return;
|
||||
return false;
|
||||
rdp->nxttail[RCU_NEXT_TAIL] = NULL;
|
||||
}
|
||||
|
||||
/* Initialize the ->call_remote fields in the rcu_state structures. */
|
||||
static void __init rcu_init_nocb(void)
|
||||
{
|
||||
#ifdef CONFIG_PREEMPT_RCU
|
||||
rcu_preempt_state.call_remote = call_rcu_preempt_remote;
|
||||
#endif /* #ifdef CONFIG_PREEMPT_RCU */
|
||||
rcu_bh_state.call_remote = call_rcu_bh_remote;
|
||||
rcu_sched_state.call_remote = call_rcu_sched_remote;
|
||||
return true;
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
|
||||
|
||||
static int rcu_nocb_needs_gp(struct rcu_state *rsp)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
|
||||
{
|
||||
}
|
||||
|
||||
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
|
||||
{
|
||||
}
|
||||
|
||||
static void rcu_init_one_nocb(struct rcu_node *rnp)
|
||||
{
|
||||
}
|
||||
|
||||
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
|
||||
bool lazy)
|
||||
{
|
||||
@@ -2476,11 +2319,6 @@ static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool nocb_cpu_expendable(int cpu)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
|
||||
{
|
||||
}
|
||||
@@ -2489,12 +2327,9 @@ static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
|
||||
{
|
||||
}
|
||||
|
||||
static void init_nocb_callback_list(struct rcu_data *rdp)
|
||||
{
|
||||
}
|
||||
|
||||
static void __init rcu_init_nocb(void)
|
||||
static bool init_nocb_callback_list(struct rcu_data *rdp)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
|
||||
|
Reference in New Issue
Block a user